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Abstract

Resource selection analysis (RSA) is a cornerstone approach for understanding animal distri-

butions, yet there exists no rigorous quantification of sample sizes required to obtain reliable3

results. We provide closed-form mathematical expressions for both the number of animals and

relocations per animal required for parameterising RSA to a given degree of precision. Required

sample sizes depend on just two quantities: habitat selection strength and an index of landscape6

complexity, which we define rigorously. We validate our solutions using 5,678,623 GPS locations

from 511 animals from 10 species (omnivores, carnivores, and herbivores from boreal, temperate,

and tropical forests, montane woodlands, swamps, and tundra). Our results contradict conven-9

tional wisdom by showing that environmental effects on distributions can often be estimated

with fewer animals and relocations than assumed, with far-reaching implications for ecologists,

conservationists, and natural resource managers.12

Keywords: bootstrap, habitat selection, p-value, power analysis, Resource Selection Function,

sample size, Species Distribution Model, validation
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Introduction15

Resource selection analysis (RSA) is a broad framework linking the distribution of animals to

their preferences for specific habitat conditions and is a fundamental tool in animal ecology

(Boyce & McDonald 1999; Strickland & McDonald 2006). Obtaining sufficient locations to ascer-18

tain the distribution of animals across landscapes is a fundamental requirement for RSA. Indeed,

to understand intra-specific variation in the distribution of animals – a critical research aim in

basic and applied animal ecology – it is necessary to obtain repeated localizations on multiple21

individuals, now commonly collected using animal-attached GPS sensors (Hebblewhite & Hay-

don 2010). GPS data on animal movements are hence commonly employed for RSA and are

often analyzed using Resource Selection Functions (RSFs; Boyce & McDonald 1999; Manly et al.24

2002; Elith & Leathwick 2009; Hebblewhite & Haydon 2010). RSFs are a class of exponential

models of space use that estimate the probability distribution of animal locations using different

resources/conditions in the landscape, taking into account the availability of each resource, and27

thereby provide a measure of the ‘strength’ of (behavioral) selection for or against each resource

(Manly et al. 2002). RSFs are easily fitted using standard statistical models (commonly logistic or

conditional logistic regression) applied to data on animal locations and resource distributions in30

the landscape and have become a cornerstone of research in spatial ecology (Manly et al. 2002;

Elith & Leathwick 2009; Renner & Warton 2013).

Given the prevalence of RSFs, it is surprising that the central question determining the validity33

of inferences obtained – how much data is needed to estimate a RSF for a given species? –

has not been solved. This issue has been broached for occupancy analysis (Guillera-Arroita &

Lahoz-Monfort 2012) and generalized linear mixed models (Johnson et al. 2015), and has been36

evaluated within individual RSF studies using simulations (Leban et al. 2001; Loe et al. 2012),

yet no analytic expressions exist to determine the number of animals (M) and relocations per

animal (N) required to obtain RSF outputs to a given degree of precision. While the accuracy39

and precision of RSFs generally increase with sample size, leading to a standard rule-of-thumb
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of M ≥ 30 needed for reliable ecological inference (Leban et al. 2001), this rough guideline is

grounded in century-old thinking about statistics in the pre-computation world (James et al.42

2013). Crucially, it is also oblivious to the ecological reality that a multitude of factors may affect

selection strength and determine the required sample size (Manly et al. 2002; McLoughlin et al.

2010; Hebblewhite & Haydon 2010). These include density-dependence (i.e. certain habitats45

become less attractive when occupied by conspecifics; Fretwell & Lucas 1969; McLoughlin et al.

2010; van Beest et al. 2016), trade-offs in selection for forage and cover under predation risk (Fortin

et al. 2005; McLoughlin et al. 2010), temporal variations in resource dynamics (McLoughlin et al.48

2010; Paolini et al. 2018), or the degree of habitat availability or heterogeneity in a landscape

(Mysterud & Ims 1998; McLoughlin et al. 2010; van Beest et al. 2016; Paolini et al. 2018). There is

no consistency in RSF studies in the number of replicates used (Hebblewhite & Haydon 2010), as51

the only alternative approaches to establishing the number of replicates a priori are ecologically

informed guesswork, or simply to collect as much data as possible.

The crux of the problem lies in the relationship between sample size and ecological complex-54

ity. It is suggested that more complex systems require more data to describe (Wisz et al. 2008), yet

a robust power analysis (Johnson et al. 2015) allowing examination of the relationship between

RSF estimation, system complexity, and data availability is crucially missing. This has obvious57

economic and ethical implications if more animals are tagged and monitored than needed and

affects research aimed at the conservation of species, which requires reliable estimates of animal-

habitat relationships but where it is often impossible to monitor large numbers of animals. Here,60

we provide a solution to the sample size problem in RSFs by deriving analytic expressions for

the values of M and N (the number of animals and relocations per animal respectively) required

to estimate RSFs to a required degree of accuracy, taking into account landscape complexity and63

the strength of selection for the resources. We validate these expressions using simulations and a

large dataset of GPS-tagged animals (including 10 species from different continents and biomes)

and show that the most biologically relevant effects of landscapes on animal distributions can66

often be estimated with far fewer animals and locations than are commonly stated.
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Methods

We begin by describing mathematically how to determine the number of locations per animal69

(N) and the number of animals (M) for RSA. RSA seeks to parametrize a model of space use that

has the following form (Manly et al. 2002):

u(x) =
A(x)W(x)∫

Ω A(x′)W(x′)dx′
, (1)72

where u(x) is the utilization distribution of the study species (i.e. the probability density function

of the study animals’ locations), A(x) is a function denoting the availability of the point x to75

the animals, Ω is the study area, and W(x) is the RSF. (Note: throughout this manuscript, bold

fonts imply that the quantity is a vector.) For the purposes of our analytic calculations, our

RSF will be dependent upon a single resource layer R(x). This could denote, for example, the78

vegetation quality or prey availability at point x. However, in general, R(x) represents a map of

any environmental feature which is hypothesized to covary with space use. Although we only

look at one resource layer at a time for our analytic calculations, we show in our empirical study81

(below) that the resulting formulae work when the RSF has multiple layers.

As is the standard method for RSA, we make 3 simplifying assumptions (Manly et al. 2002):

(i) our weighting function is of the form W(x|β) = exp[βR(x)], where β is a parameter to be84

estimated; (ii) the availability kernel A(x) is a uniform distribution; and (iii) relocations are

independent. Consequently, our model of space use from Equation (1) becomes:

u(x|β) = exp[βR(x)]∫
Ω exp[βR(x′)]dx′

. (2)87

The aim of this section is to understand how many independent samples are required to give an

accurate parametrization of the model in Equation (2).90
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Locations from a Single Individual (N)

We first need to phrase the question ”How many locations?” in a concrete, mathematical way.

Suppose we wish to test the null hypothesis H0 : β = 0 against the alternative H1 : β 6= 093

at a significance level p ∈ (0, 1). An experiment to test this hypothesis involves measuring N

samples and using (conditional) logistic regression to infer β and test the null hypothesis (as

is the standard method for resource selection, e.g. Manly et al. 2002). We define Nα,p(β) to be96

the minimum number of samples required so that we expect to reject the null hypothesis in

100(1− α)% of experiments. An approximate analytical formula for Nα,p(β) is given as follows

(derived in Supplementary Appendix A):99

Nα,p(β) ≈
(zα + zp/2)

2

Var[R(Xβ)]
β−2. (3)

Here, zα = Φ−1(1− α) where Φ(·) is the cumulative distribution function for the standard normal102

distribution (e.g. z0.05 ≈ 1.645, z0.025 ≈ 1.96), Xβ is a random variable whose probability density

function is given by Equation (2), and Var[R(Xβ)] is the variance of R(Xβ). An explicit functional

expression for Var[R(Xβ)] can be written as follows:105

Var[R(Xβ)] =

∫
Ω R2(x) exp [βR(x)]dx∫

Ω exp [βR(x)]dx
−
(∫

Ω R(x) exp [βR(x)]dx∫
Ω exp [βR(x)]dx

)2

. (4)

We call Var[R(Xβ)] ”landscape complexity”. Critically, this form of landscape complexity is de-108

termined in part by multiplying the landscape layer by the expected β, so it should be understood

as representing the landscape complexity as viewed by the animal.

The formula in Equation (3) is approximate due to two assumptions: (i) it relies on the stan-111

dard error, σ, of the maximum likelihood function being approximately normally distributed,

and (ii) it uses a standard result relating the standard error for the estimator of β to the sec-

ond derivative of the log-likelihood function (see Supplementary Appendix A for more details).114

Therefore it is necessary to investigate the magnitude of these approximating assumptions using
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simulated data.

To test how effective the approximate expression from Equation (3) is at capturing the actual117

number of samples required to infer β with a given level of accuracy, we constructed a simulated

resource layer which describes an example of the function R(x) (Fig. 1a). This test layer is

a Gaussian random field, previously used in the context of resource selection by Potts et al.120

(2014). It was generated by the R function GaussRF() from the RandomFields package (Schlather

et al., 2016), using the exponential model with mean=0, variance=1, nugget=0, and scale=10, and

consists of L = 100 by L = 100 pixels. By sampling N times from Equation (2) for various123

N with R(x), we can compute empirical values for Nα,p(β) for different β (full method given

in Supplementary Appendix B). Comparison of these empirically-derived values alongside the

analytical expression from Equation (3) reveals remarkably strong agreement (Fig. 1b). This126

suggests that Equation (3) gives an accurate estimation of the number of independent samples

required to estimate β.

Locations from multiple individuals (M)129

Now we assume that there are M individuals and they each select resources with different β.

To model this, let β1, . . . , βM ∼ N(β, s2) be independent draws from a normal distribution

with mean β and variance s2. Then βi is the coefficient of resource selection for individual132

i ∈ {1, . . . , M}. Suppose for each individual i we have gathered Ni locations. Let β̂i be the

maximum likelihood estimator for βi. Then the standard deviation of β̂i can be estimated as

(Supplementary Appendix A, Equation 15):135

σi =
1√

NiVar[R(Xβi)]
. (5)
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If β̂ is the mean of β̂1, . . . , β̂M, then β̂ is normally distributed as follows (Supplementary Appendix138

C):

β̂ ∼ N

(
β,

1
M2

M

∑
i=1

σ2
i +

s2

M

)
. (6)

141

Thus β̂ is an unbiased estimator of β. Notice that the variance decays as M increases. If the

practitioner has some prior expectation of the possible values of β and s2, Equation (6) can be

used to calculate the number of animals, M, required to obtain an empirical estimate of β to a144

given degree of accuracy.

As well as calculating an estimate of β, it is also possible to estimate s2. The following is an

unbiased estimator of s2 for M ≥ 2 (Supplementary Appendix C):147

ŝ2 =
1

M− 1

M

∑
i=1

(
β̂i −

1
M

M

∑
j=1

β̂ j

)2

− 1
M

M

∑
i=1

σ2
i . (7)

We were not able to derive a closed analytic formula for the uncertainty in the estimator given in150

Equation (7); however, we provide code for estimating this using random sampling (see Supple-

mentary Appendix D). In general, the estimator becomes more precise for lower σi and higher

M. This is shown in Supplementary Appendix D, where we also verify numerically Equations153

(6) and (7).

Equation (6) allows us to calculate the minimum number of animals, Mα,p(β), for which we

would expect to reject the null hypothesis that β = 0, at significance level p, 100(1− α)% of the156

time (two-tailed test). Mα,p(β) is the minimum integer, M, that satisfies the following inequality:

M ≥
s2(zp/2 + zα)2 +

√
s4(zp/2 + zα)4 + 4β2(zp/2 + zα)2 ∑M

i=1 σ2
i

2β2 . (8)
159
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Data and Resource Selection Functions

Equations (3) and (8) give predicted values for the number of relocations N and the number of

animals M required for RSF estimation. To test our analytical predictions, we compiled GPS-162

based relocation datasets from 10 separate species with accompanying landscape data in raster

format (Table S1; Fig. 2). Landscape data were either categorical (i.e. discrete landscover) or

numeric (e.g. elevation, precipitation, etc.). To ensure comparability between model outputs165

for each species, we centered and scaled each numeric landscape raster in R using the scale()

function with default parameters. We converted categorical landcover rasters to binary raster

layers for each landcover classification of interest (e.g. deciduous forest, croplands, etc.) to168

acquire estimates of Var[R(Xβ)] for a given categorical raster.

We generated a 1:1 sample of availability (i.e. 1 available location per animal relocation)

within each animal’s 99% home range as estimated using the function kernelUD() in R package171

adehabitatHR with the default bandwidth estimator. We extracted centered-and-scaled (nu-

meric) and binary (categorical) landscape data to animal relocations and available locations and

fit a RSF to each animal in each dataset using logistic regression (i.e. 511 individual models;174

Table S2). For simplicity, we used only linear main effects for each predictor in a given RSF;

however, we emphasize that more complex effects (e.g. non-linear and interaction terms) may be

identically investigated using the appropriate non-linear transformation or multiplicative prod-177

uct on the resource layer(s) prior to calculation. Note that, although our equations operate on a

single resource layer at a time, our analysis uses RSFs with multiple layers. This procedure thus

tests whether multiple layers may be analyzed one-at-a-time to ascertain the number of animals180

and fixes required to estimate the β-value for each layer.

Empirical Validation: M

After fitting each RSF, we calculated the mean selection coefficient β̄ for each landscape layer183

across individuals within a species. Assuming β̄ was an accurate estimate of population-level
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selection β, we asked: how many animals M were necessary to estimate β? We calculated

Var[R(Xβ)] for each centered-and-scaled or binary raster within each animal’s 99% range accord-186

ing to Equation (4) and the resulting values of N according to Equation (3). We generated em-

pirical distributions of β̂ and ŝ2 as described in Supplementary Appendix D for M ∈ {2, . . . , 30}

using the average N and Var[R(Xβ)] as population-level estimates of each. We computed the em-189

pirical 95% intervals at a given M (i.e. α = 0.05). The value of M at which the empirical interval

no longer contains 0 is the predicted minimum M necessary to estimate β with 95% confidence,

Mpred (i.e. the minimum integer M0.05,0.05(β); Equation (8)).192

For comparison with observation, we then resampled the estimated selection coefficients for

each individual within a species. For a given M ∈ {2, . . . , 30} as above, we generated 4000

samples of Mi observed selection coefficients and calculated β̄ for each (i.e. 4000 mean selection195

coefficients assuming Mi animals). This represents the observed distribution of possible β̄ for

Mi sampled animals, assuming the total pool of animals is a representative sample. Finally, for

each M we calculated the grand mean β̄G and the empirical 95% interval of β̄. The value of M198

at which the empirical interval no longer contains 0 is the observed minimum M necessary to

estimate β with 95% confidence, Mobs, and should correspond to Mpred

Empirical Validation: N201

The M validation procedure described above assumes that, on average, sufficient relocations N

were available to estimate M. Now we consider: for a given individual-level selection coefficient

β, do we have sufficient N to reject the null hypothesis for a given animal? We randomly sampled204

1 animal from each dataset and calculated Var[R(Xβ)] within the animal’s 99% range using the

animal’s specific RSF model coefficients as β. From this we calculated the predicted number of

relocations Npred necessary to estimate β given Var[R(Xβ)] (i.e. N0.05,0.05(β); Equation (3)).207

For comparison, we resampled Nsam relocations with replacement from the animal’s dataset,

where Nsam =
⌊

iNtotal
50

⌋
, i ∈ {1, . . . , 25}, and Ntotal is the total number of relocations recorded

for that animal. This unconventional sequence was selected because (i) it produced a compara-210
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ble number of observed values of N to that in the M validation procedure (25 observed N vs.

29 pairings of Mpred and Mobs) while (ii) keeping the increments small enough to retain detail

given that estimates of N can be orders of magnitude larger than those of M. We generated 4000213

samples of Nsam,i relocations and fit an RSF to each individual sample (i.e. 4000 RSFs assuming

Nsam,i relocations). We retained all originally generated available locations in each RSF so as to

maintain a constant availability kernel between RSFs with different relocations. We then calcu-216

lated the mean selection coefficient β̄ and its 95% empirical interval at a given Nsam. The value of

Nsam at which the empirical interval no longer contains 0 is the observed minimum N necessary

to reject H0 : β = 0 at significance level p ≤ 0.05, Nobs, and should correspond to Npred.219

Results

The equations (3, 8) at the basis of our methods provide analytically predicted values for the

number of relocations N and the number of animals M required to paramaterize an RSF. Simple222

1-to-1 plots of Npred vs. Nobs and Mpred vs. Mobs across all 10 species revealed remarkable agree-

ment between observation and prediction (Fig. 3). Interestingly, 1 outlier was identified for N and

1 for M. Visual inspection of the data revealed that these outliers occurred alongside availability225

samples within individual RSFs that did not properly describe the true spatial integral of re-

source availability (i.e.
∫

Ω A(x′)W(x′)dx′; Equation (1)). That is, the 1:1 used/available sampling

protocol undersampled the available space. Thus, Npred and Mpred can be sensitive to insufficient228

spatial sampling of availability, and care should be taken to to avoid such undersampling before

applying these methods.

Given this, we then asked, what is the role of the definition of availability (sensu Johnson 1980)231

in shaping these relationships? Our original calculations of Npred and Mpred used individual

availability (i.e. each animal has its own available resources within its unique 99% KDE). We

repeated our calculations of Npred and Mpred, and bootstrap estimation of Nobs and Mobs, using 2234

additional availability definitions that varied the spatial extent of availability for a given animal:
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(i) within the entire collection of 99% KDEs (i.e. animals have access to resources within all

KDEs equally), and (ii) within the entire site (i.e. animals have access to all resources within237

the study site, including those outside of 99% KDEs). This mimics the problem of sufficiently

sampling availability described above, but now availability is driven by conceptual or ecological

definitions rather than by the sampling protocol itself. Similar consistency in β̂ was observed240

across M within a given definition of availability, but the sign and magnitude of β̂ varied with

availability from individual- to site-level (Fig. 4). Despite the change in sign and magnitude,

Equation (8) is able to calculate Mpred consistent with observation across availability definitions.243

By inclusion, given that Npred is a component of Mpred (see Equation (5)), we also observe that

Equation (3) is consistent with observation across availability definitions.

Lastly we asked, what are the primary drivers of Npred and Mpred as estimated by Equa-246

tions (3, 8)? A key outcome of our method is that this question can be answered analytically, by

simply inspecting Equations (3, 8). Equation (3) shows that Npred is inversely correlated to both

Var[R(Xβ)] and β2, indicating that as either landscape variation or selection strength increase,249

so must Npred. Similarly, because β2 is contained in the denominator of Equation (8), Mpred

must decrease with increasing selection strength. To demonstrate this graphically, we plotted

log-log regressions of Npred and Mpred against Var[R(Xβ)] and |β|, respectively, using data from252

all 10 species to evaluate whether these analytical predictions bear out under real data scenarios

(Fig. 5). Per the analytical predictions, both Npred and Mpred declined as their respective pre-

dictors (landscape variation or habitat selection strength) increased. It is also worth noting that255

inclusion of both predictors within the same log-log regression (i.e. Mpred as a function of both

Var[R(Xβ)] and |β|) returned R2 = 1, as expected given that Npred and Mpred are determined only

by Var[R(Xβ)] and β.258
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Discussion

Conventional wisdom regarding sample size in RSA holds that a sample size of M ≥ 30 ani-

mals tagged is necessary for consistent and reliable inference (Leban et al. 2001; Hebblewhite &261

Haydon 2010). Convention also holds that more complex landscapes (i.e. those with higher land-

scape variance Var[R(Xβ)]) require more relocations per animal N to characterize selection (Wisz

et al. 2008). Our analytical models and validation procedures return a contrasting set of results,264

contradicting conventional wisdom. First, we found that Mpred was often (but not always) sub-

stantially less than 30, and this prediction strongly agreed with observation based on resampling

of GPS-based telemetry across a variety of ecologically contrasting species (Figs. 3, S1-S20). Strik-267

ingly, our analytical results show conclusively that M can only decline with increasing absolute

magnitude of β (Equation (8)), indicating the most biologically relevant effects (i.e. those with the

greatest |β|) can often be estimated with only a few animals (Fig. 5). This reveals important ethi-270

cal and budgetary implications for wildlife studies. For example, consider the mule deer dataset

containing 106 tagged individuals (Table S1). Our findings show that the strongest effects on the

utilization distribution (i.e. selection for temperature, evergreen forest, and shrublands) may be273

estimated with fewer than 20 animals (Fig. S20), i.e. 80% fewer animals than were used. This

means that, using a conservative estimate of US$2,450 for each GPS collar and data fees (K. L.

Monteith, pers. obs.), if the sole aim of the study were to identify the relevant resource drivers276

of animal distributions as in typical RSF studies, this project would have overspent by $210,700

(excluding researcher/technician effort, which has significant cost in itself). Compared to the

popular approach of tagging as many animals as possible and constructing phenomenological279

models to identify ecological mechanisms post hoc (colloquially referred to as “collar-and-foller”;

Dunn 2004; Fieberg & Johnson 2015), our analytical results suggest researchers start with efforts

aimed at constructing a priori hypotheses and associated models, then use our Equations (3, 8)282

to estimate the number of animals and locations per animal required for the study aims (Johnson

et al. 2015).
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Second, Npred (the number of relocations per individual) also strongly agreed with observa-285

tion, with both predicted and observed N in the 1000s or larger (Fig. 3). This agrees with findings

that within-replicate sample sizes should generally be large (e.g. Wisz et al. 2008); however, our

analytical expressions also conclusively demonstrate that N is directly calculable (Equation (3))288

and as with M is expected to generally decline with increasing Var[R(Xβ)] and β. These conclu-

sions for both M and N are not only analytically proven but are additionally supported by real

data bearing out the analytical predictions (Figs. 3–5). As such, our findings demonstrate that291

not only are M and N imminently calculable given a known landscape and some expectation of

β, but the expected trends in M and N with respect to landscape complexity and the strength of

animal preference are precisely opposite those predicted by conventional wisdom and previous294

studies.

Why are our results contrary to so much of the preceding literature? One possibility could

lie in the ”golden rule” of sample size, i.e. that M ≥ 30 is required for a sample size sufficient to297

invoke the Central Limit Theorem and assume a roughly normal distribution of possible sample

means (Aho 2014, p. 154), or to ignore non-normality because a model structure is somehow ”ro-

bust” to non-normality (e.g. Hector 2015, p. 48). This is reinforced by an absence of mathematical300

attention to the sample size question. Previous studies have used simulation or empirical analy-

ses to explore sample size sufficiency within particular species or systems (e.g. Leban et al. 2001;

Loe et al. 2012; Sequeira et al. 2019), leading to conclusions that are quite specific to a given study303

but then are widely adopted as inferring pattern across all systems. By defining the problem

mathematically (i.e. at what values of M and N do we reject the null hypothesis 100(1− α)%

of the time at significance p?), we instead arrive at general analytical solutions that then may306

be tested with simulations and empirical analyses that are specifically designed for those solu-

tions, rather than relying on intuitive but incorrect assumptions about the relationships between

landscape variation relative to selection strength and RSA sample size sufficiency.309

Our calculations show that the required M and N for a given study are dependent entirely

on |β| and Var[R(Xβ)]. The latter can be directly calculated given a landscape and an expectation

15



for β, but selecting an appropriate expected β is a critical step in estimating M and N. For312

a priori planning this could be accomplished using expert knowledge and previous literature;

however, there may be no conceivable prior expectation of β in some RSA exercises. In such a

case, one may elect to perform for example a sensitivity analysis given a range of β to select315

conservative estimates of M and N. Further, observe that β is often affected by a variety of

ecological phenomena, including resource availability, competitor density, and seasonal effects

(Mysterud & Ims 1998; McLoughlin et al. 2010; van Beest et al. 2016; Paolini et al. 2018). This318

implies that Equations (3 & 8) estimating N and M respectively are in fact hierarchical with

dependencies not only on landscape variance (i.e. Var[R(Xβ)]) but also landscape composition

and structure as they determine β. In scenarios where we are uncertain about possible values of321

β, we may construct informed models suggesting likely values of β given an expectation for how

the animal should behave as resource availability changes (e.g. generalized functional response

models; Matthiopoulos et al. 2011). Such a hierarchical approach ”borrows” information from324

the functional response model to provide a more ecologically informed range of possible β for a

sensitivity analysis (Hobbs & Hooten 2015).

Our results also provide new insight into the importance of sufficient spatial sampling of327

availability. There was 1 outlier in the 1-to-1 comparison of Npred and Nobs, and 1 in that of Mpred

and Mobs (Fig. 3). These occurred because the 99% range of the animals under observation was so

large, and the underlying landscape rasters so finely grained, that our 1:1 use/availability sam-330

ple did not accurately portray the spatial integral of availability
∫

Ω A(x′)W(x′)dx′ (Equation (1)).

This caused Mpred and Npred to be based on a different, incomplete availability set compared to

the fitted RSFs. This highlights an unexpected but critical conclusion: the sampling intensity333

for availability in RSF-styled models should be only as large as necessary to correctly character-

ize the availability integral. Previous RSF-styled studies (including SSF) have almost exclusively

sampled availability as we did here using ratios (i.e. 1:1, 1:10, 1:100, etc.; e.g. Boyce & McDonald336

1999; Fortin et al. 2005; Street et al. 2016). This encourages either sampling at an intensity insuf-

ficient to approximate the spatial integral (as occurred here for outlying points in Fig. 3), or at
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too great an intensity leading to overinflated sample sizes and biased standard errors, confidence339

intervals, and p-values. Both scenarios may affect inference, but despite these issues no general

rule has been promoted for availability sampling in RSA. Based on our findings, we propose that

this rule should be regular (non-random) sampling at a spatial interval equal to the resolution of342

the underlying landscape data such that every possible location within the availability boundary

is considered. This would produce an availability observation for every raster pixel and thus

overlap between used and available locations. Although it is suggested that such overlap is to345

be avoided (e.g. Wisz et al. 2008), logically a used location must also be available otherwise it

cannot be selected, and removing used locations from availability can potentially omit important

effects from the availability sample. Our equations indicate that this overlap is required by the348

mathematics of resource selection.

This finding reinforces that defining resource availability at the scale of the estimated model is

a critical first step in planning a RSA. Our multi-scale analysis of mule deer produced remarkably351

different estimates for M at each of the three definitions of availability (site-wide, population-

wide, and individual availability; Fig. 4), indicating that failure to properly define the available

space can lead to incorrect estimates of both M and N. This is not a new finding; the importance354

of properly defining what is available for an animal to select is a long-standing issue in RSA re-

search (e.g. Johnson 1980; Boyce & McDonald 1999; Fortin et al. 2005). However, the difficulty of

calculating M and N for planning a RSA study increases with the biological scale of the intended357

model. Site-wide availability assumes all animals have access to resources on the entire land-

scape and is similar in concept to first-order selection (i.e. where the species is located; Johnson

1980), but availability may be sampled as a regular grid across the entire site. Population-wide360

availability refines the scale toward second-order selection (i.e. where animals situate their home

ranges), but accurately defining a perimeter for the likely population range a priori within which

to sample availability is non-trivial. This becomes even more difficult under individual availabil-363

ity; how can we anticipate the size and placement of individual home ranges? A feasible solution

may be to delineate population boundaries and within this delineation generate random ranges
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with area determined by the literature and expert knowledge. This would enable calculation366

of an average theoretical availability for any animal in the study site with appropriate standard

error. This could then be used to produce an average prediction for M and N, and associated

confidence limits, across the average home range composition.369

We approached this analysis with the specific intention of evaluating how many GPS-tagged

animals M are needed for RSF estimation, but there are many RSF applications that do not seek

M or require GPS-tagging (e.g. plant distributions). For example, RSAs estimated for rare species372

will typically lack sufficient data for individual-based estimation of the utilization distribution

u(x) such that M is irrelevant and only N need be evaluated. RSAs can be sensitive to small

sample sizes (Wisz et al. 2008), yet they often generate accurate predictions for rare species with375

small datasets (McCune 2016), suggesting that for some rare species smaller N is sufficient to

achieve a robust model. Our findings permit evaluation of this. Consider a hypothetical sce-

nario where RSA is conducted for a rare species with 100 observations and β is recorded. Here,378

Equations (3–4) could be used to calculate Npred as a post hoc metric of confidence assuming β

is the true population/species-level average selection coefficient. If Npred ≤ 100, then one could

trust the outcome of the RSA; conversely, Npred > 100 would indicate additional data collection is381

necessary. Where that is not possible, one could systematically adjust zα and zp/2 (Equation (3))

to determine the percent confidence interval that rejects the null hypothesis H0 : β = 0 and es-

tablish a degree of confidence for model outcomes. Although there are issues with this approach384

(e.g. individual variation is ignored), this is a limitation of small datasets and not the equations

identified here. Similarly, although we performed validation using GPS-based datasets, Equation

(3) is agnostic to how data are collected and may also be applied to sessile organisms. Provided387

we can plausibly accept that β is roughly true and individual variation is either minimal or ac-

commodated by the population-level β (presumably what has been estimated), our equations

may be easily extended to evaluate most any RSA-based study.390

We must emphasize that although M may only decline with increasing β, Equation (3) allows

for a turning point to occur such that N initially decreases with |β| but eventually increases at
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very large |β| (see Supplemental Information, Equation (25)). When selection strength is particu-393

larly strong, smaller sample sizes make it much more likely to obtain perfect separation between

used and unused resources. In such a case one must collect more data to observe the animal not

using a resource unit it should strongly prefer (or in the case of negative selection, to observe it396

using a resource it should strongly avoid). Practically, this means that sampling intensity for RSA

is a greater concern for specialist organisms than generalists because specialists should exhibit

typically larger |β| for preferred/avoided resource units than generalists. Although the equations399

identified here allow us to directly calculate N for any landscape and expected selection strength,

we should generally expect that specialists will require larger N for precise RSA estimation.

The equations identified here explicitly evaluate the compatibility of a dataset with a given402

hypothetical model (i.e. β). Calculating their solutions across gradients of N and M reveals

how the number of data points (relocations) and number of replicates (animals) affect deter-

mination of compatibility. Rather than the values of N and M required to achieve statistical405

significance, we instead suggest these be used to determine the relevant sample sizes necessary

to achieve ”consistent” results, i.e. if we increase sampling intensity would we see substantial

change in estimated coefficients? From this perspective, we conclude that the number of ani-408

mals M required to consistently estimate the most biologically relevant effects in an RSA can be

well below commonly touted sample size thresholds (i.e. M ≥ 30), particularly when selection

strength is strong (Fig. 3, 5). Moreover, the number of required relocations N can also be quite411

small but tends toward larger sample sizes when landscape variation is small. The sufficiency

of samples sizes M and N is dependent entirely on the strength of selection (|β|) and landscape

variation with respect to selection strength (Var[R(Xβ)]). Rather than simply reporting sample414

sizes in RSA studies, researchers should pay explicit attention to the effect their sample size has

on their findings. Regardless of study organism, ecosystem, or scenario, our equations may be

equally applied to any RSF-based study to evaluate the consistency of expected outcomes given417

a dataset of a particular size. This will partially address the so-called ”replicability crisis” by

explicitly characterizing the consistency of model outputs in relation to sample sizes and effect
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sizes, thereby increasing reader (and reviewer) confidence in such studies. Similarly, editors and420

reviewers should abandon preconceived notions of what makes a sufficient sample size in RSA

in favor of evaluating the sensitivity of findings to sample size based on the mathematical rules

identified here, for it is also feasible (and indeed demonstrable) that consistent findings can be423

achieved with as few as N = 100 relocations per animal and M = 2 animals (Fig. 3). Because

M and N can be easily calculated provided knowledge of ecological and landscape effects, we

argue that such calculations should henceforth be a mandatory component for all RSA studies.426
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Potts, J.R., Auger-Méthé, M., Mokross, K. & Lewis, M.A. (2014). A generalized residual technique

for analysing complex movement models using earth mover’s distance. Methods in Ecology and516

Evolution, 5, 1012–1022.

Renner, I.W. & Warton, D.I. (2013). Equivalence of MAXENT and Poisson point process models

for species distribution modeling in ecology. Biometrics, 69, 274–281.519

Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S. et al. (2016).

Randomfields: Simulation and analysis of random fields, r package. Webpage http://CRAN.

R-project. org/package= RandomFields.522

Sequeira, A.M.M., Heupel, M.R., Lea, M.A., Eguı́luz, V.M., Guarte, C.M., Meekan, M.G. et al.

(2019). The importance of sample size in marine megafauna tagging studies. Ecological Appli-

cations, In Press, e01947.525

Street, G.M., Fieberg, J., Rodgers, A.R., Carstensen, M., Moen, R., Moore, S.A., Windels, S.K.

& Forester, J.D. (2016). Habitat functional response mitigates reduced foraging opportunity:

implications for animal fitness and space use. Landscape Ecology, 31, 1939–1953.528

Strickland, M.D. & McDonald, L.L. (2006). Introduction to the special section on resource selec-

tion. Journal of Wildlife Management, 70, 321–323.

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A. & NCEAS Predicting531

24



Species Distributions Working Group (2008). Effects of sample size on the performance of

species distribution models. Diversity & Distributions, 14, 763–773.

25



Figures534

0.2 0.4 0.6 0.8

X

0.2

0.4

0.6

0.8

Y

a)
Resource layer

−4

−3

−2

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Selection strength, β

100

101

102

103

C
ri

ti
ca

l 
n
u
m

b
e
r 

o
f 

lo
ca

ti
o
n
s,

 N
α
,0
.0
5

b) α=0.5

α=0.05

Figure 1: Performance of analytic expression on simulated data. Panel (a) shows a simulated
resource layer, R(x), which was used to construct the utilisation distribution (Equation 2) from
which the simulated animal locations were samples. The circles (resp. triangles) in Panel (b)
show the empirically-derived values of N0.5,0.05(β) (resp. N0.05,0.05(β)), the minimum number of
samples required so that there is a 50% chance (resp. 95% chance) of rejecting the null hypothesis
that β = 0 at a significance level of p = 0.05. The solid line (resp. dashed line) in Panel (b) shows
the corresponding analytic approximations given by Equation (3) and the remarkable agreement
with the empirically-derived values.
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Figure 2: Data distribution. Geographic locations of GPS datasets (5,678,623 GPS relocations)
across 511 individually collared members of 10 species.

27



●

●

●●●●●●0

2000

4000

0 2000 4000
Predicted

O
bs

er
ve

d
How Many Fixes (N)

●
●●

●

●

0

10

20

30

0 10 20 30
Predicted

O
bs

er
ve

d

How Many Animals (M)

species

●

●

Caribou

Elk

Moose

Mule deer

Muskox

Opossum

Peccary

Pig

White−tailed deer

Wolf

Figure 3: 1-to-1 comparison of predicted and observed M and N. Three outliers are observed
for N and one for M due to mismatch between sampled and true availability within the animals’
99% ranges. Dashed lines are those with gradient 1 crossing through the origin.
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Figure 4: Comparison of predicted M across orders of availability. Mpred (vertical dotted line)
changes depending on whether availability for the RSF is defined at the scale of the individual
(each animal has its own available locations within its own 99% KDE), population (all animals
have equal access to resources within all animal’s 99% KDEs), or site (all animals have equal
access to resources across the entire site). If no vertical dotted line occurs, then Mpred > 30.
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