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Abstract

Grey seals (Halichoerus grypus) can act as sentinel species reflecting the condition of the 

environment they inhabit. Our previous research identified strains of pathogenic 

Campylobacter and Salmonella, originating from both human and agricultural animal hosts, 

on rectal swabs from live grey seal (Halichoerus grypus) pups and yearlings on the Isle of 

May, Scotland, UK. We examined rectal swabs from the same pup (n=90) and yearling 

(n=19) grey seals to gain further understanding into the effects of age-related changes (pup 

versus yearling) and three different natal terrestrial habitats on seal pup fecal microbiota. 

DNA was extracted from a subset of rectal swabs (pups n=23, yearlings n=9) using an 

optimized procedure, and the V4 region of the 16S rRNA gene was sequenced to identify 

each individual’s microbiota. 

Diversity in pup samples was lower (3.92 ± 0.19) than yearlings (4.66 ± 0.39) although not 

significant at the p=0.05 level (p = 0.062) but differences in the composition of the microbiota 

were (p < 0.001). Similarly, differences between the composition of the microbiota from pups 

from three different terrestrial habitats (PH, RR, and TS) were highly significant (p < 0.001). 

Pairwise tests showed significant differences between all three habitats: PH vs TS (p = 0.019), 

PH vs RR (p = 0.042) and TS vs RR (p = 0.020). 

This preliminary study suggests a general trend, that seal microbiomes are modified by both 

age and, in pups, different terrestrial habitats. Furthermore, knowledge of the microbiota 

species present has the potential to be used in determining the environmental quality index.

 Keywords: grey seal, fecal microbiota, pups, yearlings 
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1. Introduction

The intestinal microbiome of terrestrial animals has been related to the health of individuals 

and, in sentinel species, the ecosystems they inhabit (Hanning and Diaz-Sanchez, 2015). 

Marine mammals, as mesopredators, can act as sentinel species reflecting the health of coastal 

and marine habitats (Gulland, 1999; Reddy et al., 2001; Bonde et al., 2004; Wells et al., 

2004; Jessup et al., 2004; Moore, 2008; Cook et al., 2015; Nelson et al., 2013, Bik et al., 

2016; Delport et al., 2016) and this can be useful for investigating disease transmission, 

changes in food webs, climate change and the effects of accumulation of anthropogenic 

contaminants (Baily et al., 2015; Delport et al., 2016; Apprill, 2017; Jepson et al., 2005; 

Godfray et al., 2019). Rising levels of man-made compounds in several marine mammal 

species have clearly illustrated anthropogenic pollution and its effect on marine ecosystems 

(Moore, 2008). Additionally, the detection in UK grey seal pup feces of specific species and 

strains of Campylobacter and Salmonella bacteria originating from terrestrial and 

anthropogenic sources implicated inadequately managed human sewage and agricultural run-

off (Baily, 2014; Baily et al., 2015, 2016). 

Several studies have determined that the principal bacterial taxa inhabiting the intestines of 

marine mammals differ from those of terrestrial mammals and include members of the phyla 

Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and, to a lesser extent, 

Actinobacteria spp. (Delport et al., 2016; Numberger et al., 2016; Nelson et al., 2013; Glad et 

al., 2010; Banks et al., 2014). However, the microbiota profiles of phocid seals are further 

complicated by the dramatic physiological changes that seals undergo in the first year of life 

(Hall et al., 2001; Smith et al., 2013) which influence the intestinal microbiota composition. 

Grey seals are found primarily in the northern North Atlantic Ocean, with just under 50% of 

their population residing in UK coastal waters (Reeves et al., 2002) and the Isle of May is the 
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fourth largest grey seal breeding colony in the British Isles accounting for approximately 

4.5 % of annual pup production (Special Committee on Seals Report (2020), 

http://www.smru.st-andrews.ac.uk/scos/scos-reports). 

This study aimed to compare the fecal microbiota profiles of grey seal pups versus yearlings 

and to investigate the effects on the profiles of grey seal pups born on three different 

substrates within the extensively studied breeding colony on the Isle of May, Scotland, UK. 

The microbiota profiles were also evaluated for selected known pathogenic bacterial genera as 

biomarkers for use as putative indicators in an environmental quality index.

2. Materials and Methods

Sampling:

Rectal swabs were taken from 90 live healthy grey seal pups and 19 live juveniles physically 

restrained for other on-going studies during six weeks of the breeding season, in autumn 

2011, on the Isle of May, a small island off the east coast of Scotland in the Firth of Forth 

(Figure 1). Immediately after sampling, swabs were re-sheathed in Amies medium with 

charcoal (Medical Wire & Equipment, Corsham, UK) and stored at -80°C within 12 hrs of 

sampling as described previously (Baily et al., 2015, 2016). Pups were sampled at three 

specific sites comprised of highly different substrates: a tidal rocky boulder beach (Pilgrim’s 

Haven-PH, n = 30), rocky stagnant pools (Rona Rocks-RR, n = 30), and a muddy/grassy slope 

(Tarbet Slope-TS, n = 30). The yearling samples (n=19) were from two areas; one in the 

southwest of the island separate from the pup locations and a second near Rona Rocks and 

south of Tarbet Slope (Figure 1).
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Total nucleic acid extraction

Swabs, stored at -80oC, were thawed gently on ice immediately before DNA extraction using 

the PowerFecal DNA isolation kit (MoBio) as per the manufacturer’s instructions but with 

modifications. Briefly, the head of each swab was cut off and placed into a DNA-free tube 

containing 0.7 mm dry glass beads followed by the addition of 750 µL of bead solution, 60 

µL of C1 solution, and 10 µL of proteinase K (20 mg/mL). The samples were mixed by 

vortexing for 2 min. and incubated for 1 hour at 55oC. Subsequently, samples were bead-

beaten using a MoBio vortex adapter for 10 min. and then centrifuged at 13,000 x g for 2 min. 

Supernatants were transferred to clean 2 mL collection tubes and 250 µL of C2 solution added 

and vortexed briefly, incubated at 4oC for 5 min. before centrifugation at 13,000 x g for 1 

min. Resultant supernatants (600 µl) were transferred to clean collection tubes and 200 µL of 

C3 solution was added, vortexed briefly, and incubated at 4oC for 5 min. before centrifugation 

at 13,000 x g for 1 min. Then, 750 µL of supernatant was added to 1200 µL of C4 solution 

and vortexed for 5 s. The resultant supernatant (650 µL) was loaded into a spin filter and 

centrifuged at 13,000 x g for 1 min. and the flow-through discarded. After repeating this step 

three times (to filter a total volume of 1950 µL), the spin filters were washed with 500 µL of 

C5 solution and centrifuged at 13,000 x g for 1 min. The spin filter was dried by replacing the 

collection tube and centrifuging for an additional 2 min. at 13,000 x g. DNA was eluted by the 

addition of 50 µL of C6 solution to the spin filter, incubated at room temperature for 1 min. 

and centrifuged at 13,000 x g for 1 min. DNA concentrations and quality were assessed by 

Nanodrop ONETM (Thermo) and the DNA was stored at -20˚C until required.
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PCR amplification of 16S rRNA gene and next-generation sequencing

The V4 region of the 16S rRNA gene was amplified, by PCR, from the extracted DNA as 

described by Caporaso et al. (2012). Briefly, a PCR master mix was prepared to contain 1x 

Taq buffer plus additional MgCl2 (1 mM final concentration), 0.2 mM of each of the four 

dNTPs, 0.25 mM of each primer (the same forward primer (515F) together with a different 

barcoded reverse primer (806R) were used, the reverse primer sequences differing only at the 

barcode region), 0.05 U/µl Taq DNA polymerase, and 1 ng/µl template DNA made up to a 

total volume of 25 µl with PCR grade water under sterile conditions. The V4 region of the 

16S rRNA gene was amplified under the following conditions: 94oC for 3 min., followed by 

25 cycles of 94oC for 45 s, 50oC for 60 s, and 72oC for 90 s, followed by a single cycle of 

72oC for 7 min. PCR products were resolved by gel electrophoresis, gel purified, quantified 

using the PicoGreen assay (Promega), and stored at -20oC. Optimization of the nucleic acid 

extraction protocol used many of the swab samples. However, once optimized, only those 

DNA samples that were above a specific threshold of purity (OD 260/280 > 1.5; 

OD260/230 >1.0) and produced a specific, well-defined PCR product were selected for 

MiSeq sequencing: Pilgrim’s Haven-PH, n = 11; Rona Rocks-RR, n = 6; Tarbet Slope-TS, n 

= 6; yearlings, n = 9. All the purified PCR products were pooled to make an amplicon library 

with each PCR product represented equally in the pool before being sent for Illumina MiSeq 

v2 2x250 bp paired-end sequencing (Edinburgh Genomics). For swab-only and DNA 

extraction kit controls, PCR products (whether visible or not) were excised from agarose gels 

at the expected molecular weight (400 bp), purified, and quantified before sequencing.
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Data analysis

Illumina MiSeq sequence data were processed similarly to Watkins et al., 2021, with 

Quantitative Insights Into Microbial Ecology 2 (QIIME2) version 2019.4 (Bolyen et al., 

2019), without read trimming based on QC plots. Demultiplexed reads were denoised and 

paired in QIIME2 with the DADA2 plugin (Callahan et al., 2016) and default parameters, 

generating a table of Amplicon Sequence Variants (ASVs). Taxonomy was assigned using a 

Naïve Bayes classifier trained on 99% ASV sequences extracted from the SILVA 132 

database by in silico PCR with the 515F/806R primer set (Bokulich et al., 2018). Bray-Curtis 

dissimilarity was calculated on relative abundance tables in Primer-E Version 6.1.12 (Primer-

E, Ivybridge, UK; Clark & Warwick, 2001), and ordination via non-metric multidimensional 

scaling (NMDS) was used to examine beta-diversity patterns visually. PERMANOVA and 

PERMDISP tests (999 permutations) on dissimilarity matrices were performed using the 

PERMANOVA+ add-on to Primer-E (Anderson et al., 2008). Centered-log ratios (CLRs) and 

W scores of differentially-abundant taxa were calculated in QIIME2 on un-normalized feature 

tables using the ANCOM test plugin (Mandal et al., 2015). 

3. Results

DNA was extracted successfully from 32 (9 yearlings and 23 pups) of the 109 rectal swabs 

collected, as part of a previous study (Baily, 2014), and included pup rectal swabs from the 

three different sites on the Isle of May: PH (n=11), RR (n=6) and TS (n=6). After filtering out 

low-quality reads, 4.59M reads were analyzed with an average of 139,118 reads per sample 

(range 48,586 to 372,404), excluding controls. After denoising with DADA2 and chimera 

filtering, 3.29M reads remained (38,355-254,966 per sample). Inspection of negative controls 

revealed no contaminant ASVs present in the swab samples; after removal of the controls, the 
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remaining samples contained 3.21M sequences designated into 1,476 ASVs, a comparable 

number of ASVs to those seen in other studies using swabs (Budding et al., 2014; Stoffel et 

al., 2020). 

Observed species rarefaction curves showed sufficient coverage of diversity in all samples 

(data not shown). Comparing alpha diversity between ages, the Shannon diversities (mean ± 

SEM at maximum rarefaction depth of 38,350 sequences) for pup samples were lower (3.92 ± 

0.19) than those for yearlings’ samples (4.66 ± 0.39), although the difference did not reach 

statistical significance (Kruskal-Wallis test, H = 3.48, p = 0.062). 

Fourteen different bacterial genera were identified in pup and yearling samples at a limit of 

>1% abundance across the dataset (Figure 2). Samples from both yearlings and pups showed 

high inter-individual variation. Despite this, there was variation in microbiota from pup 

samples from the three distinct environments. The composition of many samples was 

dominated by the genera Fusobacterium, up to 67% relative abundance; Escherichia and/or 

Shigella (abbreviated to Escherichia/Shigella), up to 49%; Bacteroides, up to 41%, as well as 

significant but smaller abundances of Bisgaardia and Campylobacter identified in pups in all 

the three geographic locations and yearlings. Rectal swabs taken from pups at Tarbet Slope 

had distinct microbiota with both Megasphaera (Figure 2: samples 4 & 6) and Psychrobacter 

(Figure 2: samples 1 and 2) represented. Pilgrims Haven sample 9 (PH-9), was distinctly 

different from the other PH samples; with little Escherichia/Shigella present, although 

Alistipes was well represented, similar to sample 1 of the yearlings and Rona Rocks samples 5 

and 6 (Figure 2). 

The genera Escherichia/Shigella were not identified in the yearling group at a limit of >1% 

abundance except for sample 1 (2.8%). However, Oceaniverga was more abundant in 
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yearlings relative to pups (mean = 5.3% yearlings; mean = 0.2% pups). The genus 

Campylobacter was represented in all groups of pups and in yearlings (Figure 2).

Using ANCOM analysis, pups and yearlings were compared to identify differential 

biomarkers for the two age groups. The taxonomic assignments of two ASVs derived from 

pups, with high negative CLR difference (elevated in pups in comparison to yearlings), are 

shown in Figure 3 and Table 1. One of these ASVs, assigned to the genera 

Escherichia/Shigella, confirms previous analysis in Figure 2 as being significantly higher in 

the rectal microbiota of pups compared to yearlings. However, this ANCOM analysis also 

identified a low abundance ASV (<1%), assigned as Clostridium sensu stricto 2, as 

significantly elevated in pups. Thirteen ASVs were significantly elevated in yearlings, with a 

high positive CLR difference, as shown in Figure 3 and Table 1 also. Three Ruminococcaceae 

UCG-005 and two Fournierella ASVs were identified as significant in yearling fecal 

microbiota (Table 1). The identification of the genus Fusobacterium (as a single sequence, 

Table 1), supports a similar finding in Figure 2. 

There were significant differences in the overall composition of the microbiota present in 

pups versus yearlings (NMDS analysis, PERMANOVA pseudo-F = 5.152; p < 0.001; Figure 

4a) accounting for 14.7% of the total variation in the dataset. The confounding factor of sex, 

accounting for 1.99% of the variation, was not significant (p=0.901). There was significantly 

more variability between individual pup samples in comparison to the variability between 

individual yearling samples (PERMDISP F = 13.846; p = 0.004; Figure 4a). The distinct 

difference in the microbiota from the sample represented by PH-9 compared to other samples 

within the Pilgrims Haven group in Figure 4a confirms the result seen in Figure 2. 

Differences between the composition of the microbiota in fecal swabs from pups collected 

from the three different locations (PH, RR and TS) were highly significant over all natal 
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terrestrial habitats (Pseudo-F = 2.063; p < 0.001, 17.1% of total variation) (Figure 4b). 

Pairwise tests showed significant differences between all three different natal terrestrial 

habitats: PH vs TS (t = 1.446, p = 0.019), PH vs. RR (t = 1.370; p = 0.042) and TS vs RR (t = 

1.499; p = 0.020). The confounding factor of sex had no significant effect (p=0.991), 

accounting for only 2.06% of total variation.

4. Discussion

This study is the first investigation of the rectal microbiome in grey seals born on the Isle of 

May, Scotland, UK, a population studied and documented extensively over many years 

(Smout et al., 2011), and has shown that the composition of the microbiome differs 

significantly between pups and yearlings. A second finding, (although not definitive, as the 

soil microbiota were not analyzed at the sites where pups were sampled), suggested that the 

rectal microbiome of pre-weaned pups was highly influenced by the substrate of the terrestrial 

habitat on which they were born, also resulting in significant differences in microbiota 

composition between the three sites.

Due to initial difficulties extracting total DNA from the rectal swabs, which required many 

attempts to refine and validate the process, only 32 of 109 samples yielded DNA of sufficient 

quality and quantity to assess the microbiota. Despite this, the distribution of the swabs from 

which total DNA was extracted successfully varied sufficiently to allow statistical analyses to 

be performed between age groups (pups and yearlings) and also between pups born on three 

differing natal terrestrial habitats. The optimization process involved two bead types (0.7 mm 

dry beads and 0.1 mm silica beads) used for bead beating the swabs at the initial stages of 

extraction using the PowerFecal® DNA isolation kit. The vortexing process before the 

addition of the C2 solution was also changed to optimize the extraction (max speed for 10 
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mins when using the 0.7 mm beads from the kit and 30 sec at 6 m/sec in a Fast-Prep® 

machine (Thermo) for the 0.1 silica beads extraction). The extraction efficiency was analyzed 

by Nanodrop quantification and 260:280 and 260:230 ratios. Further, the addition of 

proteinase K treatment was assessed and determined to improve extraction efficiencies. From 

these optimization experiments, the finalized method was used as described in the methods 

section. Future studies will benefit from using the validated technique for total DNA 

extraction described here to maximize data from samples and also allow direct comparison 

with this population of grey seals. Further improvements in the preservation of the samples 

should also be considered in future studies, with samples stored in DNA preservation buffer 

(to prevent further growth of microbes) rather than frozen in media, as this may have affected 

the composition and diversity of the microbiota in the samples.

Although 14 different bacterial genera were identified in pup and yearling samples at a limit 

of >1% abundance, the microbiota of pups was less diverse than that of yearlings, although 

this was only significant at the 10% level (p=0.62). This difference in diversity is not 

surprising given the restricted terrestrial habitat of the pups versus the exposure of the 

yearlings to various prey, each with their bacterial microbiota, and that of the marine 

environment as a whole. This is exemplified by the higher amount of Oceaniverga, a bacterial 

genus that favors a saline environment, in the microbiota of yearlings versus pups as the 

former have had much greater exposure to the sea. The failure to reach statistical significance 

in this difference in microbial diversity in our study may be due to the low number of yearling 

samples for which sequence data were obtained. Analysis of a larger sample set is required to 

determine this definitively. 

The genus Fusobacterium dominated the microbiota of both pups and yearlings sampled on 

the Isle of May. This is consistent with previous studies investigating the rectal fecal 
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microbiota of seals and sea lions as Fusobacteria was one of the most prevalent phyla, along 

with Firmicutes, Proteobacteria, Bacteroidetes, and in the study of sea lions, Actinobacteria 

(Bik et al., 2016; Delport et al., 2016; Numberger et al., 2016, Nelson et al., 2013; Glad et al., 

2010; Banks et al., 2014). Both yearling and pup groups also shared microbiota in the genus 

Bisgaardia, a known zoonotic pathogen that can cause seal finger in humans (Sundeep and 

Cleeve, 2011), the genera Campylobacter and to some extent Alistipes, identified in the lumen 

of the human colon (Parker et al., 2020). 

The presence of the genus Campylobacter confirmed similar findings in our previous study 

using these same samples (Baily et al., 2015). However, in the previous study Campylobacter 

spp. were cultured from 51% of live seal pups but none from yearling seals. This apparent 

discrepancy was probably due to the vastly different methods used; PCR-based analysis in the 

present study to detect all Campylobacter spp. versus microbiological culture with media 

highly selective for specific species of Campylobacter known to be pathogenic to humans in 

the previous study. The isolates identified in our previous study were Campylobacter jejuni, 

Campylobacter coli, and Campylobacter lari (Baily et al., 2015) and are all primarily 

associated with human disease, with C. jejuni being one of the most common causes of 

gastroenteritis in humans (Acheson et al., 2001). The authors concluded that the species and 

strains of Campylobacter isolated were likely indicators of pollution originating from human 

sewage (Baily et al., 2015). Although interactions between commensal and pathogenic 

bacteria have the potential to influence the overall microbiota composition (Nelson et al., 

2015), preliminary analysis showed no significant correlation detected between pups 

identified by PCR as having Campylobacter and an altered microbiota when compared with 

those samples where this genus was not detected (data not shown). However, future studies 
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should review this potential association and include identifying the precise Campylobacter 

spp. found.

The microbiota of the seal pups was significantly elevated in the genera Escherichia/Shigella 

and Clostridium (sensu stricto) compared to yearlings. As well as being a common 

commensal, Escherichia/Shigella are well-characterized pathogens of humans, and one of the 

main causes of bacterial diarrhea (Khalil et al., 2018) but known to be more common in the 

young of many mammalian species (Chung, et al., 2012). This genus is, typically, more 

prevalent in the microbiota of young mammals or those yet to mature and less abundant in 

mature mammals with a healthy, stable microbiome (Castaño-Rodríguez et al. 2018, Tian, et 

al., 2020).

The genus Clostridium (sensu stricto), of the family Clostridiaceae, is a major component of 

the fecal microbiota of human infants and is strongly associated with infancy food allergies, 

for which it has been proposed as a potential biomarker (Ling et al., 2014), and atopic 

dermatitis in early childhood (Penders et al., 2013). Although such diseases have not been 

recognized in seals, the genus Clostridium was significantly more abundant in pups than 

yearlings supports the importance in humans of transition to a mature microbiome with 

respect to health. 

Yearling seal microbiomes were elevated in the genus Alloprevotella, a member of the family 

Prevotellaceae. Prevotella, another genus within this family, is known to be a marker for the 

transition from milk to prey of weaned, independently feeding seals (Stoffel et al., 2020), and 

therefore this difference found between yearlings and pups is an expected finding. 

Oceaniverga, Fournierella, and Ruminococcaceae UCG-005 ASVs were all more abundant in 

yearlings and this is probably, as mentioned above, a reflection of dietary resources as pups 

have a restricted diet of milk compared to yearlings that forage widely in the open sea and 
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intertidal areas. This is supported by previous studies that found a significant relationship 

between diet, gut microbiota composition, and Operational Taxonomic Units (Pacheco-

Sandoval et al., 2019) and that the gut microbiota of fish, mammalian livestock species, and 

of other animals that forage, manifest greater microbial diversity than those fed from artificial 

or concentrate sources (Nelson et al., 2013; Sanders et al., 2015; Dhanasiri et al., 2011; 

Ellison et al., 2014; Kohl et al., 2014). Furthermore, Delport et al., (2016) found that 

Clostridiaceae and Ruminococcaceae were more abundant in free-living Australian sea lions 

(Neophoca cinerea) compared to captive ones and these phyla contributed most to the average 

dissimilarity between groups. Comparison of the diets showed wild animals consumed a 

wider range of food that included a number of species with chitinous body parts including 

small crustaceans, rock lobster, and cephalopods, such as cuttlefish, octopus, and squid, 

(Gales et al., 1992) compared to captive animals, which were fed almost entirely fresh or 

frozen fish (McIntosh et al., 2007). 

Our study found no significant effect of sex on microbiota composition, which is consistent 

with previous studies that found mostly negligible or no effect based on sex in free-living 

populations (Bobbie et al., 2017; Maurice et al., 2015; Tung et al., 2015). However, sex 

confounding effects may be present at more subtle levels, being masked by the possible 

effects of external factors such as diet or environment on gut microbial communities. In post-

weaned northern elephant seals (Mirounga angustirostris), Stoffel et al. (2020) found sex to 

be a strong and early determinant of gut microbiome composition, but not diversity and 

therefore is in contrast to our study. It is not clear why we did not find a difference between 

the sexes as seen in Northern elephant seals. In both species, males are slightly larger at birth 

and weaning (Fedak & Anderson, 1982; Kretzmann et al., 1993) although the major growth 

and dimorphic changes occur mainly during the first year of life, once animals have finally 
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departed from their breeding sites. However, differences in the colony environment and 

habitat, as well as early exploratory behavioural variation between the sexes that differ 

between the species, could be factors. Therefore, our preliminary study suggests that the 

diversity of seal microbiomes is age-dependent (with lower diversity seen in pups relative to 

yearlings). Although not strictly statistically significant, this pattern of lower diversity in 

younger animals with developing microbiotas is consistent with those seen in a range of other 

mammal species studied as animals mature beyond their first year of life (Stoffel et al., 2020, 

Yatsunenko et al., 2012, Koenig et al., 2011, Mariat et al., 2009, Hopkins et al., 2002).

This study also revealed that grey seal pup rectal microbiomes may be influenced by the 

terrestrial substrate they are exposed to as neonates. Although not definitive, these differences 

in the composition of the microbiota in fecal swabs from pups collected from the three 

different locations (PH, RR, and TS) were highly significant. Given the notably differing 

substrates in each of these three chosen locations; a tidal rocky boulder beach (Pilgrim’s 

Haven-PH), non-tidal, stagnant rocky pools (Rona Rocks-RR), and a muddy/grassy slope 

(Tarbet Slope-TS), seal pups will have been exposed to different environmental microbes 

which will have been ingested either directly or during suckling from contamination of the 

teats of their respective dams. In this study, the influence of anthropogenic pressure between 

the three locations was unlikely to affect results as all the sites were distant from boat 

mooring sites/human habitation and did not have any meaningful footfall.

Further detailed work is required to determine if these significantly differing microbiomes 

have any notable effect on long-term survival given the high mortality rate during the first 

year of life (Hall et al., 2001). However, there will be multiple confounding factors affecting 

survival, including intrinsic and extrinsic factors (Grosser et al., 2019) so any study will need 

to account for all of these. 
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The presence of the genera Campylobacter, Escherichia/Shigella and Clostridium sensu 

stricto could be included in a quality index measuring aquatic mammalian health, and/or the 

marine environment, in the Firth of Forth and potentially elsewhere. However, yearling and 

adult seals do have, what appears to be, host-adapted species of Campylobacter (Foster et al., 

2020; Gilbert et al., 2018, 2017), but which cause little if any disease and are not of 

anthropogenic origin. Therefore, Campylobacter spp. and probably Salmonella also, present 

in the microbiomes of free-living wild animals will need to be identified to species and 

possibly strain level if they are to be indicative of anthropogenic origin and pollution.

Marine mammals are considered to be sentinel species of the ocean as they appear to respond 

rapidly to ocean disturbances and pathogens similar to humans (Bossart, 2011). Several 

studies have examined the connections between the community composition of the 

microbiome and animal health including Apprill et al. (2014), although more detailed studies 

are still required to fully understand specific correlations. 

Future studies should evaluate the potential biomarkers discovered in this pilot study, 

specifically in pups, and understand how they correlate with age, physiological development, 

and adaptation of the seals to their environment, particularly in respect of climate change. Due 

to the immature microbiota and immune system (Round & Mazmanian, 2009; Fukuda et al., 

2011; Maynard et al., 2012), there is likely to be less competition between potential 

pathogens and the commensal microbiota in young pups when compared to yearlings as the 

latter have a more mature and stable microbiome which can better out-compete pathogens. 

In light of this study, we would expect larger-scale experiments, with increased statistical 

power, to identify and validate specific genera as indicators of the health of seal colonies 

and/or marine health more broadly, and such a tool could add to the long-term conservation 

management of marine habitats. However, the species of pinniped and specific populations 
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studied would need to be chosen carefully, taking into account their species-related life 

history and foraging patterns, to ensure they are representative of the marine environment 

being assessed. 
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Figures and Tables

Figure 1: Map of seal sampling locations on the Isle of May, Scotland, UK. Circles: sampling 
sites of grey seal pups. Triangles: sampling sites of yearlings. Figures in parentheses are 
numbers of seal pups, sampled by rectal swab, from each of the three different natal terrestrial 
habitats that DNA was extracted successfully from. Scale bar: 250 meters.

Figure 2: Comparison, at the genus level, of the relative composition of the fecal microbiota 
of pups at different geographic locations and yearlings. Taxonomic composition of microbial 
communities at the genus level from fecal swabs from grey seal yearling (n = 9) and pups (n = 
23 in total), the latter from the 3 different sampling locations. Genera with <1% relative 
abundance across the dataset were grouped as Others.

Figure 3: Differences in the abundance of the fecal microbiota of pups and yearlings, at the 
level of amplicon sequence variants. ANCOM analysis of the differential abundance of 
Amplicon Sequence Variants (ASVs) between grey seal pups (n = 23) and yearlings (n = 9). 
The centered-log ratio (CLR) is negative for ASVs elevated in the pup samples, and positive 
for those elevated in the yearling samples. W is the ANCOM significance score, and ASVs 
which violate the null hypothesis, and therefore are significantly over-represented, are shown 
in black-filled circles. The ASVs which do not violate the null hypothesis (i.e. 
overrepresented but not significant) are shown as open circles. (B) 

Table 1. Differences in the abundance of the fecal microbiota of pups and yearlings, at the 
level of amplicon sequence variants. Mean % abundances of significant ASVs are calculated 
for grey seal pups (n = 23) and yearling (n = 9) samples. (Note: Escherichia/Shigella were not 
discriminated between at this level as their 16S sequences are similar.)

Taxonomy Mean % Mean % ANCOM W ‡
(pups) (yearlings)

CLR †
Score

Escherichia-Shigella 13.0 0.353 -6.42 1451
Colidextribacter massiliensis 0.015 0.946 5.31 1403
Ruminococcaceae NK4A214 group 0.008 0.851 4.94 1383
Fournierella 0.0006 0.164 4.18 1378
[Eubacterium] fissicatena group 0.003 0.306 4.41 1377
Ruminococcaceae UCG-005 0.013 0.258 4.51 1377
Ruminococcaceae UCG-005 0.0009 0.237 4.17 1375
Parasutterella 0.003 0.440 4.28 1360
Fecalibacterium 0.014 0.695 4.52 1352
Fusobacterium 0.586 4.50 5.34 1351
[Clostridium] innocuum group 0.016 0.624 4.26 1339
Oscillospira 0.081 1.20 4.52 1338
Ruminococcaceae UCG-005 0.001 0.792 4.29 1337
Fournierella 0.029 0.162 3.81 1325
Clostridium sensu stricto 2 0.958 0.033 -4.68 1324

† CLR: centered log-ratio; ‡ ANCOM W: Analysis of Compositions of Microbiome W 
statistic
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Figure 4: Comparisons of the similarity between the fecal microbiota of pups versus 
yearlings, and pups at 3 different natal terrestrial habitats, at the level of amplicon sequence 
variants. NMDS ordination plots of Bray-Curtis similarity between amplicon sequence 
variants (ASV) of microbial communities in seal rectal swab samples. (A) Comparison of pup 
and yearling samples. Note outlier, a pup sampled at Pilgrim's Haven (marked PH-9). (B) Pup 
samples from the 3 different natal terrestrial habitats. The Kruskal stress is shown on each 
plot (stress < 0.2 denotes a reliable ordination).
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