References
  1. Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. and Lavorel, S., 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98(3), pp.604-613.
  2. Anderegg, L. D., Berner, L. T., Badgley, G., Sethi, M. L., Law, B. E., & HilleRisLambers, J. (2018). Within‐species patterns challenge our understanding of the leaf economics spectrum. Ecology letters, 21(5), 734-744.
  3. Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F. and Kattge, J., 2018. Global trait–environment relationships of plant communities. Nature ecology & evolution, 2(12), p.1906.
  4. Bürkner P.C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.i01
  5. Burns, R.M. & Honkala, B.H. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC.
  6. Burns, J. H., & Strauss, S. Y. (2012). Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits. Ecology, 93(sp8), S126-S137.
  7. Butler, E.E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K.R., Fazayeli, F., Banerjee, A., Atkin, O.K., Kattge, J., Amiaud, B. and Blonder, B., 2017. Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences, 114(51), pp.E10937-E10946.
  8. Chave, J., 2013. The problem of pattern and scale in ecology: what have we learned in 20 years?. Ecology letters, 16, pp.4-16.
  9. Clark, J. S. (2016). Why species tell more about traits than traits about species: predictive analysis. Ecology, 97(8), 1979-1993.
  10. Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B. and Staebler, R.M. (2017), Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob Change Biol, 23: 3513-3524. doi:10.1111/gcb.13599
  11. Crous, K. Y. (2019). Plant responses to climate warming: physiological adjustments and implications for plant functioning in a future, warmer world. American journal of botany, 106(8), 1049.
  12. de Bello, F., et al. 2011. Quantifying the relevance of intraspecific trait variability for functional diversity. - Methods in Ecology and Evolution 2: 163-174.
  13. De Villemeruil P. & Nakagawa, S. (2014) General quantitative genetic methods for comparative biology. In: Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice(ed. Garamszegi L.) Springer, New York. pp. 287-303.
  14. Diaz, S., and M. Cabido. 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16:646–655.
  15. Enquist, B.J., Condit, R., Peet, R.K., Schildhauer, M. and Thiers, B., 2009. The Botanical Information and Ecology Network (BIEN): Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Salt Lake City, UT: iPlant Collaborative.
  16. Evans, M.E., Merow, C., Record, S., McMahon, S.M. and Enquist, B.J., 2016. Towards process-based range modeling of many species. Trends in Ecology & Evolution, 31(11), pp.860-871.
  17. Fisher, Rosie A., et al. ”Vegetation demographics in Earth System Models: A review of progress and priorities.” Global change biology  24.1 (2018): 35-54.
  18. Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., … & Bonan, G. (2015). Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4. 5 (ED). Geoscientific Model Development, 8(11), 3593-3619.
  19. Gelman, Ben Goodrich, Jonah Gabry & Aki Vehtari. (2018). R-squared for Bayesian regression models, The American Statistician. https://doi.org/10.1080/00031305.2018.1549100.
  20. Ghimire, B., Riley, W. J., Koven, C. D., Mu, M., & Randerson, J. T. (2016). Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. Journal of Advances in Modeling Earth Systems, 8(2), 598-613.
  21. Gillis, Mark D., A. Y. Omule, and T. Brierley. ”Monitoring Canada’s forests: the national forest inventory.” The Forestry Chronicle 81.2 (2005): 214-221.
  22. Hart, S. P., et al. 2016. How variation between individuals affects species coexistence. - Ecology Letters 19: 825-838.
  23. Hedin, L.O., 2004. Global organization of terrestrial plant–nutrient interactions. Proceedings of the National Academy of Sciences, 101(30), pp.10849-10850.
  24. Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud, K., Maitner, B.S., Michaletz, S.T., Pötsch, C., Seltzer, L., Telford, R.J. and Yang, Y., 2018. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 9, p.1548.
  25. Hinchliff, Cody E., et al. ”Synthesis of phylogeny and taxonomy into a comprehensive tree of life.” Proceedings of the National Academy of Sciences 112.41 (2015): 12764-12769. https://doi.org/10.1073/pnas.1423041112
  26. Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D., Aakala, T., Abedi, M. and Acosta, A.T., 2020. TRY plant trait database–enhanced coverage and open access. Global change biology.
  27. Kitajima K, Wright SJ, Westbrook JW (2016) Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus 6:20150100.
  28. Lamanna, C., Blonder, B., Violle, C., Kraft, N.J., Sandel, B., Šímová, I., Donoghue, J.C., Svenning, J.C., McGill, B.J., Boyle, B. and Buzzard, V., 2014. Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences, 111(38), pp.13745-13750.
  29. Laughlin, D. C., et al. 2012. A predictive model of community assembly that incorporates intraspecific trait variation. - Ecology Letters 15: 1291-1299.
  30. Lepš, J., et al. 2011. Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. - Ecography 34: 856-863.
  31. Lichstein, J. W., Peterson, B. T., Langebrake, J., & McKinley, S. A. (2021). Leaf economics of early-and late-successional plants.
  32. Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., Van Bodegom, P. M., … & Santiago, L. S. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706-717.
  33. Maitner B. (2020). BIEN: Tools for Accessing the Botanical Information and Ecology Network Database. R package version 1.2.4. https://CRAN.R-project.org/package=BIEN
  34. McGill, B.J., Enquist, B.J., Weiher, E. and Westoby, M., 2006. Rebuilding community ecology from functional traits. Trends in ecology & evolution, 21(4), pp.178-185.
  35. McIntyre, S., Díaz, S., Lavorel, S., & Cramer, W. (1999). Plant functional types and disturbance dynamics–Introduction. Journal of Vegetation Science, 10(5), 603-608.
  36. McMahon, G., Gregonis, S. M., Waltman, S. W., Omernik, J. M., Thorson, T. D., Freeouf, J. A., … & Keys, J. E. (2001). Developing a spatial framework of common ecological regions for the conterminous United States. Environmental Management, 28(3), 293-316.
  37. Miller, J. E., Damschen, E. I., & Ives, A. R. (2019). Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods in Ecology and Evolution, 10(3), 415-425.
  38. Moles, A.T., Perkins, S.E., Laffan, S.W., Flores‐Moreno, H., Awasthy, M., Tindall, M.L., Sack, L., Pitman, A., Kattge, J., Aarssen, L.W. and Anand, M., 2014. Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 25(5), pp.1167-1180.
  39. Münzbergová, Z., Hadincová, V., Skálová, H. and Vandvik, V., 2017. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. Journal of Ecology, 105(5), pp.1358-1373.
  40. Munoz A.-R. & Real R. (2006) Assessing the potential range expansion of the exotic monk parakeet in Spain. Diversity and Distributions 12: 656-665.
  41. NEON (National Ecological Observatory Network), 2020. Plant foliar traits (DP1.10026.001). Provisional data downloaded from http://data.neonscience.org on 2 Jan 2020. Battelle, Boulder, CO, USA
  42. Niinemets, Ü., Keenan, T.F. and Hallik, L., 2015. A worldwide analysis of within‐canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 205(3), pp.973-993.
  43. Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental management, 54(6), 1249-1266.
  44. Ordoñez, Jenny C., et al. ”A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.” Global Ecology and Biogeography 18.2 (2009): 137-149.
  45. Osnas, J.L., Katabuchi, M., Kitajima, K., Wright, S.J., Reich, P.B., Van Bael, S.A., Kraft, N.J., Samaniego, M.J., Pacala, S.W. and Lichstein, J.W., 2018. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences, 115(21), pp.5480-5485.
  46. Paradis, E., Blomberg, S., Bolker, B., Brown, J., Claude, J., Cuong, H.S. and Desper, R., 2019. Package ‘ape’. Analyses of phylogenetics and evolution, version, 2(4).
  47. Peaucelle, M., Bacour, C., Ciais, P., Vuichard, N., Kuppel, S., Peñuelas, J., Belelli Marchesini, L., Blanken, P.D., Buchmann, N., Chen, J. and Delpierre, N., Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography.
  48. Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C., Clark, T.D., Colwell, R.K., Danielsen, F., Evengård, B. and Falconi, L., 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), p.eaai9214.
  49. Pérez-Harguindeguy, N., et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. - Australian Journal of Botany 61: 167-234.
  50. Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. and Villar, R., 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New phytologist, 182(3), pp.565-588.
  51. Räty, Minna, Juha Heikkinen, and Annika Kangas. ”Assessment of sampling strategies utilizing auxiliary information in large-scale forest inventory.” Canadian Journal of Forest Research 48.7 (2018): 749-757.
  52. Redelings BD, Holder MT. ”A supertree pipeline for summarizing phylogenetic and taxonomic information for millions of species.” PeerJ. 2017;5:e3058. https://doi.org/10.7717/peerj.3058
  53. Reich, Peter B. ”The world‐wide ‘fast–slow’plant economics spectrum: a traits manifesto.” Journal of Ecology 102.2 (2014): 275-301.
  54. Reich, P.B., Oleksyn., J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 101 (30) 11001-11006; DOI: 10.1073/pnas.0403588101
  55. Reich, P.B., Walters, M.B. & Ellsworth, D.S. (1997). From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. U.S.A., 94, 13730–13734.
  56. Reichstein, M., Bahn, M., Mahecha, M.D., Kattge, J. and Baldocchi, D.D., 2014. Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences, 111(38), pp.13697-13702.
  57. Ribas A., Barbosa A.M., Casanova J.C., Real R., Feliu C. & Vargas J.M. (2006) Geographical patterns of the species richness of helminth parasites of moles (Talpa spp.) in Spain: separating the effect of sampling effort from those of other conditioning factors. Vie et Milieu 56: 1-8.
  58. Schelhaas, M.J., Varis, S., Schuck, A. and Nabuurs, G.J., 2006, EFISCEN Inventory Database, European Forest Institute, Joensuu, Finland, http://www.efi.int/portal/virtual_library/databases/efiscen/
  59. Siefert, A., et al. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. - Ecology Letters 18: 1406-1419.
  60. Simpson, A.H., Richardson, S.J. and Laughlin, D.C., 2016. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Global Ecology and Biogeography, 25(8), pp.964-978.
  61. Smith, W.B., 2002. Forest inventory and analysis: a national inventory and monitoring program. Environmental pollution, 116, pp.S233-S242.
  62. Stahl, U., Reu, B. and Wirth, C., 2014. Predicting species’ range limits from functional traits for the tree flora of North America. Proceedings of the National Academy of Sciences, 111(38), pp.13739-13744.
  63. Sterck, F., Markesteijn, L., Schieving, F. and Poorter, L., 2011. Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences, 108(51), pp.20627-20632.
  64. Swenson, N.G., Weiser, M.D., Mao, L., Araújo, M.B., Diniz‐Filho, J.A.F., Kollmann, J., Nogués‐Bravo, D., Normand, S., Rodríguez, M.A., García‐Valdés, R. and Valladares, F., 2017. Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 26(5), pp.553-562.
  65. Swenson, N.G., 2014. Phylogenetic imputation of plant functional trait databases. Ecography, 37(2), pp.105-110.
  66. Swenson, N.G., 2013. The assembly of tropical tree communities–the advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36(3), pp.264-276.
  67. Swenson, N. G., & Weiser, M. D. (2010). Plant geography upon the basis of functional traits: an example from eastern North American trees. Ecology, 91(8), 2234-2241.
  68. Tjoelker, M. G., Oleksyn, J., & Reich, P. B. (2001). Modelling respiration of vegetation: evidence for a general temperature‐dependent Q10. Global change biology, 7(2), 223-230.
  69. Thornton, M.M., P.E. Thornton, Y. Wei, B.W. Mayer, R.B. Cook, and R.S. Vose. 2018. Daymet: Annual Climate Summaries on a 1-km Grid for North America, Version 3. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1343
  70. USDA Forest Service, 2001. Forest Inventory and Analysis National Core Field Guide, Volume I: Field Data Collection Procedures For Phase 2 Plots, Version 1.5. US Department of Agriculture, Forest Service, Washington, DC.
  71. Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito‐Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya, D.E. and Nicotra, A.B., 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology letters, 17(11), pp.1351-1364.
  72. Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J. and Kattge, J., 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences, 111(38), pp.13690-13696.
  73. Weih, M., & Karlsson, P. S. (2001). Growth response of Mountain birch to air and soil temperature: is increasing leaf‐nitrogen content an acclimation to lower air temperature?. New Phytologist, 150(1), 147-155.
  74. Weng, Ensheng, Caroline E. Farrior, Ray Dybzinski, and Stephen W. Pacala. ”Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.” Global change biology 23, no. 6 (2017): 2482-2498.
  75. Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., Kerkhoff, A.J., McCarthy, M.C., Michaletz, S.T., Swenson, N.G. and Asner, G.P., 2019. Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences, 116(2), pp.587-592.
  76. Wilkinson, D. P., Golding, N., Guillera‐Arroita, G., Tingley, R., & McCarthy, M. A. (2021). Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 12(3), 394-404.
  77. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M. and Flexas, J., 2004. The worldwide leaf economics spectrum. Nature, 428(6985), p.821.
  78. Yang, J., Cao, M. and Swenson, N.G., 2018. Why functional traits do not predict tree demographic rates. Trends in ecology & evolution, 33(5), pp.326-336
  79. Zhang, Y.J., Sack, L., Cao, K.F., Wei, X.M. and Li, N., 2017. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Scientific reports, 7, p.42085.