References
Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA, Hoischen A, Vissers LELM, Gilissen C. 2015. Post-zygotic Point Mutations Are an Underrecognized Source of De Novo Genomic Variation. Am J Hum Genet 97:67–74.
Acuna-Hidalgo R, Veltman JA, Hoischen A. 2016. New insights into the generation and role of de novo mutations in health and disease. Genome Biol 17:241.
Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. 2011. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18.
Aitken RJ, Baker MA. 2020. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol (Lausanne) 11:581838.
Almobarak S, Hu J, Langdon K, Ang L, Campbell C. 2020. Novel α-tropomyosin gene (TPM3) in an infant with Nemaline myopathy. Authorea Prepr.
Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, Côté M, Henrion E, Spiegelman D, Tarabeux J, Piton A, Yang Y, et al. 2010. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet 87:316–324.
Campbell IM, Stewart JR, James RA, Lupski JR, Stankiewicz P, Olofsson P, Shaw CA. 2014. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet 95:345–359.
Durbin RM, Altshuler D, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Collins FS, La Vega FM De, Donnelly P, Egholm M, Flicek P, et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–1073.
Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, Sulovari A, Ebler J, Zhou W, Serra Mari R, Yilmaz F, Zhao X, et al. 2021. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372:.
Evenson DP, Djira G, Kasperson K, Christianson J. 2020. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil Steril 114:311–320.
Frigola J, Sabarinathan R, Mularoni L, Muiños F, Gonzalez-Perez A, López-Bigas N. 2017. Reduced mutation rate in exons due to differential mismatch repair. Nat Genet 49:1684–1692.
Gilissen C, Hehir-Kwa JY, Thung DT, Vorst M van de, Bon BWM van, Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A, Leach R, Klein R, et al. 2014. Genome sequencing identifies major causes of severe intellectual disability. Nature 511:344–347.
Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R, Heron A, Downs B, Sukumar S, Sedlazeck FJ, Timp W. 2020. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol 38:433–438.
Girard SL, Bourassa C V, Lemieux Perreault L-P, Legault M-A, Barhdadi A, Ambalavanan A, Brendgen M, Vitaro F, Noreau A, Dionne G. 2016. Paternal age explains a major portion of de novo germline mutation rate variability in healthy individuals. PLoS One 11:e0164212.
Goldmann JM, Wong WSW, Pinelli M, Farrah T, Bodian D, Stittrich AB, Glusman G, Vissers LELM, Hoischen A, Roach JC, Vockley JG, Veltman JA, et al. 2016. Parent-of-origin-specific signatures of de novo mutations. Nat Genet 48:935–939.
Grégoire M-C, Massonneau J, Simard O, Gouraud A, Brazeau M-A, Arguin M, Leduc F, Boissonneault G. 2013. Male-driven de novo mutations in haploid germ cells. Mol Hum Reprod 19:495–499.
Hafford-Tear NJ, Tsai Y-C, Sadan AN, Sanchez-Pintado B, Zarouchlioti C, Maher GJ, Liskova P, Tuft SJ, Hardcastle AJ, Clark TA, Davidson AE. 2019. CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat. Genet Med 21:2092–2102.
Haldane JBS. 1947. The mutation rate of the gene for haemophilia, and its segregation ratios in males and females. Ann Eugen 13:262–271.
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WSW, Sigurdsson G, et al. 2012. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475.
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv e-prints arXiv:1303.3997.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.
Liu G, Zhang Y, Zhang T. 2019. Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J 18:35–44.
Loman NJ, Watson M. 2015. Successful test launch for nanopore sequencing. Nat Methods 12:303–304.
Luo R, Wong C-L, Wong Y-S, Tang C-I, Liu C-M, Leung C-M, Lam T-W. 2020. Exploring the limit of using a deep neural network on pileup data for germline variant calling. Nat Mach Intell 2:1–8.
Magi A, Semeraro R, Mingrino A, Giusti B, D’Aurizio R. 2018. Nanopore sequencing data analysis: state of the art, applications and challenges. Brief Bioinform 19:1256–1272.
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12.
Masella AP, Lalansingh CM, Sivasundaram P, Fraser M, Bristow RG, Boutros PC. 2016. BAMQL: a query language for extracting reads from BAM files. BMC Bioinformatics 17:305.
McDonald TL, Zhou W, Castro CP, Mumm C, Switzenberg JA, Mills RE, Boyle AP. 2021. Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat Commun 12:3586.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.
O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, MacKenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, et al. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589.
Oud MS, Smits RM, Smith HE, Mastrorosa FK, Holt GS, Houston BJ, Vries PF de, Alobaidi BKS, Batty LE, Ismail H, Greenwood J, Sheth H, et al. 2022. A de novo paradigm for male infertility. Nat Commun 13:154.
PicardToolkit. 2019. Picard Toolkit. Broad Institute, GitHub Repos.
Player R, Verratti K, Staab A, Bradburne C, Grady S, Goodwin B, Sozhamannan S. 2020. Comparison of the performance of an amplicon sequencing assay based on Oxford Nanopore technology to real-time PCR assays for detecting bacterial biodefense pathogens. BMC Genomics 21:166.
Potapov V, Ong JL. 2017. Examining Sources of Error in PCR by Single-Molecule Sequencing. PLoS One 12:e0169774.
Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, Jorde LB, Quinlan AR. 2019. Large, three-generation CEPH families reveal post-zygotic mosaicism and variability in germline mutation accumulation. Elife 552117.
Scanga H l., Liasis A, Pihlblad MS, Nischal KK. 2021. NYX-related Congenital Stationary Night Blindness in Two Siblings due to Probable Maternal Germline Mosaicism. Ophthalmic Genet 42:588–592.
Shagin DA, Shagina IA, Zaretsky AR, Barsova E V, Kelmanson I V, Lukyanov S, Chudakov DM, Shugay M. 2017. A high-throughput assay for quantitative measurement of PCR errors. Sci Rep 7:2718.
Smits RM, Xavier MJ, Oud MS, Astuti GDN, Meijerink AM, Vries PF de, Holt GS, Alobaidi BKS, Batty LE, Khazeeva G, Sablauskas K, Vissers LELM, et al. 2022. De novo mutations in children born after medical assisted reproduction. Hum Reprod deac068.
Soifer L, Fong NL, Yi N, Ireland AT, Lam I, Sooknah M, Paw JS, Peluso P, Concepcion GT, Rank D, Hastie AR, Jojic V, et al. 2020. Fully Phased Sequence of a Diploid Human Genome Determined de Novo from the DNA of a Single Individual. G3 (Bethesda) 10:2911–2925.
Taylor JL, Debost J-CPG, Morton SU, Wigdor EM, Heyne HO, Lal D, Howrigan DP, Bloemendal A, Larsen JT, Kosmicki JA, Weiner DJ, Homsy J, et al. 2019. Paternal-age-related de novo mutations and risk for five disorders. Nat Commun 10:3043.
Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ. 2011. The importance of phase information for human genomics. Nat Rev Genet 12:215–223.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115–e115.
Veltman JA, Brunner HG. 2012. De novo mutations in human genetic disease. Nat Rev Genet 13:565–575.
Watson M, Warr A. 2019. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol 37:124–126.
Wright CF, Prigmore E, Rajan D, Handsaker J, McRae J, Kaplanis J, Fitzgerald TW, FitzPatrick DR, Firth H V, Hurles ME. 2019. Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data. Nat Commun 10:2985.
Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. 2011. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 43:864–868.
Ye AY, Dou Y, Yang X, Wang S, Huang AY, Wei L. 2018. A model for postzygotic mosaicisms quantifies the allele fraction drift, mutation rate, and contribution to de novo mutations. Genome Res 28:943–951.
Yuen RKC, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram B, Tong X, Sun Y, Cao D, Zhang T, Wu X, Jin X, et al. 2016. Genome-wide characteristics of de novo mutations in autism. NPJ genomic Med 1:160271–1602710.