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Abstract14

Earth System Models’ complex land components simulate a patchwork of increases and15

decreases in surface water availability when driven by projected future climate changes.16

Yet, commonly-used simple theories for surface water availability, such as the Aridity17

Index (P/E0) and Palmer Drought Severity Index (PDSI), obtain severe, globally dom-18

inant drying when driven by those same climate changes, leading to disagreement among19

published studies. In this work, we show that ESM simulated runoff-ratio and soil-moisture20

responses become much more consistent with the P/E0 and PDSI responses when sev-21

eral known factors that the latter do not account for are cut out of the simulations. This22

reconciles the disagreement and makes the full ESM responses more understandable. For23

ESM runoff ratio, the most important factor causing the more positive global response24

compared to P/E0 is the concentration of precipitation in time with greenhouse warm-25

ing. For ESM soil moisture, the most important factor causing the more positive global26

response compared to PDSI is the effect of increasing carbon dioxide on plant physiol-27

ogy. The effect of increasing vapor-pressure deficit on plant physiology is a key secondary28

factor for both. Future work will assess the utility of both the ESMs and the simple in-29

dices for understanding observed, historical trends.30

Plain Language Summary31

Rivers and groundwater provide almost all water used by humans, and soil mois-32

ture is critical for vegetation and crops worldwide. Supercomputer model simulations33

of rivers, groundwater and soil moisture under future global warming routinely project34

that some world regions will experience increases in the availability of these resources,35

while others will experience decreases. Yet the simple formulas that scientists have tra-36

ditionally relied on to measure climatic “drought” and “aridity” obtain large future de-37

creases in water availability (drying) almost everywhere. This has led to confusion in prior38

studies and reports. In this study, we resolve this apparent paradox by pinpointing ex-39

actly why the supercomputer simulations are less pessimistic than the simple formulas.40

For rivers and groundwater, the most important reason is that precipitation gets “flashier”41

and more intense with global warming. For soil moisture, the most important reason is42

that increasing carbon dioxide allows vegetation to use less water, keeping more water43

in the soil. Both of these processes are included in the computer models, but not in the44

simple formulas. This new understanding gives us greater confidence that the computer45

models are behaving reasonably.46

1 Introduction47

Fresh water at Earth’s surface is critical for all terrestrial life, including human life.48

Therefore, reports of anthropogenic climate change effects on terrestrial water scarcity49

(as cited in, e.g., Douville et al. (2021) and Seneviratne et al. (2021)) are of fundamen-50

tal interest. At the global scale, such studies generally employ one of two common method-51

ologies.52

On one hand, the complex land-surface models embedded in Earth System Mod-53

els (ESMs; Eyring et al., 2016) are used to perform opaque but explicit simulations of54

the effects of climate and CO2 changes on particular terrestrial water fluxes (e.g., runoff)55

or stocks (e.g., soil moisture). Recent studies using this approach include Berg and Sheffield56

(2018), Lemordant et al. (2018), and Cook et al. (2020).57

On the other hand, simple, widely-used theories for general terrestrial water abun-58

dance based on precipitation (P ) and potential evaporation (E0), such as the aridity in-59

dex (P/E0; Transeau, 1905; Budyko & Miller, 1974), the Palmer Drought Severity In-60

dex (PDSI; Palmer, 1965), and the Standardized Precipitation-Evapotranspiration In-61

dex (SPEI; Vicente-Serrano et al., 2010), are used to assess projected global warming62
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impacts on future water availability. Recent studies using this approach include Naumann63

et al. (2018), Dai et al. (2018), Wang et al. (2020), Vicente-Serrano et al. (2020), and64

Qi et al. (2022).65

In recent years, however, it has become clear (Zhao & Dai, 2015; Roderick et al.,66

2015; Swann et al., 2016; Milly & Dunne, 2016, 2017; Scheff et al., 2017; Scheff, 2018;67

Berg & Sheffield, 2018; Greve et al., 2019; Yang et al., 2019, 2020) that these two ap-68

proaches yield fundamentally conflicting results at the global scale. ESM land-surface69

outputs, especially those of runoff, precipitation-minus-evapotranspiration, and root-zone70

soil moisture, generally depict a regional patchwork of increases and decreases in water71

availability. Yet P/E0, PDSI, and SPEI, when driven by the same ESMs’ climate out-72

puts, usually obtain near-global drying equatorward of ≈ 55◦ (with just a few regional73

exceptions). These apparent contradictions, which we have termed “dryness index-impact74

gaps” (Scheff et al., 2021), call into question the reliability of both the ESM land mod-75

els and the simple theories. They are often apparent in Tables 11.3-11.21 of Seneviratne76

et al. (2021), where they lead to difficulty in assessing the sign of climate change effects77

on drought.78

Many of the studies cited above argue that the index-impact gaps arise primarily79

because the ESM land models account for the closure of leaf stomates by elevated CO2,80

counteracting the warming-driven evapotranspiration increase that drives the global dry-81

ing response in the simple theories. However, we have found in prior work that though82

this effect largely explains the gap between ESM vegetation responses and the simple83

theories, it does not explain many of the gaps between ESM hydrologic responses and84

the simple theories (Scheff et al., 2021). Even in special multi-ESM experiments in which85

CO2-plant effects are completely turned off (Jones et al., 2016), the runoff ratio still re-86

sponds much more positively than P/E0, PDSI or SPEI to global warming, despite the87

theoretical idea that P/E0 is the main control on the runoff ratio (Budyko & Miller, 1974;88

Gentine et al., 2012). Similarly, in those experiments, the SPEI still responds much more89

negatively than root-zone soil moisture (Scheff et al., 2021), despite its goal of quanti-90

fying the effect of climate change on water availability (Vicente-Serrano et al., 2010).91

Therefore, in this study, we use the Community Land Model (CLM; Lawrence et92

al., 2019), a widely-adopted land ESM, to test several alternative reasons for the hydro-93

logic index-impact gaps other than CO2-plant effects. These include closure of leaf sto-94

mates by elevated vapor-pressure deficits (Novick et al., 2016; Massmann et al., 2019),95

concentration of precipitation into shorter, more intense events with warming (Pendergrass96

& Hartmann, 2014; Zhao & Dai, 2015; Mankin et al., 2019), and concentration of pre-97

cipitation into the existing wet season (Chou et al., 2013; R. J. Allen & Anderson, 2018).98

All have been hypothesized to alter surface water availablity, but have largely been untested.99

2 Methods100

2.1 Model and experiments101

To perform these experiments, we use CLM5.0, which is the edition of the CLM102

used in the Community Earth System Model version 2 (CESM2; Danabasoglu et al., 2020)103

that participated in the Coupled Model Intercomparison Project phase 6 (CMIP6; Eyring104

et al., 2016). We run CLM5.0 on the Cheyenne system (Computational and Informa-105

tion Systems Laboratory, 2019). CLM5.0’s innovations (Lawrence et al., 2019) relative106

to CLM4.5 include updated hydrologic and snow parameterizations with spatially vary-107

ing soil depth, a plant-hydraulic parameterization to more realistically account for veg-108

etation water stress, and a new stomatal scheme that uses the model of Medlyn et al.109

(2011).110

We drive CLM5.0 using stored CESM2 atmospheric coupler history from the CMIP6111

historical and “SSP5-8.5” (high-emission future) experiments, rather than running cou-112
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Table 1. CLM5.0 experiments in this study.

Present (1965-2014) Future (2051-2100) Difference

default default “default”
CLM5.0 CO2 = 370 ppm CLM5.0 CO2 = 370 ppm “fixedCO2”
Medlyn VPD = 1.5 kPa Medlyn VPD = 1.5 kPa “medlynconst”

default pseudofuture “noflash”
default pseudofuture2 “noflashnoseas”

370 ppm and 1.5 kPa pseudofuture2 with 370 ppm and 1.5 kPa “allelim”

pled CESM2 simulations. This saves computational time, simplifies the problem by fo-113

cusing on the hydrologic response to atmospheric change, and allows us to test hypothe-114

ses by manipulating the driving data (see below). Future work could expand these ques-115

tions to fully-coupled simulations.116

For our default present experiment, we drive CLM5.0 using years 1965-2014 of the117

b.e21.BHIST.f09_g17.CMIP6-historical.011 run’s coupler history, discarding 1965-118

1984 for spinup and only analyzing 1985-2014. For our default future experiment, we drive119

CLM5.0 using years 2051-2100 of the b.e21.BSSP585cmip6.f09_g17.CMIP6-SSP5-8.5.102120

run’s coupler history, discarding 2051-2070 for spinup and only analyzing 2071-2100. We121

set CLM5.0 to read the diagnostic CO2 from the coupler history, so that these runs “see”122

the CO2 changes in addition to the climate changes. The difference between these fu-123

ture and present outputs is termed “default”. The driving files are all available in the124

National Center for Atmospheric Research’s Campaign Storage system under /glade/campaign/125

collections/cmip/CMIP6/cpl_hist/, and include daily (“1d”), 3-hourly (“3h”), and126

two types of hourly (“1h” and “1hi”) files.127

We then perform a series of alternative runs, listed in Table 1, to test the role of128

each proposed factor in creating the index-impact gaps. To isolate the role of CO2-plant129

effects as in Scheff et al. (2021), we run present and future experiments in which CLM5.0’s130

CO2 is fixed to 370 ppm (a representative value for 1985-2014) rather than read in di-131

agnostically. The difference between these is termed “fixedCO2”. To isolate the role of132

VPD-stomatal effects as in Novick et al. (2016), we run present and future experiments133

in which the VPD input to the Medlyn stomatal code is fixed to a constant 1.5 kPa. The134

difference between these is termed “medlynconst”.135

To isolate the role of the concentration of precipitation in time with warming as136

in Pendergrass and Hartmann (2014), we create a “pseudo-SSP5-8.5” driving dataset with137

the climate properties of SSP5-8.5 but the temporal weather characteristics of the his-138

torical dataset. First, for each driving variable, day of year, and (for sub-daily variables)139

time of day, historical (1985-2014) and SSP5-8.5 (2071-2100) climatology fields are com-140

puted. At each time of day (so as not to smooth across the diurnal cycle), these clima-141

tologies are further smoothed with a 31-day running mean. They are then divided (sub-142

tracted, in the case of temperature and pressure) to form a seasonally and diurnally vary-143

ing perturbation field for each variable. This perturbation field is finally multiplied by144

(added to) all 50 years of the historical driving data to create the pseudo-SSP5-8.5 data,145

which then drives our “pseudofuture” run. The difference between the pseudofuture and146

the default present is then termed “noflash” (the effect of global warming and CO2 in-147

crease without the “flashier” precipitation).148

The reason we create and use this pseudo-SSP5-8.5 data for every driving variable,149

is that setting precipitation alone to pseudo-SSP5-8.5 (i.e., historical weather history)150

while keeping other variables SSP5-8.5 (i.e., future weather history) would destroy the151

short-term correlations between precipitation and other variables, introducing an addi-152
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tional change. However, at the rare times and locations where a variable’s perturbation153

factor is greater than 5, the original SSP5-8.5 data for that variable is used to avoid un-154

realistic values.155

Also, certain closely-related variables from the coupler are immediately combined156

by CLM5.0 to create “macro-variables,” which it then uses in place of the original vari-157

ables. Specifically, CLM5.0 adds the convective rain, large-scale rain, convective snow,158

and large-scale snow fluxes from the coupler before imposing its own partitioning, so we159

also add these four fluxes before computing the climatology, and we apply the resulting160

perturbation to each flux. This avoids large artificial total-precipitation changes caused161

by, e.g., snow changing to rain. Similarly, CLM5.0 adds the wet and dry deposition rates162

for each aerosol species that has wet and dry deposition, so we do the same. Finally, CLM5.0’s163

surface turbulence scheme only depends on the wind speed and not the u and v com-164

ponents, so we convert the u and v components into wind speed before computing our165

wind climatology and perturbation, which we then apply to both u and v.166

To isolate the role of changing precipitation seasonality as in Chou et al. (2013),167

we also run a “pseudofuture2” experiment that is identical to pseudofuture except that168

the above precipitation perturbation is based only on the annual-mean climatologies at169

each location and time of day. Our pseudofuture2 precipitation thus has the annual-mean170

climatology of SSP5-8.5, but the weather and seasonality of the historical. Since in this171

case there is no danger of ruining the synoptic-scale correlations, only the precipitation172

is altered in this way, for simplicity. The difference between the pseudofuture2 and the173

default present is termed “noflashnoseas”.174

Last, we run a pair of experiments like the present and pseudofuture2 runs, but with175

CO2 fixed to 370 ppm and the Medlyn code’s VPD fixed to 1.5 kPa (for both). These176

test the effects of making all of the above simplifications at once, and allow us to check177

for any nonlinear interactions between them. The difference between this pair is termed178

“allelim” (i.e., the effect of climate change with the complicating factors all eliminated).179

2.2 Deriving monthly hydroclimate variables180

Since CLM5.0 outputs its key driving fluxes and near-surface meteorological fields181

in addition to the usual land-surface output, we read in or compute all of our required182

monthly land and atmospheric variables from the CLM5.0 output, for simplicity.183

We compute monthly precipitation P as the sum of RAIN_FROM_ATM and SNOW_FROM_ATM,184

and read in evapotranspiration E from QFLUX_EVAP_TOT and total runoff Q from QRUNOFF.185

With these definitions, each run’s annual-mean climatology of Q is essentially identical186

to that of P − E (not shown), so CLM5.0 is defining Q correctly and conserving wa-187

ter. We compute raw monthly layer-by-layer soil moisture (in mm) as SOILLIQ plus SOILICE,188

and then define surface soil moisture SMs to be the sum of the first 3 layers (12 cm) of189

soil moisture, and deep or root-zone soil moisture SMd to be the sum of the first 11 lay-190

ers (≈ 2 m) of soil moisture.191

We then compute monthly FAO-56 (Food and Agriculture Organization; R. G. Allen192

et al., 1998) Penman-Monteith potential evapotranspiration E0 and effective relative hu-193

midity RH, as in Scheff et al. (2021). We use EFLX_LH_TOT (latent heat flux) plus FSH194

(sensible heat flux) for the available energy (LH+SH) = Rn −G. We use TSA for the195

air temperature, PBOT for the air pressure, Q2M for the air humidity, and U10 for the wind196

speed. Using the monthly P and E0 series, we compute the PDSI and 12-month SPEI197

each month, also as in Scheff et al. (2021). For each experiment, the PDSI and SPEI ref-198

erence period is years 1985-2014 of that experiment (Table 1).199
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2.3 Annual series and statistics200

Assessing the statistical significance of any present-future changes using monthly201

series would be difficult, because most of these variables have strong annual cycles of both202

mean and variance, and many have significant month-to-month memory. Therefore, we203

carefully construct annual series from each 50-year run’s monthly series, as follows.204

First, at each gridpoint, for each of P , Q, SMs, SMd, RH, PDSI, and (LH+SH),205

we define that variable’s “water year” (for LH+SH, “energy year”) to end on the cal-206

endar month with the least interannual variance of that variable. For example, if at some207

gridpoint July has the least interannual variance of SMd out of all 12 calendar months,208

the SMd water year at that gridpoint is defined to begin in August and end in July. This209

ensures that most of the interannual differences do not straddle consecutive years. We210

then average each aforementioned variable’s monthly series over its respective 49 water211

years to obtain 49 annual values (though we only analyze the last 29 below, for spinup212

reasons as stated in section 2.1). Where the water year is January through December213

(yielding 50 water years), we average over the last 49.214

Other key variables’ annual values are computed as follows. For P/E0, we aver-215

age E0 over the P water years, and then divide the annual-mean P and annual-mean E0216

series to form annual P/E0 series. For 12-month SPEI, we simply choose the values that217

correspond to the P water years, and discard the rest, forming annual SPEI series. For218

evaporative fraction EF, we average LH over the (LH+SH) “energy years”, and then di-219

vide the annual LH and annual (LH+SH) series to form annual series of EF. Similarly,220

for runoff ratio Q/P , we average P over the Q water years, and divide the Q series by221

the resulting P series to obtain annual Q/P series. (This is not perfect since P that falls222

in one water year can become Q in a subsequent one, but it still seems reasonable to as-223

sume that most of a water year’s Q comes from P that fell during that time.)224

To quantify interannual variability, we take the standard deviation of each of the225

above annual series over the last 29 water years (1985-2014) of each present run. To quan-226

tify the mean hydroclimate of each epoch, we similarly take the mean of each of the above227

annual series over the last 29 water years of each present (1985-2014) and (pseudo)future228

(2071-2100) run, for most variables. However, we define mean P/E0 as mean P over mean229

E0, mean EF as mean LH over mean (LH+SH), and mean Q/P as mean Q over mean230

P , consistent with prior literature (e.g., Budyko & Miller, 1974).231

Finally, we subtract the future and present means for each pair of runs in Table232

1, and divide by the present interannual variability, to obtain standardized changes in233

each variable for each experiment. We also compute differences in standardized changes234

between index and impact variables, so as to quantify the qualitative index-impact gaps235

discussed in section 1. For example, wherever variable A significantly declines from present236

to future but variable B only insignificantly declines from present to future, variable B’s237

standardized change is less negative than variable A’s standardized change, so their dif-238

ference (gap) is positive.239

3 Results240

3.1 Aridity index vs. runoff ratio241

We first address the long-standing gap between simulated P/E0 and Q/P responses242

to climate change, which is surprising given that P/E0 is theorized and observed to be243

the main control on Q/P worldwide (Budyko & Miller, 1974; Gentine et al., 2012).244

Figure 1 (left) shows that in the default CLM5.0 experiment, Q/P indeed decreases245

less extensively and significantly than one would think from the map of P/E0 change.246
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Figure 1. CLM5.0 standardized changes from 1985-2014 (historical) to 2071-2100 (SSP5-8.5)

in annual aridity index P/E0 and runoff ratio Q/P , and the difference or gap between those

changes. Left: default experiment. Right: “allelim” experiment, in which CO2-plant effects,

vapor-pressure-deficit effects on leaf physiology, and changes to the temporal pattern of precipita-

tion are all disabled.

The standardized-change gap between the two in Figure 1e is strongly positive, with just247

a few regional exceptions.248

However, Figure 1 (right) shows that in the “allelim” experiment in which CO2-249

plant effects, VPD-stomatal effects, and P temporal-pattern changes are eliminated, the250

CLM5.0-simulated Q/P change becomes much more negative, resembling the driving P/E0251

change quite closely. The gap becomes a mottled mix of positive and negative. Thus,252

the strong positivity of the gap in the default simulation (left) must stem from some com-253

bination of the above eliminated factors, rather than an inherent problem with P/E0 as254

a runoff-ratio predictor.255

Figure 2 explores what this combination could be, by plotting differences in the above256

Q/P - P/E0 response gap between the default simulation and the various simplified sim-257

ulations in Table 1. To be clear, these differences come almost entirely from differences258

in the Q/P response (Figure 1c-d), rather than the P/E0 response which is largely set259

by the driving data (Figure 1a-b).260

Figure 2a shows that the difference between the default and “allelim” gaps from261

Figure 1e-f (i.e., the effect on the Q/P - P/E0 gap of all four targeted processes com-262

bined) is indeed large and positive. A modest but persistently positive portion of this263
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Figure 2. Q/P - P/E0 standardized change gap differences between a) “default” minus “alle-

lim” (i.e., the bottom panels of Figure 1), b) “default” minus “medlynconst”, c) “default” minus

“fixedCO2”, d) “default” minus “noflash”, e) “noflash” minus “noflashnoseas”, and f) panel a

minus the sum of panels b-e. See Table 1 for definitions. Each panel quantifies the contribution

of its title to the Q/P - P/E0 standardized change gap.
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difference comes from the closure of leaf stomates by elevated VPD (Novick et al., 2016)264

in the Medlyn parameterization, as shown in Figure 2b. The effect of CO2-plant inter-265

actions in Figure 2c is much larger in magnitude and explains much of the spatial pat-266

tern of the full difference. However, it is almost as likely to be negative (i.e., reduce Q/P )267

as positive, particularly in middle to low latitudes. This agrees with the finding of Mankin268

et al. (2018, 2019) that leaf growth more than cancels the positive hydrologic effect of269

CO2-driven stomatal closure over large regions in CESM1 and CMIP5.270

In contrast, the effect of changes in the short-term temporal pattern of P on the271

Q/P - P/E0 gap in Figure 2d is both fairly strong, and almost entirely positive. We take272

this to reflect the concentration of P into shorter, more intense bursts (e.g. Pendergrass273

& Hartmann, 2014) that is likely widespread in the default experiment, but by design274

absent in the “noflash” experiment. The effect of P seasonality change in Figure 2e is275

mostly weak globally, but is strongly positive in mid-latitude Eurasia. This is precisely276

where models tend to project winter P to increase but summer P to decline (e.g., fig-277

ure 4.24 in Lee et al., 2021), which would tend to enhance annual Q/P . (The residual278

nonlinear term in Figure 2f is largely weak, though it does tend to be negative, imply-279

ing that the whole is slightly less than the sum of the parts.)280

Thus, all four of the hypothesized processes seem to be at least somewhat impor-281

tant in explaining why CLM5.0’s Q/P response is less negative than its driving P/E0282

response. To quantify which are the most important globally, Figure 3 plots cumulative283

distribution functions (CDFs) of the P/E0 and Q/P standardized change fields over ice-284

free land in each of the experiments in Table 1.285

In the default experiment, the Q/P distribution (very thick blue) plots far to the286

right of the P/E0 distribution (very thick red) in Figure 3, consistent with Figure 1e.287

However, in “allelim”, the Q/P distribution (less-thick blue) plots almost directly on top288

of the P/E0 distribution. This implies that the qualitative difference between the global289

responses of P/E0 and Q/P almost completely vanishes when the above four processes290

are eliminated, consistent with Figure 1 (right).291

Strikingly, just turning off changes in the short-term temporal pattern of P brings292

Q/P ∼half or more of the way from the default distribution towards the allelim and P/E0293

distributions at most percentiles. This is shown by the dash-dotted blue “noflash” dis-294

tribution in Figure 3. Further eliminating changes in the seasonality of P shifts the Q/P295

distribution yet closer to the P/E0 distribution, as shown by the dotted “noflashnoseas”296

distribution. However, this shift from “noflash” to “noflashnoseas” is markedly smaller297

than the above shift from default to “noflash”. Similarly, the Q/P distribution shifts from298

default to “medlynconst” (VPD-leaf effects off) and from default to “fixedCO2” (CO2-299

plant effects off) are each relatively small.300

Thus, changes in the short-term temporal pattern of P , i.e., differences between301

the default and “noflash” distributions in Figure 3, appear to be the single largest con-302

tributor to the overall positive tendency of the gap between the default Q/P and P/E0303

responses. This is likely because the effect on the gap is both consistently positive, and304

fairly large (Figure 2d). This process had been posited by studies such as Zhao and Dai305

(2015), Mankin et al. (2018), and Dai et al. (2018) to be an important reason why at-306

mospheric dryness metrics like P/E0 underestimate runoff responses in ESMs, but had307

not been verified until now.308

The relative similarity of the “fixedCO2” (dashed) and default Q/P distributions309

is also consistent with the finding of Scheff et al. (2021) that the Q/P - P/E0 response310

gap only slightly narrows in CMIP runs with no CO2-plant effects, contrary to the as-311

sumptions of many of the studies in section 1. In CLM5.0, this change is characterized312

by offsetting local positive and negative effects on Q/P (Figure 2c) and thus a relatively313

small net effect in Figure 3. In fact, VPD-leaf effects and P seasonality changes each cause314
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Figure 3. Cumulative distribution functions over ice-free land of the standardized responses

of P/E0 (red) and Q/P (blue) to SSP5-8.5 climate changes, for the default experiment (very

thick solid curves), the simplifed “allelim” experiment (less-thick solid curves), and the intermedi-

ate experiments (the various thin curves) in Table 1. The P/E0 curves plot nearly on top of one

another, since P/E0 is largely set by the atmospheric driving data.
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Figure 4. As Figure 1, but for Palmer Drought Severity Index PDSI and deep-layer soil

moisture SMd.

∼equal or greater Q/P distribution shifts in Figure 3, reinforcing the idea that CO2-plant315

effects are only one (small) cause of this gap.316

3.2 PDSI vs. root-zone soil moisture317

We next analyze the gap between the PDSI and SMd responses, as in Berg and Sheffield318

(2018). PDSI is a common and well-used indicator of root-zone soil moisture, so qual-319

itative differences between modeled PDSI and SMd responses to climate change are also320

of theoretical and practical concern.321

Figure 4 (left) shows that in the default warming experiment, CLM5.0 SMd indeed322

declines less significantly and systematically than does PDSI. Areas of qualitative dif-323

ference between Figures 4a and c include Australia, the African Sahel and Sahara, east-324

ern Asia, parts of Europe and Central Asia, and interior northwestern North America.325

All of these areas are apparent on the gap plot (Figure 4e) as well, which is largely pos-326

itive outside of the highest latitudes.327

Analogously to Q/P above, in the “allelim” experiment SMd declines much more328

strongly in several of the above regions (Figure 4d), giving a somewhat more “PDSI-like”329

impression of dominant drying. Likewise, the gap plot (Figure 4f) becomes more bal-330

anced between positive and negative. However, the default-allelim differences are more331

subtle than those in Figure 1, and the local absolute values of the gap in allelim on Fig-332
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Figure 5. As Figure 2, but for the SMd - PDSI gap.

ure 4f remain quite large. Thus, it seems that the PDSI and CLM5.0 models of soil mois-333

ture disagree for many reasons beyond the four factors tested here.334

However, some combination of the four factors must still be responsible for much335

of the positive tendency of the SMd - PDSI gap in Figure 4e, since again there is con-336

siderably less of a positive tendency in Figure 4f. Figure 5 shows that the greatest ap-337

parent contributor to the difference between Figures 4e-f (Figure 5a) is the CO2 effect338

on plants, which tends to increase SMd (Figure 5c). The VPD-leaf effect on SMd (Fig-339

ure 5b) is more consistently positive than the CO2 effect, but weaker. The temporal-pattern340

effects (Figure 5d-e) tend to be negative, presumably because more temporally concen-341

trated P leads to greater surface runoff but less infiltration (Eekhout et al., 2018).342

The PDSI and SMd standardized response distributions in Figure 6 confirm both343

the modest but real qualitative gap in the default simulation (very thick curves) and the344

closing of this gap in the allelim simulation (less-thick curves), particularly in the mid-345

dle percentiles. Consistent with the discussion of Figure 5, eliminating CO2-plant effects346

is entirely sufficient to close the gap - the SMd fixedCO2 curve actually plots to the left347

of the PDSI fixedCO2 curve, which is on top of the PDSI default curve. This corrobo-348

rates the finding of Scheff et al. (2021) that the SMd - PDSI gap in the full CMIP en-349

semble can largely be explained by CO2-plant effects.350

Surprisingly, the elimination of VPD-leaf effects is also nearly sufficient to close the351

SMd - PDSI gap, perhaps because those effects (Figure 5b) are so consistently positive.352

That is, the SMd medlynconst curve in Figure 6 is nearly on top of the PDSI medlyn-353

const curve, except at the lowest percentiles. Thus, CO2 and VPD physiological effects354
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Figure 6. As Figure 3, but for PDSI (red) and SMd (blue). The PDSI medlynconst and PDSI

fixedCO2 curves plot on top of the PDSI default curve, and the PDSI noflashnoseas curve plots

on top of the PDSI allelim curve.
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would combine to more than account for the SMd - PDSI response gap in CLM5.0. The355

main reason that the gap is not quite closed in allelim in spite of this, appears to be the356

above-discussed negative effects of P temporal pattern change, which widen the gap when357

eliminated in noflashnoseas (both by increasing SMd and by decreasing PDSI). The neg-358

ative nonlinear term (Figure 5f) also likely contributes.359

In short, the positive SMd - PDSI response gap is caused by CO2 and VPD phys-360

iological effects (Figures 5b-c), which increase the SMd response, and is opposed mainly361

by P temporal pattern changes (Figures 5d-e), which reduce the SMd response while in-362

creasing the PDSI response (compare the noflashnoseas and default curves in Figure 6).363

This is quite different from the Q/P - P/E0 response gap, which is caused by a combi-364

nation of all factors as discussed in section 3.1.365

3.3 Other gaps366

Many other previously noted discrepancies between the responses of different hy-367

droclimate variables are not at all (or only somewhat) reduced in the “allelim” exper-368

iment, implying that they are more fundamental. However, in almost all of these cases,369

there is no theoretical expectation that the responses line up in the first place, unlike for370

Q/P - P/E0 or SMd - PDSI.371

For example, Figure 7 shows that the more negative response of surface (SMs) than372

root-zone (SMd) soil moisture found by Berg et al. (2017) is almost completely invari-373

ant to the experimental setup, again unlike for Q/P - P/E0 or SMd - PDSI above. Sim-374

ilarly, Figure 8 confirms the finding of Scheff et al. (2021) that the apparent relevance375

of the PDSI for surface LH and SH flux responses (as quantified by the evaporative frac-376

tion EF) is just a fortuitous consequence of physiological effects that reduce LH and thus377

EF (Lemordant et al., 2018). When these are turned off, the EF - PDSI response gap378

becomes extremely positive.379

Figure 9 compares P/E0 to actual runoff Q rather than runoff ratio Q/P , show-380

ing that even in “allelim”, Q responds far more positively than P/E0 (or any of the dry-381

ness indices). This is to be expected, since P/E0 is a predictor of Q/P , but Q = (Q/P )∗382

P , and P has a mostly positive response. Figure 10 shows that even in “allelim”, SPEI383

responds more negatively than SMd (unlike PDSI, which matches SMd much more closely384

as described in section 3.2). This also makes sense, since SPEI (Vicente-Serrano et al.,385

2010) was not explicitly designed as a SM theory, unlike PDSI.386

Finally, Figure 11 shows that relative humidity RH responds to climate change more387

negatively than SPEI (and thus much more negatively than the other hydroclimate vari-388

ables), and unlike SMd is almost invariant to the experimental setup. This suggests that389

the RH response is largely governed by the atmosphere-ocean mechanism of Byrne and390

O’Gorman (2016), rather than by soil drying as postulated by Sherwood and Fu (2014).391

4 Discussion392

On the whole, Figures 1-11 bring much-needed clarity to the multiplicity of con-393

trasting terrestrial hydroclimate responses to greenhouse warming (Seneviratne et al.,394

2021; Douville et al., 2021), at least in CLM5.0. The simulated Q/P response can be un-395

derstood as a P/E0-like, very negative base term (Figure 1d; Q/P allelim curve in Fig-396

ure 3) plus a series of mostly positive temporal and physiological effects (Figure 2) that397

cause the full Q/P response to be much less negative (Figure 1c; Q/P default curve in398

Figure 3). The Q response (Figure 9) can then be understood as a combination of this399

Q/P response and the largely positive P response, since Q = (Q/P ) ∗ P .400

Similarly, the simulated SMd response can be understood as a fairly PDSI-like, neg-401

ative base term (Figure 4d; SMd allelim curve in Figure 6) plus a series of mostly pos-402
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Figure 7. As Figure 3, but for surface soil moisture SMs (red) and root-zone soil moisture

SMd (blue).
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Figure 8. As Figure 3, but for PDSI (red) and evaporative fraction EF (blue).
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Figure 9. As Figure 3, but for P/E0 (red) and runoff Q (blue).
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Figure 10. As Figure 3, but for SPEI (red) and SMd (blue).
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Figure 11. As Figure 3, but for SPEI (red) and relative humidity RH (blue).
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itive physiological (Figure 5b-c) and negative temporal (Figure 5d-e) effects that in to-403

tal (Figure 5a) lead to a modest positive enhancement of SMd compared to PDSI (de-404

fault curves in Figure 6; Figure 4 (left)). The main reason that the SMd response is not405

as positive as the Q/P response seems to be that the P temporal changes, which greatly406

enhance Q/P , instead act to slightly decrease SMd.407

The simulated surface-flux (EF) response is also somewhat PDSI-like, but only be-408

cause of large negative physiological effects (Figure 8). The SPEI response is more neg-409

ative than the simulated SMd response in all configurations (Figure 10), in turn mak-410

ing it much more negative than the Q/P or Q responses.411

In this way, the long-disputed hydrological meanings of published trends in drought412

and aridity metrics like P/E0, PDSI, and SPEI are also clarified. The P/E0 response413

to climate change can be interpreted (Figure 1, right) as a model for expected change414

in Q/P regime sensu Budyko and Miller (1974) in the absence of P temporal and plant415

physiological effects, which at least in CLM5.0 are large. The PDSI response can more416

tentatively (Figure 4, right) be interpreted as a model for expected SMd change in the417

absence of those effects. However, none of the dryness indices can be interpreted as mod-418

els of expected Q, surface-flux, or RH change under any assumptions (Figures 8, 9, and419

11). Similarly, the SPEI cannot be interpreted as a model of any expected terrestrial wa-420

ter response to climate change, at least on the basis of CLM5.0’s hydrological scheme.421

Will the real world behave similarly to CLM5.0? We should perhaps be most con-422

fident in the negative “base” (P/E0- and PDSI-predicted) portions of the Q/P and SMd423

responses, since the P/E0 and PDSI responses themselves are well-understood (e.g., Fu424

& Feng, 2014; Dai et al., 2018) and their relationships to Q/P and SMd are long-established425

(Budyko & Miller, 1974; Palmer, 1965). The plant-physiological and P -temporal effects,426

by contrast, are not described by such fundamental theories. However, it seems likely427

that they will all occur to at least some extent (Novick et al., 2016; Mankin et al., 2019;428

Lemordant et al., 2018; Eekhout et al., 2018), so it would be remiss for us to assume that429

the real-world SMd and (especially) Q/P responses will actually be as negative as the430

PDSI and P/E0 responses, especially in light of the modeling results presented here.431

Further studies should determine whether other land models agree with CLM5.0’s432

simulated physiological and temporal effects on Q/P and SMd. In planned work, we will433

also use global observational data to quantify whether real-world long-term trends in Q/P434

and SMd are as negative as the P/E0 and PDSI trends, or whether they more closely435

resemble full ESM simulations. These investigations will help clarify whether the results436

of this study are particular to CLM5.0, or more generally applicable.437

5 Conclusion438

In this study, we carried out a series of experiments with CLM5.0, a widely-used439

Earth System Model (ESM) land-surface component, to quantify the reasons that sim-440

ulated runoff and soil moisture responses to climate change tend to be more positive than441

their theorized climatic drivers.442

We found that the runoff ratio (Q/P ) responds more positively than the aridity443

index (P/E0) mainly due to changes in the short-term temporal pattern of P with warm-444

ing, but also due to changes in P seasonality and the effects of rising CO2 and vapor pres-445

sure deficit (VPD) on plant physiology. In contrast, we found that root-zone soil mois-446

ture (SMd) responds somewhat more positively than the Palmer Drought Severity In-447

dex (PDSI) mainly due to the above plant-physiological effects, and does so in spite of448

the P temporal effects, which for SMd are negative. Runoff itself (Q) responds much more449

positively than all of these quantities, since Q = (Q/P ) ∗P and the P response tends450

to be positive. Other hydroclimate variables are not well modeled by any of the dryness451
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indices. Further work will be needed to quantify the broader validity of these results be-452

yond CLM5.0.453

6 Open Research454

The Community Earth System Model and Community Terrestrial Systems Model455

(including CLM5.0) source code are publicly available at https://github.com/ESCOMP/456

CESM and https://github.com/ESCOMP/CTSM, respectively. The derived monthly and457

annual hydroclimate variables from each CLM5.0 run in Table 1, as well as all scripts458

used to set up the runs and process the variables, are archived in Matlab format at Scheff459

(2022).460
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