REFERENCES
  1. Ang BW, Su B. Carbon emission intensity in electricity production: A global analysis. Energy Policy. 2016; 94:56-63. https://doi.org/10.1016/j.enpol.2016.03.038
  2. Chakma A, Mehrotra A, Nielsen B. Comparison of Chemical Solvents for Mitigating CO2 Emissions from Coal-Fired Power Plants. Heat Recovery Syst. CHP. 1995; 15(2):231−240. https://doi.org/10.1016/0890-4332(95)90030-6
  3. Kim I, Jens C, Grimstvedt A, Svendsen H. Thermodynamics of Protonation of Amines in Aqueous Solutions at Elevated Temperatures. J. Chem. Thermodyn. 2011; 43(11):1754−1762. https://doi.org/10.1016/j.jct.2011.06.004
  4. Perrin D. Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution; Australian National University: Canberra; 1969.
  5. Tomizaki K, Shimizu S, Onoda M, Fujioka Y. An Acid Dissociation Constant (pKa )-Based Screening of Chemical Absorbents That Preferably Capture and Release Pressurized Carbon Dioxide for Greenhouse Gas Control. Chem. Lett. 2008; 37(5):516−517. https://doi.org/10.1246/cl.2008.516
  6. Chowdhury F, Yamada H, Higashii T, Goto K, Onoda M. CO2 Capture by Tertiary Amine Absorbents: A Performance Comparison Study. Ind. Eng. Chem. Res.2013;52(24):8323−8331. https://doi.org/10.1021/ie400825u
  7. Versteeg G, van Dijck LAJ, van Swaaij WPM. On The Kinetics Between CO2 and Alkanolamines both In Aqueous and Non-Aqueous Solutions. An Overview. Chem. Eng. Commun. 1996; 144(1):113−158.
  8. Sharma MM. Kinetics of Reactions of Carbonyl Sulphide and Carbon Dioxide with Amines and Catalysis by Bronsted Bases of The Hydrolysis of COS. Trans. Faraday Soc. 1965; 61:681−688. DOI: 10.1039/TF9656100681
  9. Nguyen WHCH, Henni A. Dissociation Constant (pKa ) and Thermodynamic Properties of 1,4-Bis(3-aminipropyl) Piperazine, 1,3-Bis(aminomethyl) Cyclohexane, Tris(2-aminoethyl) Amine, and 1-Amino-4-methyl Piperazine: Study of the Protonation Mechanism Using the Density Function Theory. J. Chem. Eng. Data. 2020; 65(5):2280 – 2290. https://doi.org/10.1021/acs.jced.9b00702
  10. Kumar A, Solanki A, Nguyen WHCH, Henni A. Determination and Prediction of Dissociation Constants and Related Thermodynamic Properties for 2-(Butylamino)ethanol, m-Xylylenediamine, 3-Picolylamine, Isopentylamine, and 4-(Aminoethyl)-piperidine. J. Chem. Eng. Data. 2020; 65(11):5437 – 5442. https://doi.org/10.1021/acs.jced.0c00574
  11. Hamborg E, Niederer J, Versteeg G. Dissociation Constants And Thermodynamic Properties of Amino Acids Used In CO2Absorption From ( 293 To 353 ) K. J. Chem. Eng. Data. 2007; 52(6):2491 – 2502. https://doi.org/10.1021/je800897v
  12. Khalili F, Henni A, East A. pKa Values of Some Piperazines at (298, 303, 313, and 323) K. J. Chem. Eng. Data.2009; 54(10):2914 – 2917. https://doi.org/10.1021/je900005c
  13. Albert A, Serjeant EP. The Determination of Ionization Constants; A Laboratory Manual, 3rd ed.; Chapman and Hall: New York; 1984.
  14. Rayer A, Sumon K, Jaffari L, Henni A. Dissociation Constants (pKa ) of Tertiary and Cyclic Amines: Structural and Temperature Dependences. J. Chem. Eng. Data. 2014; 59(11):3805–3813. https://doi.org/10.1021/je500680q
  15. Tagiuri AM, Mohamedali M, Henni. A. Dissociation Constant (pKa ) And Thermodynamic Properties of Some Tertiary and Cyclic Amines From (298 to 33) K. J. Chem. Eng. Data. 2016; 61(1):247 - 254. https://doi.org/10.1021/acs.jced.5b00517
  16. Perez-Salodo KA, Maurer G. Dissociation Constant of N-Methyldiethanolamine in Aqueous Solution at Temperatures from 278 K to 368K. J. Chem. Eng. Data. 1996; 41(6):1505 – 1513. https://doi.org/10.1021/je960141+
  17. Manov GG, Bates RG, Hamer WJ. Values Of the Constants In the Debye-Hückel Equation for Activity Coefficients. J. Am. Chem. Soc. 1943; 65(9):1765–1767. https://doi.org/10.1021/ja01249a028
  18. Kielland J. Individual Activity Coefficients of Ions in Aqueous Solutions. J. Am. Chem. Soc. 1937; 59(9):1675 - 1678. https://doi.org/10.1021/ja01288a032
  19. Perrin D, Dempsey B, Serjeant E. pKa Prediction for Organic Acids and Bases; Springer; 1981.
  20. Sumon K, Henni A, East A. Predicting pKa of Amines for CO2 Capture: Computer Versus Pencil-And-Paper. Ind. Eng. Chem. Res. 2012; 51(37):11924 –11930. https://doi.org/10.1021/ie301033p
  21. Qian J, Sun R, Sun S, Gao J. Computer – Free Group – Addition Method for pKa Prediction of 73 Amines for CO2 Capture. J. Chem. Eng. Data. 2016; 62(1):111 – 122. https://doi.org/10.1021/acs.jced.6b00481
  22. Yegnanaryana B. Artificial Neural Networks. New Delhi: PHI Learning Pvt. Ltd; 2009.
  23. Artemenko, N.; Artemenko. N. V.; Baskin. I. I.; Palyulin. V. A.; Zefirov. N. S. Prediction of Physical Properties of Organic Compounds Using Artificial Neural Networks within the Substructure Approach.In Doklay Chemistry. 2016; 381(2):317 – 320. DOI:10.1023/A:1012976623974
  24. Habibi-Yangjeh A, Damandeh-Jenagharad M, Nooshyar M. Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR models. Bulletin-Korean Chemical Society. 2005; 26(12):2007 – 2016. DOI:10.5012/bkcs.2005.26.12.2007
  25. Mandal BP, Kundo M, Bandyopadhyay SS. Density and Visocosity of Aqueous Solution of (N-methyldiethanolamine + Monoethanolamine), (N-methyldiethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine). J. Chem. Eng. Data. 2003; 48(3):703 – 707. https://doi.org/10.1021/je020206a
  26. Muhammad A, Mutalib MIA, Murugesan T, Shafeeq A. Density of Excess Properties of Aqueous N-methyldiethanolamine Solutions from (298.15 to 338.15) K. J. Chem. Eng. Data. 2008; 53(9):2217 – 2221. https://doi.org/10.1021/je800416y
  27. Blanco A, Garc A, Gomez-Diaz D, Navaza JM, Villaverde OL. Density, Speed of Sound, Viscosity, Surface Tension, and Excess Volume of N-Ethyl-2-Pyroolidone+Ethanolamine (or Diethanolamine or Triethanolamine) from T = (293.15 to 323.15) K. J. Chem. Eng. Data. 2013; 58(3):653 – 659. https://doi.org/10.1021/je301123j
  28. Blanco A, Garc A, Gomez-Diaz D, Navaza JM. Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-1-Pyrorolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15)K. J. Chem. Eng. Data. 2017; 56(3):646 – 651. https://doi.org/10.1021/je100967k
  29. Moosavi M, Sisco CJ, Rostami AA, Vargas FM. Thermodynamic Properties and CO2 Solubility of Monoethanolamine + Diethylenetriamine/Aminoethylethanolamine Mixtures: Experimental Measurements and Thermodynamic Modeling. Fluid Phase Equilibria2017; 449(19):175 – 185. https://doi.org/10.1016/j.fluid.2017.06.018
  30. Vazquez G, Alvarez E, Navaza JM, Rendo R, Remero E. Surface Tension of Binary Mixtures of Water + Monoethanolamine and Water + 2-Amino-2-Methyl-1-Propanol and Tertiary Mixtures of these Amines with Water from 250C to 500C. J.Chem. Eng. Data. 1997; 42(1):57 – 59. https://doi.org/10.1021/je960238w
  31. Rayer A V, Kadiwala S, Naryanaswamy K, Henni A. Volumetric Properties, Viscosities, and Refractive Indices from Aqueous 1-Amino-2-Propanol (monoisopropanolamine (MIPA)) Solutions from (298.15 to 343.15)K.J. Chem. Eng. Data. 2010; 55(12):5562 – 5568. https://doi.org/10.1021/je100300s
  32. Narayanaswamy K, Rayer AV, Kadiwala S, Henni A. Volumetric Properties, Viscosities, Refractive Indices and Surface Tensions for (Dimethlypropanolamine (DMPA) + Water) Mixtures from 298.15 K to 343.15K. Thermochim. Acta. 2012; 543(1):218 – 225. https://doi.org/10.1016/j.tca.2012.05.025
  33. Li J, Mundhwa M, Tontiwachwuthikul P, Henni A. Volumetric Properties, Viscosities, and Refractive Indices for Aqueous 2-(methylamino)Ethanol Solutions from (298.15 to 343.15)K. J. Chem. Eng. Data.2007; 52(2):560 – 565. https://doi.org/10.1021/je060457+
  34. Hamborg ES, Verteeg GF. Dissociation Constants and Thermodynamic Properties of Alkanolamines. Energy Proceed. 2009; 1(1):1213 – 1218. https://doi.org/10.1016/j.egypro.2009.01.159
  35. Ghulam M, Mohd SA, Azmi BM, Faizan A. Volumetric Properties, Viscosities and Refractive Indices of Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol (AMP). Res. J. Chem. Environ. 2013; 17(9):22 – 31.
  36. Alvarz E, Cerdeira F, Gomez-Diaz D, Navaza JM. Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-Propanol or 3-Amino-1-Propanol with 2-Amino-2-Methyl-1-Propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15)K. J. Chem. Eng. Data. 2010; 55(7):2567 – 2575. https://doi.org/10.1021/je900739x
  37. Spasojevic VD, Serbanoie SP, Djordjeve BD, Kijevcanin ML. Density, Viscosity, and Refractive Indices of Aqueous Alkanolamine Solution as Potential Carbon Dioxide Removal Reagents. J. Chem. Eng. Data. 2013; 58(1):84 – 92. https://doi.org/10.1021/je300938w
  38. Tseng YG, Thompson AR. Densities and Refractive Indices of Aqueous Monoethanolamine, Diethanolamine, Triethanolamine. J.Chem. Eng. Data. 1964; 9(2):264 – 267. https://doi.org/10.1021/je60021a043
  39. Vazquez G, Alvarez E, Rendo R, Romero E, Navaz JM. Surface Tension of Aqueous Solutions of Diethanolamine and Triethanolamine from 250C to 500C. J.Chem. Eng. Data. 1996; 41(4):806 – 808.DOI:10.1021/je960012t
  40. Bower VE, Robinson RA, Bates RG. Acidic Dissociation Constant and Related Thermodynamic Quantities for Diethanolammonium Ion in Water from 0 to 500C. J. Res. Natl. Bur. Stand. A.1962; 66(1):71 – 75. DOI: 10.6028/jres.066A.008
  41. Tennyson R, Schaaf R. Guidelines Can Help Choose Proper Process for Gas – Treating Plants. Oil. Gas. J. 1977; 75(1): 78 – 80.
  42. Rochelle GT. Amine Scrubbing for CO2 Capture.Science. 2009; 325(5948):1652 – 1654. DOI: 10.1126/science.1176731
  43. Versteeg GF, van Dijck LAJ, van Swaaij WPM. On the Kinetics between CO2 and Alkanolamines both in Aqueous and non–Aqueous Solutions. Chem Eng Commun. 1996; 144(1):113 – 158. https://doi.org/10.1080/00986449608936450
  44. Aboaba AJ. Reaction Kinetics and Dissociation Constants (pKa ) of Tertiary Alkanolamine for Carbon Capture. (Master’s Dissertation, University of Regina)
  45. Omrani A, Rostami AA, Mokhtary A. Densities and Volumetric Properties of 1,4-Dioxane with Ethanol, 3-Methyl-1-Butanol,3-Amino-1-Propanol and 2-Propanol Binary Mixtures at Various Temperatures. J Mol Liq.2010; 157(1):18 – 24. https://doi.org/10.1016/j.molliq.2010.07.015
  46. Alvarez E, Cancela A, Maceiras R, Navaza JM, Taboas R. Surface Tension of Aqueous Binary Mixtures of 1-Amino-2-Propanol and 3-Amino-1-Propanol, and Aqueous Ternary Mixtures of These Amines with Diethanolamine, Triethanolamine, and 2-amino-2-methyl-1-propanol from (298.15 to 323.15) K. J. Chem. Eng. Data. 2003; 48(1):32 – 35. https://doi.org/10.1021/je020048n
  47. Saravanakumar K, Saskaran R, Kubendran TR. Thermophysical Properties of Acetophenone with N,N-Dimethylethanolamine or with N,N-Diethylethanolamine at Temperature of (303.15, 313.15 and 323.15) K and Pressure of 0.1 MPa. J Solution Chem. 2011;40(6):955 – 967. https://doi.org/10.1007/s10953-011-9701-7
  48. Iloukhani H, Rakhshi M. Excess Molar Volumes, Viscosities, and Refractive Indices for Binary and Ternary Mixtures of {Cyclohexanone (1) + N,N-Dimethylacetamide (2) + N,N-diethylethanolamine (3)} at (298.15, 308.15, and 318.15)K. J Mol Liq. 2009; 149(3):86 – 95. https://doi.org/10.1016/j.molliq.2009.08.009
  49. DiGuilo RM, Lee RJ, Schaeffer ST, Brasher LL, Teja AS. Densities and Viscosities of the Ethanolamine. J. Chem. Eng. Data.1992; 37(2):239 – 242. https://doi.org/10.1021/je00006a028
  50. Sumon K. Z. Quantum – Mechanical and Thermodynamic Study of Amines and Ionic Liquids for CO2 Capture (Doctoral dissertation, University of Regina); 2013.
  51. Kinart CM, Kinart WJ, Checiska-Majak D. Density, Relative Permitivity, and Viscosity at Various Temperatures for 2-Methoxyethanol + Propylamine Mixtures. J. Chem. Eng. Data. 2002; 47(6):1537 – 1539. https://doi.org/10.1021/je0201065
  52. BabaK SF, Airapetova R, Udovenko V. Study of Systems Formed by Formic Acid. Zh. Obshch. Khim. 1950; 20(5):770 – 773.
  53. Alvarz E, Gamez-Daz D, La Rubia MD, Navaza JM. Surface Tensions of Aqueous Binary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol and Aqueous Ternary Mixtures of these Amines with Triethanolamine or N-Methyldiethanolamine from (293.15 to 323.15)K. J. Chem. Eng. Data. 2007; 53(1):318 – 321. https://doi.org/10.1021/je700536m
  54. Alvarez E, Gamez-Daz D, La Rubia MD, Navaza JM. Densities and Viscosities of Aqueous Ternary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with Diethanolamine, Triethanolamine, N-Methyldiethanolamine, or 3-Amino-1-Methyl-1-Propanol from 298.15 to 323.15 K. J. Chem. Eng. Data. 2006; 51(3):955 – 962. https://doi.org/10.1021/je050463q
  55. Lampreia IM, Santos AF, Barbas MJA, Santos FJ, Matos LML. Changes in Aggregation Patterns Detected by Diffusion, Viscosity and Surface Tension in Water + 2-(Diethylamino)ethanol Mixtures at Different Temperatures. J. Chem. Eng. Data. 2007; 52(6):2388 – 2394. https://doi.org/10.1021/je700350b
  56. Kinart CM, Knart WJ, Checinska-Majak D, Cwiklinska A. Refractive Properties of Binary Mixtures Containing 2-Methoxyethanol and N-Butylamine, Isobutylamine, Sec-Butylamine and Tert-Butylamine.Phys Chem Liq. 2003; 41(4):383 – 389. https://doi.org/10.1080/0031910031000120603
  57. Wang J, Du H, Liu H, Yao Z, Fan B. Prediction of Surface Tension for Common Compounds Based on Novel Methods Using Heuristic Method and Support Vector Machine. Talanta. 2007; 73(1):147 – 156. https://doi.org/10.1016/j.talanta.2007.03.037
  58. Pal A, Kumar A, Kumar H. Volumetric, Acoustic, Viscometric, and Spectroscopic Properties for Binary Mixtures of Alkoxypropanol with Mono, Di- and Tri-alkaylamines at a temperature of 298.15K. J Chem Thermodyn. 2006; 38(10):1227 – 1239. https://doi.org/10.1016/j.jct.2005.12.007
  59. Ahmadloo Z. Predictability of Carbon Dioxide and Ethane Solubility in Ionic Liquids: A Simulation Approach (Master’s Dissertation, University of Regina); 2016.
  60. Blanco A, Garc A, Gomez-Daz D, Navaz JM. Density, Speed of Sound, Viscosity and Surface Tension of 3-Diemthylamino-1-propylamine + water, 3-amino-1-propanol +3-dimethylamino-1-propanol, and (3-Amino-1-Propanol+3-dimethylamino-1-propanol) + water from T=(293.15 to 323.15) K. J. Chem. Eng. Data. 2017; 62(8):2272 – 2279. https://doi.org/10.1021/acs.jced.7b00042
  61. Tissier C, Barillie P. Acidity Constants and Thermodynamic Functions of Acids Conjugated with Some Propanediamines. CR Acad Sci C Chim. 1969; 268(22): 1953.