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Abstract:  

The U.S. National Water Model (NWM) is a hydrologic modeling framework that uses the 

Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate land 

surface hydrology and energy fluxes at 1-km spatial resolution. Understanding the performance of 

the operational NWM in simulating evapotranspiration (ET) is necessary to identify problems and 

biases in streamflow forecasts that may result from poor partitioning of runoff and ET. In this 

study, we compared NWM ET fluxes against OpenET, a satellite-driven dataset that provides 

interpretive or diagnostic information on actual ET at 30-m spatial resolution. Monthly ET 

simulations from the NWM version 2.1 (NWM V2.1) retrospective analysis over the Bear River 

Basin (BRB), U.S. were compared against OpenET products from 2017 to 2020 for different 

months and seasons. Comparisons showed that there was general agreement between the ET 

assessments at the 1-km scale, but with notable discrepancies for some landcover types, such as 

irrigated agriculture and riparian areas. The NWM showed less spatial variability and tended to 

predict lower ET fluxes compared to OpenET, particularly from June to August. In comparison 

with water balance estimates of ET derived from precipitation and USGS streamflow observations 

in four sub-watersheds within the BRB, OpenET modeled ET was biased high in two watersheds 

dominated by evergreen forest. The results from this study provide useful information for both 

NWM and OpenET developers, demonstrating the power of comparing predictive and interpretive 

modeling systems. This study serves as a prototype for broader assessment of both NWM and 

OpenET via intercomparison. 

Plain Language Summary This study compared the retrospective U.S. National Water Model 

(NWM) version 2.1 evapotranspiration (ET) fluxes with OpenET, a satellite-driven data product 

offering actual ET information at 30-m resolution from 2017 to 2020, aggregated to match the 1 

km NWM grid. Results indicated that the NWM tends to underpredict ET fluxes when compared 

against the different OpenET component models used in this study. OpenET showed a high bias 

in comparison with water balance assessments of ET in two natural sub-watersheds characterized 

by evergreen forest. Significant spatial discrepancies were observed in NWM results for certain 

landcover types, including irrigated agricultural lands, riparian areas, and in one watershed that 

appears to be mis-calibrated. 

Key Points: 

● Compared with OpenET, the U.S. National Water Model (NWM) tends to underpredict 

evapotranspiration (ET) fluxes in all seasons. 

● OpenET overpredicts ET in comparison to water balance estimates from observed 

streamflow and precipitation in two forested sub-watersheds. 

● Spatial discrepancies between NWM ET and OpenET were observed in irrigated lands, 

riparian areas, and one mis-calibrated watershed. 



Keywords: Evapotranspiration (ET), National Water Model (NWM)/WRF-Hydro, water balance, 

Noah-MP, OpenET, remote sensing 

1. Introduction 

Various hydrologic forecasting services are currently employed at different scales, with ongoing 

efforts to enhance their accuracy. The U.S. National Water Model (NWM) is one of these services, 

which implements the community Weather Research and Forecasting Model Hydrological 

modeling system (WRF-Hydro) used by the National Weather Service (NWS) of the National 

Oceanic and Atmospheric Administration (NOAA) for operational hydrologic forecasting 

(Gochis, et al 2020; https://water.noaa.gov/about/nwm). The system provides hourly streamflow 

forecasts for approximately 2.7 million river reaches nationwide and generates spatially 

continuous estimates of key hydrologic variables such as evapotranspiration (ET), soil moisture, 

infiltration variables, snowpack characteristics, and shallow groundwater depth. Operational 

model outputs are freely accessible on NOAA data servers (https://registry.opendata.aws/nwm-

archive/). Multiple studies have evaluated the NWM in a wide range of research and applications. 

These include streamflow (Seo et al. 2021; Hansen et al. 2019), water management operations 

(Viterbo et al. 2020) and snowpack simulation (Garousi‐Nejad and Tarboton 2022). In a recent 

study conducted by Abdelkader et al. (2023) to assess the NWM’s streamflow retrospective 

version 2.1 dataset for the entire CONUS, favorable agreement was found between the NWM and 

observed streamflow in catchments with natural flow. However, in examining snow water 

equivalent (SWE), Garousi‐Nejad and Tarboton (2022) found that NWM version 2.0 retrospective 

(NWM-R2.0) analysis data tend to underestimate SWE as measured by the SNOwpack TELemetry 

Network (SNOTEL) early in the season. Later in the season, this underestimation bias further 

increases due to errors in input data, particularly precipitation and air temperature. While the NWM 

has been investigated in different applications, limited studies have been conducted to evaluate its 

performance in estimating ET. 

Comparisons with remote sensing products serving as a proxy for spatially distributed 

observations can be an effective means to evaluate NWM produced ET estimates. Many studies 

have been conducted to assess the estimates of ET through interpretive or diagnostic remote 

sensing models as well as predictive, or prognostic, models. Diagnostic (interpretive) models 

typically combine measurements and energy balance principles to interpret what a quantity (in this 

case ET) is in a given situation, while predictive, or prognostic, models use both energy and water 

balance equations, and input or forcing variables to predict the evolution of the quantities involved 

(here temperature, soil moisture and evapotranspiration). Hain et al. (2015) found that the Noah 

Land Surface Model (LSM),(Chen and Dudhia 2001; Chen et al. 1996; Ek et al. 2003) ET had 

positive and negative biases across the contiguous United States (CONUS) when compared with 

the Atmosphere Land Exchange Inverse (ALEXI) remote sensing model (Anderson et al. 1997; 

Mecikalski et al. 1999) due to neglect of soil water sources and consideration of the impact of soil 

water sinks. Another study by Yilmaz et al. 2014 compared three different approaches, including 

ALEXI, Noah LSM, and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Mu et 

al. 2007) to compute ET fluxes. Their results showed that ALEXI performed better in areas not 
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directly linked to local rainfall, such as irrigated lands or regions affected by shallow groundwater. 

Furthermore, Lin et al. (2018) conducted an evaluation of WRF-Hydro simulated ET compared to 

MODIS and FLUXNET ET data (Baldocchi et al. ; Pastorello et al. 2017) and found that ET 

predictions were more accurate in wet years compared to dry years due to bias in the baseflow. 

Abolafia-Rosenzweig et al. (2023) found that WRF (Skamarock et al. 2008) coupled with Noah 

LSM with multiparameterization options (Noah-MP) (Niu et al. 2011) simulations generally 

overestimated the ET compared with MODIS over the western U.S. from 2001-2020. The 

comparison between prognostic and diagnostic model estimates of ET has proven beneficial, 

identifying missing physical processes and persistent biases in the prognostic system. However, 

many of these studies have been limited in scope by using individual models or data sources for 

comparison. 

In this research, our goal was to compare the NWM ET (which uses Noah-MP as a LSM) with 

OpenET, a satellite-driven ET modeling and data access framework that provides high resolution 

ET data from multiple approaches, primarily using Landsat remotely sensed inputs. OpenET also 

provides an ensemble ET value computed from six physically-based ET models at 30 m spatial 

resolution and at daily, monthly and annual time steps (Melton et al. 2022). The benefits of using 

OpenET in this analysis are the ability to compare multiple physically-based and observationally-

constrained ET models to improve our understanding of the inter-model agreement across the 

satellite-driven model ensemble, including the ensemble ET value which has been demonstrated 

to have generally higher accuracy, though individual models may perform best for specific 

locations or land cover types (Volk et al., 2023; Melton et al. 2022). Here, we use OpenET, a 

relatively new diagnostic dataset, to assess the NWM ET results and as a comparative tool for 

studying the behavior of prognostic modeling. This study evaluates the NWM ET estimates in 

comparison to the OpenET datasets. The goal of this research is to gain a deeper understanding of 

how the NWM model ET behaves across different land surface conditions, and to identify 

opportunities for improvement. In turn, the comparison provides useful evaluation of the OpenET 

models (many based on the energy balance approach) provided by the water balance constraints 

inherent in NWM. 

Section 2 of this paper provides a description of the study domain. Following that, Section 3 

presents the models and data utilized in this research. The results and discussion in Section 4 and 

5, respectively focus on the temporal and spatial comparison between NWM ET and various 

OpenET approaches. Additionally, we assess geographic variables associated with model 

differences and evaluate differences using the water balance approach. The last section presents 

conclusions derived from this study. 

 

2. Study Domain 

The model comparison was conducted over the Bear River Basin (BRB) between 2017 and 

2020. BRB is located on the border of three U.S. states, Utah, Idaho and Wyoming, with an area 

of 19,425 km2 (Figure 1). The basin is characterized by a complex network of streams and rivers 

that flow through a variety of landscapes, including mountains, plateaus, and valleys. The Bear 
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https://paperpile.com/c/8OB7Ig/K9RT+0nv8
https://paperpile.com/c/8OB7Ig/dvv8
https://paperpile.com/c/8OB7Ig/0s9S
https://paperpile.com/c/8OB7Ig/08nd
https://paperpile.com/c/8OB7Ig/Hy28b


River is the largest river in the watershed, originating in Utah then flowing 500 miles through parts 

of Idaho, Wyoming, and back into Utah where it enters the Great Salt Lake (GSL). BRB was 

chosen for this study because of interest in better understanding the water balance and water use 

in the GSL basin as part of efforts to inform management to reduce declines in the level of the 

GSL. It is a watershed that is representative of other watersheds draining to the GSL in terms of 

its spatial variability in elevation, has both agricultural and natural land covers, and is manageable 

in scale, in comparison to the entire GSL (Wurtsbaugh & Sima, 2022; Utah Division of Water 

Resources, 2004). Beyond the GSL basin, the BRB is also somewhat representative of Western 

U.S. mountain watersheds, with snowmelt driven streamflow being used for irrigated agriculture. 

Shrubland is the most prominent land cover type, covering approximately 50% of the total area, 

followed by evergreen needleleaf (~14%), irrigated cropland and pasture (~11%), dryland 

cropland and pasture (~8%) and deciduous broadleaf forest (~8%). Other land cover types account 

for less than 10% of the total area of the watershed. Evergreen needleleaf dominates the higher 

elevation, while grasses and irrigated crops/pasture dominate the lower elevations. Urban areas, 

mainly located in valleys, occupy less than 1% of the watershed.  

The climate of the basin is dry and cold with elevation varying between 1280 m and 3870 

m. Precipitation falls mainly as snow during the winter months. The average annual precipitation 

varies spatially, ranging from as low as 250 mm in the lower valleys to approximately 1650 mm 

in the high elevations (Utah Division of Water Resources, 2004). On average, the basin receives 

about 940 mm of precipitation annually. The average amount of water the basin loses to the 

atmosphere due to ET is approximately 850 mm annually (Utah Division of Water Resources, 

2004). During the study period, the basin experienced varying levels of drought severity according 

to a time-series of drought index values obtained from the U.S. Drought Monitor (USDM) (Figure 

2). The data in the figure indicate that BRB experienced abnormally dry (D0), moderate drought 

(D1), and severe drought (D2) conditions during the study period (2017 – 2020).  

As shown in Figure 1c, we identified four subwatersheds within BRB dominated by natural 

vegetation to evaluate the ET obtained from NWM and OpenET with the water balance ET (ETwb) 

derived from precipitation and streamflow (ETwb=P-Q) at the water year time scale. These natural 

subwatersheds have been selected based on several attributes, including: (1) Land use/land cover 

primarily consist of forests, grasslands, shrubs, or other forms of natural vegetation; (2) The basin 

is not impacted by significant irrigation water withdrawals, and (3) The availability of USGS 

streamflow data that covers the study period (2017-2020). 

 

https://paperpile.com/c/8OB7Ig/BpJR
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Figure 1. (a) Study area location within the U.S. at the junction of Utah, Wyoming, and Idaho. (b) Landuse/landcover from the NWM 

domain dataset and (c) Elevation.  Also noted on b and c are sub-watersheds within the basin (black outline) and USGS streamflow 

gages (blue triangles) used in the water balance assessment. 



 
Figure 2. Time-series of US Drought Monitor (USDM) drought class areal coverage over the Bear 

River Basin from 2017 to 2020. 

 

Table 1. Natural sub-watersheds within the BRB used to calculate the water balance ET for 

comparison with NWM ET and OpenET estimates. 

Sub-watershed 

Name 

USGS Gage 

ID. 

Area (km2) Elevation Range 

(m) 

Mean Annual 

Precipitation* 

(mm/year) 

Smith Fork Near 

Border, WY 

10032000 423.68 2045.89 - 3267.72 785.39 

Logan River Above 

State Dam, Near 

Logan, UT 

10109000 555.13 1425.08 - 3040.41 918.76 

Bear River Near UT-

WY State Line 

10011500 454.71 2393.40 - 3869.59 832.54 

Big Creek Near 

Randolph, UT 

10023000 131.35 1961.33 - 2709.34 616.56 

*GridMET 30 year mean (1990-2020). 

 

3. Model Descriptions and Experimental Design 

This study relies on data obtained from two different platforms that calculate ET, namely, 

NWM V2.1 and OpenET. The methods of ET calculation and the primary input datasets used in 

these platforms are different, yet complementary. The NWM V2.1 uses the prognostic Noah-MP 

LSM forced by meteorological data including precipitation rates. All processes that can be 

represented by the model must be explicitly modeled and contained within the equation set, and 

identified accurately, both spatially and temporally across the landscape. This can be a challenge 

in some cases, requiring a priori knowledge of management practices (e.g., irrigation, tile drainage) 

and accurate representation of sub-surface water storage.   

The OpenET platform provides ET obtained from various satellite-based models, where 

evaporative fluxes are diagnosed using remote sensing inputs of land-surface temperature and 

vegetation cover. OpenET also calculates a single “ensemble ET” value for each location and time-

step, computed for each pixel and timestep as the mean of all models after flagging and removing 

up to two outliers from the ensemble using the median absolute deviation approach (Volk et al., 



2023; Melton et al., 2022). These modeling approaches are described below. An advantage of this 

approach is that the remote sensing inputs may diagnostically capture patterns of water 

management and ancillary moisture sources that are not known a priori, either through the impact 

to the land-surface temperature or to vegetation indices via locally enhanced biomass production. 

OpenET is also at a higher resolution (30 m) than the NWM (1 km). 

 

3.1 NWM Background: 

In August 2016, the NWM was made operational (https://water.noaa.gov/about/nwm) by 

providing real-time spatially distributed hydrologic forecasts over the entire CONUS. The NWM 

uses the community WRF-Hydro model framework (Viterbo et al. 2020) for simulating different 

complex hydro-climatic processes such as ET, snowmelt, infiltration, runoff, and others that vary 

significantly due to changing in elevation, soils, and vegetation types as well as meteorological 

forcing conditions. The WRF-Hydro model includes the Noah-MP LSM (Niu et al., 2011; Yang 

et al. 2011; He et al., 2023) at 1 km spatial resolution as well as an overland routing scheme at 250 

m. The use of Noah-MP in WRF-Hydro allows users to select among multiple physics options. 

Further details about Noah-MP can be found in the technical description (He et al., 2023). In this 

study we used the retrospective simulation from NWM V2.1 obtained from the Amazon Web 

Services (AWS) portal (https://noaa-nwm-retrospective-2-1-pds.s3.amazonaws.com/index.html). 

More details about the NWM V2.1 general configurations and its retrospective run are shown in 

Appendix A. The NWM has tunable parameters that were used for calibration and can be 

categorized into two types, as listed in Appendix A: 1) constants, which are held fixed across the 

calibration region (as indicated by ‘type constant’ in Appendix A) or 2) multiplier adjusted, which 

are adjusted from spatially variable a-priori values using a scalar multiplier that serves as a 

calibration parameter. A-priori values were obtained from soil and other physical properties as 

described by Lammers et al., (2021) and Gochis et al. (2020). The use of multipliers and constants 

avoids the challenges of high dimensionality in the calibration of distributed models, while still 

taking advantage of spatially distributed information from datasets such as STATSGO 

(https://sdmdataaccess.sc.egov.usda.gov). Parameters over watersheds upstream of stream gages 

used in calibration are adjusted separately to match the streamflow at that gage, a process that can 

result in watershed scale spatial differences in parameter patterns that may manifest in watershed 

scale process differences, an effect we observed in some of our results. Here we did not attempt to 

change any of the NWM parameters or calibration procedures but mention this because the 

parameters calibrated by the NWM team underpinning the retrospective results we compared do 

impact our comparisons. 

 

3.2 OpenET 

The OpenET project is a broad collaborative effort to provide spatially continuous ET data 

for the western U.S. (Melton et al., 2022). The project provides daily, monthly and annual ET at 

30 m spatial resolution. At the time this analysis was conducted, we downloaded the data available 

from 2017 to present, though at the time of writing, the OpenET data archive includes data from 

https://paperpile.com/c/8OB7Ig/08nd
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2016 to present for the 23 western-most states in the continental United States (US). The ensemble 

of ET models included in OpenET are summarized in Table 2. The platform primarily utilizes 

Landsat satellite data, along with grid-based weather data including solar radiation, air 

temperature, humidity, and wind speed. Some models in the OpenET framework also integrate 

data from GOES, Suomi NPP, and Terra and Aqua satellites. 

Four of the models (ALEXI/DisALEXI, eeMETRIC, SSEBop, and geeSEBAL) are based 

on principles of surface energy balance and use the Landsat surface temperature product as a key 

remote sensing input, along with vegetation indices and surface albedo. PT-JPL is based on a 

Priestley-Taylor formulation for ET and is most sensitive to optical vegetation index remote 

sensing inputs, but also integrates land surface temperature (LST) in constraining net radiation 

(Fisher et al., 2008). The SIMS model uses a reflectance-based approach, principally driven by 

Landsat NDVI along with a crop-crop coefficient computed from vegetation density and condition, 

reference ET data, and soil evaporation coefficients computed from a gridded soil water balance 

model (Pereira et al., 2020; Melton et al., 2012).  Since SIMS applies primarily to agricultural 

areas that are a small part of the basin, it was excluded from our comparisons, though being part 

of OpenET does factor into the ensemble ET value for agricultural areas.   

 

Table 2. OpenET models used and their inputs 

Model acronym Full name Satellite and ancillary 

inputs 

Meteorological inputs 

ALEXI/DisALEXI 

(Anderson et al., 

2018; Anderson et al., 

1997) 

Atmosphere-Land 

Exchange 

Inverse/Disaggregatio

n of the Atmosphere-

Land Exchange 

Inverse (ver. 0.0.27) 

Primary: Thermal 

data from GOES 

(ALEXI) and Landsat 

(DisALEXI); surface 

reflectances from 

MODIS and Landsat 

TM/ETM+/OLI 

Secondary: NLCD 

land cover data 

Insolation, near-

surface wind, air 

temperature, vapor 

pressure and 

atmospheric pressure 

from the Climate 

Forecast System 

Reanalysis (CFSR); 

ALEXI additionally 

uses CFSR 

atmospheric 

temperature profile 

data 

eeMETRIC 

(Allen et al., 2011; 

Allen et al., 2005) 

Mapping 

Evapotranspiration at 

High Resolution with 

Internalized 

Calibration (ver. 

Primary: Surface 

reflectance and 

thermal radiation 

from Landsat 

Insolation, near-

surface wind speed, 

air temperature, and 

vapor pressure from 

CIMIS and North 

https://paperpile.com/c/8OB7Ig/sKOj+Yf1t
https://paperpile.com/c/8OB7Ig/sKOj+Yf1t
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0.20.15) TM/ETM+/OLI 

Secondary: NLCD 

land cover data (for 

USA) and GlobCover 

for the globe, SRTM 

DEM, SSURGO 

(USA) and FAO 

Harmonized World 

Soil Database v 1.2 

(globe) 

American Land Data 

Assimilation System 

(NLDAS) for the 

USA, and from 

Climate Forecast 

System Ver. 2 

(CFSV2) for the 

globe; Precipitation 

from gridMET 

geeSEBAL 

(Bastiaanssen et al., 

1998; Laipelt et al., 

2021) 

Surface Energy 

Balance Algorithm 

for Land using 

Google Earth Engine 

(ver. 0.2.1) 

Primary: Surface 

reflectance and 

thermal radiation 

from Landsat 

TM/ETM+/OLI 

Secondary: Elevation 

from SRTM; 

Cropland data layers 

from USDA NASS 

Daily shortwave 

incident radiation 

from GRIDMET; 

Hourly near-surface 

wind speed, air 

temperature, specific 

humidity and 

atmospheric pressure 

from NLDAS 

PT-JPL 

(Fisher et al., 2008) 

Priestley-Taylor Jet 

Propulsion 

Laboratory (ver. 

0.2.1) 

Primary: Surface 

reflectance and 

thermal radiation 

from Landsat 

TM/ETM+/OLI 

Secondary: MODIS 

maximum fraction of 

absorbed 

photosynthetically 

active radiation 

(fAPAR) 

Insolation, near-

surface wind speed, 

air temperature, and 

vapor pressure from 

CIMIS and North 

American Land Data 

Assimilation System 

(NLDAS) 

SIMS 

(Melton et al., 2012; 

Pereira et al., 2020) 

Satellite Irrigation 

Management Support 

(ver. 0.0.20) 

Primary: Surface 

reflectances from 

Landsat 

ETo
* data from 

Spatial CIMIS (in 

California); gridMET 

https://paperpile.com/c/8OB7Ig/tTOW+cuZQ
https://paperpile.com/c/8OB7Ig/tTOW+cuZQ
https://paperpile.com/c/8OB7Ig/tTOW+cuZQ
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https://paperpile.com/c/8OB7Ig/o9Dv+NzCf


TM/ETM+/OLI and 

Sentinel-2A/2B 

Secondary: USDA 

Cropland Data Layer 

and state crop 

mapping data 

products; Surface 

reflectances from 

Terra/Aqua MODIS 

and Suomi NPP 

VIIRS can be used 

for gap-filling 

 

Eto and precipitation 

data for other states 

SSEBop 

(Senay, 2018; Senay 

et al., 2013) 

Operational 

Simplified Surface 

Energy Balance (ver 

0.1.5) 

Primary: Thermal 

radiation from 

Landsat 

Secondary: NDVI 

from Landsat and 

SRTM DEM 

Eto data from Spatial 

CIMIS (in California) 

and gridMET; 

Daymet Daily 

Maximum Air 

Temperature (long-

term average) 

* ETo is the grass reference evapotranspiration used as a primary scaling flux in multiple OpenET 

models determined from radiation and other weather variables (Melton et al., 2022). 

 

3.3 Model comparison strategy 

Our analysis is based on monthly data from 2017 to 2020, which was the time interval of 

ET information available from OpenET at the time of data download (https://openetdata.org/, 

accessed on October 11, 2022). To facilitate comparison, we aggregated the NWM V2.1 3-hour 

simulated data to monthly intervals. Additionally, for seasonal ET comparisons, both NWM and 

OpenET data were aggregated to 3-month intervals: March-May (MAM), June-August (JJA), 

September-November (SON), and December-February (DJF). OpenET datasets (individual 

models and ensemble average) were spatially aggregated (through simple averaging) from 30-m 

resolution to match the 1 km model grid of NWM V2.1. This difference in spatial scale is a 

potential source of uncertainty and will be addressed in the interpretation of the results.  

We also assessed the modeling systems using a water balance approach over four gaged 

sub-watersheds within BRB (see Table 1 and Figure 1). We obtained streamflow data from the 

USGS stream gage network. We used precipitation from two different data sources, the Analysis 

of Period of Record for Calibration version 1.1 (AORC 1.1) 

https://paperpile.com/c/8OB7Ig/cTxg+T3Tm
https://paperpile.com/c/8OB7Ig/cTxg+T3Tm
https://openetdata.org/


(https://hydrology.nws.noaa.gov/pub/aorc-historic/), which is used as forcings for NWM V2.1 

simulations, and gridMET (Abotzoglou, 2013; https://www.climatologylab.org/gridmet.html), 

which is employed in some OpenET models. To assess the uncertainty due to precipitation we also 

used gridded precipitation from PRISM, DayMET and NCLIM obtained from the Climate Engine 

website (https://www.climateengine.org/) 

 

3.4 Quantitative statistics 

In this study, we used quantitative statistics to compare between the NWM ET and different 

OpenET models. Computed statistics included the spatial mean, standard deviation (SDEV), 

standard error (SE), root mean square difference (RMSD), and the coefficient of determination 

(R2). SDEV was calculated across the entire watershed for each model at 1 km-grid cell scale. SE 

was computed between the members of the OpenET ensemble. SE is standard deviation divided 

by the square root of the number of models (here 5) and serves as an indicator of OpenET model 

uncertainty. RMSD and R2 were used to measure the goodness of fit of NWM ET with each 

OpenET model using a linear regression. 
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where 𝑥̅ denotes the spatial mean of ET maps (NWM ET and OpenET), 𝑥𝑖 denotes each pixel ET 

value, n denotes the number of pixels for the entire ET map, 𝑝𝑖 and 𝑜𝑖 denote individual seasonal 

NWM ET and OpenET (watershed average) respectively, 𝑝̅ and 𝑜̅ denote average seasonal NWM 

ET and OpenET (watershed average) 

 

4. Results  

4.1 Temporal comparisons 

Figure 3a shows the time series of seasonal (3-month) ET from the NWM, the OpenET 

ensemble, and individual OpenET models, each averaged over the BRB. Figure 3b illustrates the 

spatial variability in ET as quantified by the standard deviation (SDEV) across the entire watershed 

for each model for each 3-month season evaluated across 1 km-grid cells with aggregated 3-month 

ET. Seasonal patterns in ET from both modeling systems (NWM and OpenET) reflect seasonal 

insolation rates, vegetation leaf growth phenological stages, evaporative demand, and rainfall 

rates. ET values in the BRB peak during the warm season (JJA) and are at their lowest during the 

winter season (DJF) when solar radiation load and surface temperature are low. Comparing NWM 

ET with the suite of OpenET models reveals that NWM consistently estimated lower ET (by about 

45 mm/season on average) throughout the study period, with more significant ET differences 

observed during the summer season (JJA). In Figure 3b, the variability in ET across the basin from 

https://hydrology.nws.noaa.gov/pub/aorc-historic/
https://www.climatologylab.org/gridmet.html
https://www.climateengine.org/


NWM is often similar to the OpenET ensemble, except for 2018, where it was lower by 20-30 

mm/season. 2018 was a drought year (Figure 2), and one possible explanation for this reduced 

variability is that NWM does not properly account for ancillary sources of moisture (e.g., 

irrigation, shallow groundwater) that may be sustaining higher transpiration rates during drought 

years in some parts of the watershed. 

In Figure 4a, we compare the OpenET approaches with the seasonal ET (watershed 

average) from NWM over a span of four years. Each plot represents a different OpenET approach. 

We measure the goodness of fit of NWM ET with each OpenET model using a linear regression 

R2, and Root Mean Square Difference (RMSD). Overall, the results indicate that NWM ET has 

lower values in comparison to OpenET models across the seasons. The highest R2 values 

(approximately 0.97) were obtained with ALEXI/DisALEXI and geeSEBAL, which both yield a 

similar enhancement in spring (MAM) ET, perhaps in response to springtime rains. The lowest 

values (0.81 and 0.84) were obtained for SSEBop and eeMETRIC, respectively. The RMSD values 

varied across different models, ranging from 49 mm/season to 69 mm/season due in large part to 

bias.  

To explore possible drivers of the ET differences between NWM and OpenET evident at 

the basin scale in Figure 3a, we examined seasonal biases in primary forcing variables from AORC 

(NWM) and gridMET (OpenET) data sources (Figure 5). Evaporative fluxes in NWM are strongly 

forced by precipitation, because it is a prognostic water balance model, while precipitation has 

only a secondary influence through soil evaporation in eeMETRIC and SIMS (excluded from 

basin-scale analyses here). The other OpenET models do not use precipitation as an input. Figure 

5a shows that precipitation rates from AORC compared to gridMET are systematically lower by 

13 mm/season on average.  If all the extra precipitation was converted into ET in NWM, this would 

account for 29% of the total average difference between NWM and OpenET.  Among other 

meteorological inputs, the OpenET models are most sensitive to forcings like insolation (primary), 

temperature, wind speed and vapor pressure deficit. Figure 5b indicates a strong agreement 

between the downwelling shortwave radiation (Rsi) values obtained from gridMET and AORC 

datasets across different seasons. 

ETo is a primary scaling flux for eeMETRIC, SSEBop and geeSEBAL, combining impacts 

of insolation, wind, air temperature and vapor pressure on evaporative fluxes. Figure 5c compares 

ETo which OpenET computes based on gridMet with ETo which we computed from AORC V1.1 

data using the ETo reference calculation described in Melton et al. (2022). GridMet ETo is higher 

than AORC by about 7 mm/season on average, or about 16% of the NWM-OpenET difference. 

Biases in input forcing data do not appear to completely explain ET differences observed 

between NWM and OpenET at the basin scale. Additional factors that can lead to differences, such 

as modeling approach and spatial and temporal resolution, are explored in greater detail below. 

 

https://paperpile.com/c/8OB7Ig/08nd
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Figure 3. (a) Seasonal ET spatial mean and (b) Seasonal ET spatial standard deviation (SDEV) 

from NWM, OpenET ensemble, and individual OpenET models for the BRB. 

 



 
Figure 4. Scatterplot comparisons of different OpenET approaches with the seasonal basin-

averaged ET from NWM over a span of four years. Blue shading depicts regression model 

uncertainty as calculated by Seaborn python package (https://seaborn.pydata.org/). 
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Figure 5.  (a) Time-series plots comparing a) precipitation, b) shortwave radiation and c) ETo computed as a spatial 

watershed-average over seasons spanning (2017 - 2020) from gridMET and AORC. 

 

4.2 Spatial comparisons 

Spatial maps of seasonal ET, averaged over the 4 years, from both NWM and the OpenET 

ensemble help to explain where the differences apparent in Figure 3a arise within the basin (Figure 

6). Comparisons with individual OpenET models are shown in Appendix B. In general, the 

spatiotemporal patterns from both modeling approaches are broadly similar, with ET peaking in 

JJA and lower ET typically in the eastern part of the domain, representing shrubland at higher 

elevation. However, notable differences are apparent in the spatial details of flux magnitude 



(Figure 7a).  Also shown in Figure 7b are maps of time-averaged inter-model standard error (SE) 

by season, computed between the members of the OpenET ensemble.  Standard Error is standard 

deviation divided by the square root of the number of models (here 5) and serves as an indicator 

of OpenET model uncertainty. Small standard error indicates where the five basin-covering models 

agree well and, through convergence of evidence, we have high confidence in the ensemble 

estimate. Low standard error relative to the difference between NWM and OpenET estimates 

indicates disagreement between these different ET quantities. 

NWM-OpenET differences are largest in JJA (Figure 6), but the general spatial structure 

of the differences is persistent between seasons (Figure 7a). The magnitude of NWM-OpenET 

differences tend to be larger than the standard error (Figure 7b), indicated by the difference scale 

ranging from -300 to 300 mm (Figure 7a) while the standard error scale tops out at 50 mm (Figure 

7b). This suggests real differences between ET as estimated by OpenET and the NWM.   

NWM-OpenET differences during JJA when ET is highest are examined in greater detail 

in Figure 8 that also shows a Google Earth image of the basin to facilitate interpretation in relation 

to landcover and surface features.  Some of the strongest persistent differences emerge in the 

riparian corridor along the Bear River in the eastern part of the watershed. The land cover in this 

region is a mixture of riparian vegetation and irrigated agriculture. This is more apparent during 

summer as exhibited by the large contrast of very dry and very wet regions depicted in the ET 

ensemble. These riparian moisture sources and their impact on vegetation growth are captured by 

the remote sensing inputs to OpenET, primarily through higher vegetation index (NDVI and/or 

LAI) and lower LST. These features do not appear to be depicted in the NWM JJA ET (Figure 6). 

Similarly, in the wetland areas in the southwest of the watershed near its outlet to the Great Salt 

Lake, OpenET is significantly higher than NWM. Patches of irrigated agriculture elsewhere in the 

basin are also associated with higher rates of ET from OpenET in comparison with NWM.  These 

differences indicate limitations in the NWM representation of ET in riparian and irrigated 

agriculture areas, noting limitations in the representation of agricultural water management in the 

NWM. 

One NWM area that stands out in JJA (and to a lesser extent in MAM) in Figures 6, 7a and 

8a is associated with the Blacksmith Fork Watershed located in the southern central part of the 

basin (see identification Figure 8). The NWM ET in this sub-watershed of BRB is distinctly lower 

than its surroundings, with sharp boundaries that are not related to any specific physical features 

in Figure 8. We believe that this is an artifact of watershed-specific model calibration discussed 

further in Section 5.  



  
Figure 6. Comparison between maps of seasonal ET from both NWM and OpenET (Ensemble). 



(a) (b) 

  

Figure 7. (a) Seasonal ET differences between NWM and ensemble OpenET; and (b) OpenET inter-model standard 

error (SE) maps among the five satellite-based methods used in this study. 



(a) (b) 

 

 
Figure 8. (a) ET differences in JJA between NWM ET and ensemble OpenET approach with details to facilitate the 

interpretation of results in relationship to landcover, and (b) a Google Earth image of the BRB. 

 

4.3 Assessment of geographic variables related to model differences. 

Given the relative spatial stability of NWM-OpenET difference patterns, we further 

examine relationships of these differences with geographic variables such as elevation, aspect and 

land use/land cover. Considering that the discrepancies are most significant during JJA, our 

primary focus will be on analyzing the factors influencing JJA variations.   

Elevation and aspect, if not appropriately accounted for, can have a significant impact on 

remotely sensed LST and can add false variability to ET retrievals - particularly via the energy 

balance. eeMETRIC explicitly accounts for topography using the Mountain Model package (Allen 

et al., 2013), and effectively flattens the LST field by an elevation based vertical lapse rate 

correction and by correcting the solar radiation flux inputs for slope and aspect.  Noah-MP in the 

NWM accounts for the impact of topography on ET implicitly through the differences in 

atmospheric forcing (e.g., surface temperature, humidity, downward solar radiation) but with 

topography represented at a 1 km scale. While topographical features are important for surface 

energy balance, they seem to have a minimal influence on the discrepancies observed among the 

OpenET models and NWM ET (Figure 9a, b). Significant differences are observed in lower 

elevations ranging from 1200 to 1500 m and topographically flat regions that are dominated by 

wetlands, irrigated agricultural areas, and areas near the outlet of BRB to the GSL.   

https://paperpile.com/c/8OB7Ig/As1m
https://paperpile.com/c/8OB7Ig/As1m


Based on Figure 9c, it appears there is a dependence of differences in JJA ET on land cover 

type. The highest differences were obtained from herbaceous wetland and woody wetland, yielding 

values ranging approximately from -400 mm to 200 mm, but these are a small fraction of total 

area. However, in irrigated cropland and pasture, which comprises more of the area, a significant 

difference was also found. Since the NWM does not represent irrigation, ET from irrigated areas 

is limited by the NWM simulated soil moisture, which may be impacted by parameters adjusted 

during calibration. 

 

(a) 

 

(b) 

 

(c) 

 
Figure 9. (a) Differences between NWM ET and different OpenET approaches based on 

elevation, (b) slope and aspect, and (c) landuse/landcover classes. Note that in (b), flat includes 

grid cells characterized as flat by the ArcGIS evaluation of slope and aspect from NWM 1 km 

grid scale elevation. 



4.4 Assessment of differences by water balance 

We also assessed the differences between the NWM ET and different OpenET approaches 

from a water balance perspective (ETwb=P-Q). This was done for four sub-watersheds with 

minimal irrigation diversions or human impacts, that we designated as natural. These were: the 

Bear River Near UT-WY State Line; Logan River Above State Dam, Near Logan, UT; Smiths 

Forks Near Border, WY; and Big Creek Near Randolph, UT. First, we compared the NWM V2.1 

streamflow estimates at daily timesteps with observations obtained from USGS gages (Figure 10). 

Overall, the results indicated a good agreement between the NWM V2.1 streamflow estimates and 

natural flow observations.  

Figure 11 illustrates the monthly accumulated P and ET derived from different data 

sources. In Figure 11a and b, the black line represents the cumulative P from the AORC dataset, 

while in Figure 11c, we used a blue-shaded range constructed from gridMET, AORC, DayMET, 

PRISM and NCLIM precipitation data sources. The variability across these data sources reflects 

uncertainty in precipitation. Accumulated ET values were derived from NWM, OpenET, and the 

water balance calculation of precipitation (P) minus streamflow (Q) for the period of 2017 – 2020 

for these sub-watersheds. Note that while accumulated ET is strictly increasing, cumulative P-Q 

includes the effects of snow and terrestrial water storage and thus increases more steeply from 

October (the beginning of the water year) until April/May and then declines as spring snowmelt 

results in high streamflow and reductions in snow storage. In general, the water balance equation 

is: 

∆𝑆 = 𝑃 − 𝑄 − 𝐸𝑇 (5) 

where ∆𝑆 is change in storage. This can be expressed as: 

𝐸𝑇 + ∆𝑆 = 𝑃 − 𝑄 (6) 

which provides the basis for comparing cumulative P-Q with cumulative ET with an interpretation 

of storage changes. 

AORC P was the input to the NWM so in general, apart from storage effects, the red 

(cumulative NWM ET) and brown (cumulative P (AORC) – Q (NWM)) lines are consistent across 

different watersheds as expected (Figure 11a). Accumulated storage within the watershed occurs 

when the brown line is above the red line, while there is accumulated deficit when the brown line 

is below the red line. The fact that the brown and red lines end each water year (and the full 3-year 

period) very close to each other reflects that in the NWM storage and deficit essentially balance 

out over the 3 years. This outcome is expected and is a result of the NWM's design/construction 

as a water balance prognostic model. In Figure 11b we used Q (observed) in the water balance ET 

calculation instead of Q (NWM). The differences between P (AORC) – Q (observed) (Green line 

Figure 11b) and NWM ET (Red line Figure 11a) reflect errors between model and observed NWM 

Q. This is particularly evident in the Bear and Smith rivers where the NWM underestimates 

cumulative Q, suggesting that the NWM ET is relatively higher than ET evaluated from water 

balance, P (AORC) – Q (observed). However, even though relatively higher, NWM ET does not 

get as high as most OpenET estimates (Figure 11a). In the case of Logan River, Q (NWM) has 



better agreement with Q (observed) but is slightly higher, which suggests that NWM ET is 

relatively low and thus being less than OpenET is not inconsistent.  

In Figure 11c, we assessed the uncertainty associated with precipitation using different 

datasets. When comparing the four watersheds, we observed a higher amount of precipitation 

received in Logan River watershed than Smith, Bear and Big Creek watersheds. The annual 

precipitation rate in the Logan River watershed is approximately 900 mm, whereas in the Smith, 

Bear and Big Creek watersheds annual precipitation decreases to around 700 mm. Considering the 

different precipitation datasets, there is a degree of variation between these sources of about 150 

mm/year. This variance may contribute to differences between water balance ET, NWM ET and 

OpenET approaches. The orange-shaded area represents the calculated range of water balance ET, 

which is derived from minimum and maximum values obtained when calculated as the difference 

between P (obtained from different datasets) and Q (observed). This range should be consistent 

and balanced by cumulative ET as watersheds do not generally accumulate or lose storage over 

the long term (multiple years). Comparing the four watersheds, we see that OpenET, and the 

ensemble ET value in particular, closely aligns with the water balance ET in the Logan River and 

Big Creek watersheds, falling within the uncertainty range denoted by the orange shading in Figure 

11c. However, in the Bear and Smith watersheds, OpenET tends to overestimate ET when 

compared to the water balance ET derived from multiple precipitation sources. 

 

   
Figure 10. Hydrograph comparison between simulated NWM V2.1 streamflow and observed 

USGS streamflow gage.  
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Figure 11. Accumulated P and ET curves based on NWM, OpenET models evaluated, and water 

balance P-Q which is comparable to ET when accounting for storage. a) NWM water balance 

components compared with OpenET models; b) Water balance ET estimated based on observed 

streamflow compared with OpenET models; c) Variability due to precipitation uncertainty in 

water balance compared with OpenET models. 

 

5. Discussion 

The results above show that relative to OpenET the NWM estimates of ET are consistently 

lower (Figure 3).  This leads to questions as to the sources of these differences.  Broadly there may 



be errors in the NWM, errors in OpenET, and errors in the inputs to the NWM.  We investigated 

each of these.   

Checking NWM inputs, Figure 5 suggests that uncertainty in precipitation, shortwave 

radiation and reference ET are not likely sources of major uncertainties in NWM results. Among 

these, precipitation is perhaps the largest source of uncertainty and we did document (Figure 11) 

about a 150 mm/year typical difference across different precipitation data sources, taken to reflect 

precipitation uncertainty.  The AORC precipitation input used in the NWM was at the low end of 

the gridded precipitation datasets used and a higher precipitation input to the NWM would result 

in higher NWM ET. However, the precipitation uncertainty, up to around 150 mm/year or 40 mm 

per season does not by itself appear big enough to explain ET differences. We base this on the 

observation in Figure 11c that even with the upper bound of P, the water balance estimate of ET 

is less than OpenET for two of the four natural watersheds examined.  

We then checked the water balance estimating ET as precipitation minus streamflow. This 

was done for four upstream natural watersheds not significantly impacted by diversions or riparian 

areas where river source water could supply ET. They are also geographically situated in locations 

unlikely to be impacted by regional groundwater inflows, noting that other researchers have 

resorted to consideration of regional groundwater in efforts to close watershed water balances 

(Soltani et al. 2021). Interpretations of P-Q do need to account for the effects of storage, so when 

we evaluate the cumulative P-Q lines in Figure 11 we do not concern ourselves with the seasonal-

scale ups and downs, but rather compare the broad overall position of cumulative P-Q to 

cumulative ET. For two of the four watersheds the cumulative observed P-Q range, accounting for 

gridded P data source differences, is below the range of cumulative OpenET values, from all 

methods, and from the ensemble. These two sub-watersheds, Bear (10011500) and Smith 

(10032000) are located in areas dominated by evergreen forest, a small component of the landcover 

characteristic of the full basin (Figure 1). A large-scale model intercomparison and evaluation 

study conducted by Volk et al. (2023) using close to 150 Ameriflux towers identified evergreen 

forest as the landcover class with highest systematic bias in OpenET, with a mean bias error of 

approximately 24% for the ensemble ET value. In addition, the mountainous terrain in these sub-

watersheds presents an additional challenge to remote sensing models based on surface energy 

balance. By contrast, for the Logan River and Big Creek, OpenET and the water balance ET 

compare relatively well.  These are drier watersheds with less evergreen forest cover, and smaller 

runoff ratios.  In the case of Big Creek, the runoff ratio is very small with essentially all 

precipitation being translated into ET, a process represented well by OpenET and the NWM.  

These findings suggest current limitations on the use of OpenET for analyses related to the water 

balance of evergreen forested mountain watersheds, which are where much streamflow originates 

in the intermountain western U.S. A broader evaluation of water balance sampling across other 

landcover types and topography present in the Basin will be required to draw inferences regarding 

basin-scale biases between NWM and OpenET. 

Looking at the differences between NWM ET and OpenET at the scale of the entire 

watershed, not limited to the four natural watersheds, we also note other sources of differences. 

https://paperpile.com/c/8OB7Ig/N5DV


Figure 8 illustrated these differences for the high ET season with two important patterns.  First 

where there is irrigation along river corridors, riparian areas and wetlands, OpenET is larger than 

NWM ET.  This is a reflection of additional water sources in these areas feeding into ET, but not 

being modeled in the NWM. This is also noted in Figure 9, where differences are computed based 

on landcover/land use and topography. Again, low elevation, flat and wetland area NWM ET is 

less than OpenET. Improvements to the NWM should evaluate opportunities to include these 

processes. Secondly, the outline of the Blacksmith Fork watershed stands out in the OpenET NWM 

ET difference map. This can be traced to a discontinuity in NWM ET at this watershed boundary. 

There is no physical reason for a discontinuity in ET associated with a watershed boundary, and 

we believe this is due to a difference in NWM parameters associated with calibration for specific 

basins.  Calibrated parameters relate to soil properties, and thus affect the modeling of ET. Users 

of NWM results should be cautious in their interpretation given these effects and the uncertainties 

they imply. This also provides an opportunity for considering independent ET datasets, such as 

from OpenET in the regional calibration of NWM parameters to move it towards better physical 

parameterization of the processes involved with ET that are important for water balance 

partitioning. 

Another consideration is spatial variability.  Notwithstanding the bias in mean between 

NWM ET and OpenET, the variability across the BRB represented by OpenET resampled to the 

NWM 1 km grid cell resolution (Figure 3b) is reasonably well captured by the NWM. The NWM 

spatial standard deviation is, for most seasons within the range of OpenET spatial standard 

deviation, and close to the OpenET ensemble spatial standard deviation. This speaks to the utility 

of an Ensemble quantity where multiple models are available. It also shows that even with 

omission of some physical ET processes from NWM, the spatial variability of NWM ET is 

consistent with OpenET, which incorporates satellite observations of land surface conditions to 

capture spatial patterns in ET. For one year, 2018, the most extreme drought year in our study 

period, the spatial standard deviation of NWM ET is less than that of OpenET. We surmise that 

possibly fewer wetter grid cells modeling higher ET values in the drought year, suppresses the 

spatial standard deviation. We do note, considering these spatial scale effects that OpenET data is 

natively produced at a 30 m grid scale, while NWM simulates hydrologic processes at a 1 km grid 

scale. For these comparisons, the 30 m resolution OpenET data were aggregated to 1 km, and part 

of these differences may be due to this aggregation. 

Another potential source of systematic bias in NWM simulated ET in the BRB may be 

caused by misrepresentation of hydrologic processes that can result in increased soil and shallow 

groundwater available for ET such as hillslope scale lateral flow, regional flow, and groundwater-

vadose interactions. Simulation of lateral redistribution of water at hillslope scales (~1 m – 1 km) 

in land surface models can result in more accurate water balance estimates from land surface 

models and can result in increased soil moisture and ET and reduced dry bias (Fan et 

al., 2019; Yang et al., 2021; Ji et al., 2017). WRF-Hydro implements lateral connectivity between 

250 m grid cells; it uses a shallow diffusive wave solution for overland lateral flow and a 

Boussinesq approximation for shallow subsurface lateral flow (within the 2-m soil column). 



The lateral fluxes are aggregated and disaggregated back to the 1 km Noah-MP grid. This scale 

mismatch may result in spatial bias in the estimated lateral water subsidies that occur at hillslope 

scales. Also, in the NWM soil drainage is routed directly to a stream network and does not have 

the chance to resurface or be available for valley floor ET. In the study area, mountain block 

recharge is the major source of groundwater (Miexner et al., 2016) that is discharged through 

phreatophyte shrubland ET in valleys (Meyers et al., 2021; Beamer et al., 2013; Nichols 1993) and 

direct evaporation in the GSL. The model assumption of groundwater discharge to be only 

contributing to streamflow may be reasonable in some headwaters subbasins, however, at the 

basin-wide scale, a lack of representation of these larger scale processes may be responsible 

for some of the low seasonal ET biases in NWM results we see in the lowland areas of the BRB and 

near the GSL.   

This work focused on one major subbasin draining into the Great Salt Lake and has 

highlighted the challenges associated with the NWM and its overall representation of the water 

balance and ET. It has also shown some of the uncertainties associated with independently 

estimated ET computed from methods such as the ensemble of satellite-driven models used by 

OpenET. While these specific findings are limited to this specific area, this watershed is typical of 

others in the intermountain western U.S. region and we suspect that the findings will apply in other 

areas too. Further work to more fully investigate this is warranted.  

 

Conclusions 

For our study area, the Bear River Basin, relative to OpenET the NWM estimates of ET 

are consistently lower, with biases attributed to both modeling systems and likely related to errors 

in model inputs and calibration, missing processes in the represented in the NWM framework, and 

biases in OpenET related to landcover/topography. 

We found that some NWM uncertainty is due to uncertainty in the input precipitation 

datasets, with the AORC precipitation that was used as input to the NWM being at the low end of 

the range of other gridded precipitation products used in the water balance evaluation. This 

suggests that improving precipitation input to the NWM offers an opportunity to improve NWM 

ET and water balance outputs. 

We found that NWM ET was underestimated in lowland, riparian, wetland, and irrigated 

agriculture areas where it does not model ancillary water supplies. There are thus opportunities to 

improve the NWM through better representation of these processes. 

We found that NWM ET has discontinuities along watershed boundaries. These stand out 

when looking at differences between OpenET and NWM ET and appear to be caused by the NWM 

calibration that adjusts parameters or parameter multipliers across watersheds, and some of these 

parameters have an impact on soil moisture which then plays a role in the modeling of ET. There 

is in general no physical reason for these discontinuities and research to improve the calibration 

parameter adjustment approach that avoids these discontinuities would improve the model by 

advancing it closer to a more physical representation of the processes involved.  



A water balance assessment in two evergreen forest dominated natural sub-watersheds 

within the Bear River Basin is consistent with biases reported in an OpenET evaluation study using 

eddy covariance instrumentation, where the OpenET ensemble ET value overpredicted flux tower 

observations in evergreen forest.  These results point to paths towards improvement in OpenET in 

forested systems. 
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Appendix A:  This includes both the NWM v2.1 general configuration as well as the 

calibrated parameters used for the retrospective analysis. 

 

Table A1. NWM v2.1 General Configurations 

Item Description 

Model resolution  1-km land surface grid; 250-m terrain routing 

grid; NHDPlusV2 vector channel routing 

network and conceptual groundwater basins. 

Spin up period Warm started with final states from a 10-year 

simulation, then acclimated by running 

February 1979 through December 1979 twice 

Driving data Analysis of Record for Calibration (AORC) 

Output frequency CHROUT: Every hour, channel network output 

LAKEOUT: Every hour, reservoir (lake) output 

GWOUT: Every hour, conceptual groundwater 

output. 

LDASOUT: Every 3 hours, land model output 

RTOUT: Every 3 hours, high resolution terrain 

routing output 

Accumulation periods  For the accumulation variables (3 hourly 

UGDNOFF, ACCET, ACSNOM), the 

accumulation takes place between restart dates: 

1. 00Z January 1 - 21Z March 31 

2. 00Z April 1 - 21Z June 30 

3. 00Z July 1 - 21Z September 30 

4. 00Z October 1 - 21Z December 31 

Model time step Forcing data: 3600 seconds 

Land surface model: 3600 seconds 

Channel routing: 300 seconds 

Terrain routing: 10 seconds 

 



Table A2. Calibrated parameters of NWM based on (Gochis et al. 2020), including their 

calibration range (Max. and Min.) and type. 

Parameter 

Name 

Description Min

. 

Max. Type Unit 

Soil parameters 

BEXP Pore size distribution index.  0.4 1.9  Multiplier Dimensionless 

SMCMAX Porosity, saturated value of 

soil moisture (volumetric). 

0.8 1.2 Multiplier Volumetric 

fraction 

DKSAT Saturated hydraulic 

conductivity. 

0.2 10 Multiplier 𝑚−1 

RSURFEXP  Soil evaporation resistance 

exponent. 

1 6 Constant Dimensionless 

Vegetation 

parameters  

     

CWPVT Empirical canopy wind 

parameter. 

0.5 2 Multiplier 𝑚−1 

VCMX25 Maximum rate of 

carboxylation at 25oC 

0.6 1.4 Multiplier 𝜇𝑚𝑜𝑙𝑚−2𝑠−1 

MP Slope of conductance-to-

photosynthesis relationship 

0.6 1.4 Multiplier Unitless 

Snow parameters 

MFSNO Melt factor for snow depletion 

curve; larger value yields a 

smaller snow cover fraction 

for the same snow height 

0.25 2 Multiplier Dimensionless 



Runoff parameters 

REFKDT Reference soil infiltration 

parameter (used in runoff 

formulation). It significantly 

impacts surface infiltration 

and hence the partitioning of 

total runoff into surface and 

subsurface runoff. Increasing 

REFKDT decreases surface 

runoff. 

0.1 4 Constant Unitless 

SLOPE Slope index for soil drainage. 0 1 Constant 0–1 

RETDEPRTFAC Surface retention depth. 0.1 20000 Constant Unitless 

LKSATFAC Multiplier on lateral hydraulic 

conductivity (controls 

anisotropy between vertical 

and lateral conductivity). 

10 10000 Constant Unitless 

Groundwater parameters 

ZMAX Maximum groundwater 

bucket depth. 

10 250 Constant mm 

EXPON Exponent controlling rate of 

bucket drainage as a function 

of depth. 

1 3 Constant Dimensionless 

 



Appendix B: Comparison between maps of seasonal ET from both NWM and OpenET 

approaches  

 

  
Figure B1. Comparison between maps of seasonal ET from both NWM and OpenET 

(ALEXI/DisALEXI). 



  
Figure B2. Comparison between maps of seasonal ET from both NWM and OpenET 

(eeMETRIC). 



  

 

Figure B3. Comparison between maps of seasonal ET from both NWM and OpenET 

(geeSEBAL). 



  
 

Figure B4. Comparison between maps of seasonal ET from both NWM and OpenET (PT-JPL). 



  
Figure B5. Comparison between maps of seasonal ET from both NWM and OpenET (SSEBop).  
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