Mark Nessel

and 33 more

Animal stoichiometry influences critical processes from organismal physiology to biogeochemical cycles. However, it remains uncertain whether animal stoichiometry follows predictable scaling relationships with body mass and whether adaptation to terrestrial or aquatic environments constrains elemental allocation. We tested both interspecific and intraspecific body-mass scaling relationships for nitrogen (N), phosphorus (P), and N:P content using a subset of the StoichLife database, which includes 9,933 individual animals across 1,543 species spanning 10 orders of magnitude in body mass from terrestrial, freshwater, and marine realms. Our results show that body mass predicts intraspecific stoichiometric variation, accounting for 42-45% of the variation in 27% of vertebrate and 35% of invertebrate species. However, body mass was less effective at explaining interspecific variation, with taxonomic identity emerging as a more significant factor. Differences between aquatic and terrestrial organisms were observed only in invertebrate interspecific %N, suggesting that realm has a relatively minor influence on elemental allocation. Our study, based on the most comprehensive animal stoichiometry database to date, revealed that while body mass is a good predictor of intraspecific elemental content, it is less effective for interspecific patterns. This highlights the importance of evolutionary history and taxonomic identity over general scaling laws in explaining stoichiometric variation.

Patrick Thomas

and 4 more