Earth’s magnetotail is filled with solar wind and ionospheric electrons, whose initial energies are significantly lower than the typical energies (temperatures) of plasmasheet electrons. One of the most common mechanisms responsible for heating of solar wind and ionospheric electrons in Earth’s magnetotail is adiabatic heating caused by earthward convection of these electrons from the deep tail (i.e., from the region of a weak magnetic field) towards the region of stronger magnetic fields closer to Earth. This heating is moderated by electron losses into the ionosphere due to local wave scattering. In this study, we compare electron spectra from simultaneous observations of The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft at different radial distances with spectra obtained from a simple model that includes adiabatic heating and losses. Our comparison shows that the model heating significantly overestimates the increase in energetic (>1 keV) electron fluxes, indicating that losses are essential for accurate modelling of the observed spectra. The required electron losses are similar to or even greater than the losses in the strong diffusion limit (when the loss cone is full). The latter can be interpreted as loss cone widening by field-aligned electron acceleration.