loading page

PRE-DOMESTICATION BOTTLENECKS OF THE CULTIVATED SEAWEED GRACILARIA CHILENSIS
  • +7
  • Oscar Huanel,
  • Suany Quesada-Calderón,
  • Sarai Morales-González,
  • Pablo Saenz-Agudelo,
  • Stephane Mauger,
  • Wendy Nelson,
  • Natalia Arakaki,
  • Cristian Ríos-Molina,
  • Sylvain Faugeron,
  • Marie-Laure Guillemin
Oscar Huanel
Pontifical Catholic University of Chile

Corresponding Author:[email protected]

Author Profile
Suany Quesada-Calderón
Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567
Author Profile
Sarai Morales-González
Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567
Author Profile
Pablo Saenz-Agudelo
Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567
Author Profile
Stephane Mauger
IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique
Author Profile
Wendy Nelson
National Institute of Water and Atmospheric Research (NIWA),Private Bag 14-901,Wellington 6241, New Zealand
Author Profile
Natalia Arakaki
Instituto del Mar del Perú, Banco de Germoplasma de Organismos Acuáticos, Esquina Gamarra y General Valle s/n, Chucuito
Author Profile
Cristian Ríos-Molina
Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567
Author Profile
Sylvain Faugeron
Millenium Nucleus Marine Agronomy of Seaweed Holobionts, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D
Author Profile
Marie-Laure Guillemin
Millenium Nucleus Marine Agronomy of Seaweed Holobionts, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567
Author Profile

Abstract

Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean population has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during the post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2,232 SNPs to assess how the species evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. ABC analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.
14 Feb 2022Submitted to Molecular Ecology
16 Feb 2022Submission Checks Completed
16 Feb 2022Assigned to Editor
02 Mar 2022Reviewer(s) Assigned
08 Apr 2022Review(s) Completed, Editorial Evaluation Pending
09 May 2022Editorial Decision: Revise Minor
27 Jun 2022Review(s) Completed, Editorial Evaluation Pending
27 Jun 20221st Revision Received
02 Jul 2022Reviewer(s) Assigned
22 Jul 2022Editorial Decision: Revise Minor
02 Aug 2022Review(s) Completed, Editorial Evaluation Pending
02 Aug 20222nd Revision Received
09 Aug 2022Editorial Decision: Accept
Nov 2022Published in Molecular Ecology volume 31 issue 21 on pages 5506-5523. 10.1111/mec.16672