References
- Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F.,
Saccone, P. and Lavorel, S., 2010. Intraspecific functional
variability: extent, structure and sources of variation. Journal of
Ecology, 98(3), pp.604-613.
- Anderegg, L. D., Berner, L. T., Badgley, G., Sethi, M. L., Law, B. E.,
& HilleRisLambers, J. (2018). Within‐species patterns challenge our
understanding of the leaf economics spectrum. Ecology letters, 21(5),
734-744.
- Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro,
B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen,
F. and Kattge, J., 2018. Global trait–environment relationships of
plant communities. Nature ecology & evolution, 2(12), p.1906.
- Bürkner P.C. (2017). brms: An R Package for Bayesian Multilevel Models
Using Stan. Journal of Statistical Software, 80(1), 1-28.
doi:10.18637/jss.v080.i01
- Burns, R.M. & Honkala, B.H. (1990). Silvics of North America: 1.
Conifers; 2. Hardwoods. Agriculture Handbook 654. U.S. Department of
Agriculture, Forest Service, Washington, DC.
- Burns, J. H., & Strauss, S. Y. (2012). Effects of competition on
phylogenetic signal and phenotypic plasticity in plant functional
traits. Ecology, 93(sp8), S126-S137.
- Butler, E.E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K.R.,
Fazayeli, F., Banerjee, A., Atkin, O.K., Kattge, J., Amiaud, B. and
Blonder, B., 2017. Mapping local and global variability in plant trait
distributions. Proceedings of the National Academy of Sciences,
114(51), pp.E10937-E10946.
- Chave, J., 2013. The problem of pattern and scale in ecology: what
have we learned in 20 years?. Ecology letters, 16, pp.4-16.
- Clark, J. S. (2016). Why species tell more about traits than traits
about species: predictive analysis. Ecology, 97(8), 1979-1993.
- Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B. and Staebler,
R.M. (2017), Leaf chlorophyll content as a proxy for leaf
photosynthetic capacity. Glob Change Biol, 23: 3513-3524.
doi:10.1111/gcb.13599
- Crous, K. Y. (2019). Plant responses to climate warming: physiological
adjustments and implications for plant functioning in a future, warmer
world. American journal of botany, 106(8), 1049.
- de Bello, F., et al. 2011. Quantifying the relevance of intraspecific
trait variability for functional diversity. - Methods in Ecology and
Evolution 2: 163-174.
- De Villemeruil P. & Nakagawa, S. (2014) General quantitative genetic
methods for comparative biology. In: Modern phylogenetic comparative
methods and their application in evolutionary biology: concepts and
practice(ed. Garamszegi L.) Springer, New York. pp. 287-303.
- Diaz, S., and M. Cabido. 2001. Vive la difference: plant functional
diversity matters to ecosystem processes. Trends in Ecology &
Evolution 16:646–655.
- Enquist, B.J., Condit, R., Peet, R.K., Schildhauer, M. and Thiers, B.,
2009. The Botanical Information and Ecology Network (BIEN):
Cyberinfrastructure for an integrated botanical information network to
investigate the ecological impacts of global climate change on plant
biodiversity. Salt Lake City, UT: iPlant Collaborative.
- Evans, M.E., Merow, C., Record, S., McMahon, S.M. and Enquist, B.J.,
2016. Towards process-based range modeling of many species. Trends in
Ecology & Evolution, 31(11), pp.860-871.
- Fisher, Rosie A., et al. ”Vegetation demographics in Earth System
Models: A review of progress and priorities.” Global change
biology 24.1 (2018): 35-54.
- Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C.,
McDowell, N. G., … & Bonan, G. (2015). Taking off the training
wheels: the properties of a dynamic vegetation model without climate
envelopes, CLM4. 5 (ED). Geoscientific Model Development, 8(11),
3593-3619.
- Gelman, Ben Goodrich, Jonah Gabry & Aki Vehtari. (2018). R-squared
for Bayesian regression models, The American Statistician.
https://doi.org/10.1080/00031305.2018.1549100.
- Ghimire, B., Riley, W. J., Koven, C. D., Mu, M., & Randerson, J. T.
(2016). Representing leaf and root physiological traits in CLM
improves global carbon and nitrogen cycling predictions. Journal of
Advances in Modeling Earth Systems, 8(2), 598-613.
- Gillis, Mark D., A. Y. Omule, and T. Brierley. ”Monitoring Canada’s
forests: the national forest inventory.” The Forestry Chronicle 81.2
(2005): 214-221.
- Hart, S. P., et al. 2016. How variation between individuals affects
species coexistence. - Ecology Letters 19: 825-838.
- Hedin, L.O., 2004. Global organization of terrestrial plant–nutrient
interactions. Proceedings of the National Academy of Sciences,
101(30), pp.10849-10850.
- Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud,
K., Maitner, B.S., Michaletz, S.T., Pötsch, C., Seltzer, L., Telford,
R.J. and Yang, Y., 2018. Intraspecific trait variation and phenotypic
plasticity mediate alpine plant species response to climate change.
Frontiers in Plant Science, 9, p.1548.
- Hinchliff, Cody E., et al. ”Synthesis of phylogeny and taxonomy into a
comprehensive tree of life.” Proceedings of the National Academy of
Sciences 112.41 (2015): 12764-12769.
https://doi.org/10.1073/pnas.1423041112
- Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C.,
Leadley, P., Tautenhahn, S., Werner, G.D., Aakala, T., Abedi, M. and
Acosta, A.T., 2020. TRY plant trait database–enhanced coverage and
open access. Global change biology.
- Kitajima K, Wright SJ, Westbrook JW (2016) Leaf cellulose density as
the key determinant of inter- and intra-specific variation in leaf
fracture toughness in a species-rich tropical forest. Interface Focus
6:20150100.
- Lamanna, C., Blonder, B., Violle, C., Kraft, N.J., Sandel, B., Šímová,
I., Donoghue, J.C., Svenning, J.C., McGill, B.J., Boyle, B. and
Buzzard, V., 2014. Functional trait space and the latitudinal
diversity gradient. Proceedings of the National Academy of Sciences,
111(38), pp.13745-13750.
- Laughlin, D. C., et al. 2012. A predictive model of community assembly
that incorporates intraspecific trait variation. - Ecology Letters 15:
1291-1299.
- Lepš, J., et al. 2011. Community trait response to environment:
disentangling species turnover vs intraspecific trait variability
effects. - Ecography 34: 856-863.
- Lichstein, J. W., Peterson, B. T., Langebrake, J., & McKinley, S. A.
(2021). Leaf economics of early-and late-successional plants.
- Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R.,
Van Bodegom, P. M., … & Santiago, L. S. (2015). Global effects of
soil and climate on leaf photosynthetic traits and rates. Global
Ecology and Biogeography, 24(6), 706-717.
- Maitner B. (2020). BIEN: Tools for Accessing the Botanical Information
and Ecology Network Database. R package version 1.2.4.
https://CRAN.R-project.org/package=BIEN
- McGill, B.J., Enquist, B.J., Weiher, E. and Westoby, M., 2006.
Rebuilding community ecology from functional traits. Trends in ecology
& evolution, 21(4), pp.178-185.
- McIntyre, S., Díaz, S., Lavorel, S., & Cramer, W. (1999). Plant
functional types and disturbance dynamics–Introduction. Journal of
Vegetation Science, 10(5), 603-608.
- McMahon, G., Gregonis, S. M., Waltman, S. W., Omernik, J. M., Thorson,
T. D., Freeouf, J. A., … & Keys, J. E. (2001). Developing a spatial
framework of common ecological regions for the conterminous United
States. Environmental Management, 28(3), 293-316.
- Miller, J. E., Damschen, E. I., & Ives, A. R. (2019). Functional
traits and community composition: A comparison among
community‐weighted means, weighted correlations, and multilevel
models. Methods in Ecology and Evolution, 10(3), 415-425.
- Moles, A.T., Perkins, S.E., Laffan, S.W., Flores‐Moreno, H., Awasthy,
M., Tindall, M.L., Sack, L., Pitman, A., Kattge, J., Aarssen, L.W. and
Anand, M., 2014. Which is a better predictor of plant traits:
temperature or precipitation?. Journal of Vegetation Science, 25(5),
pp.1167-1180.
- Münzbergová, Z., Hadincová, V., Skálová, H. and Vandvik, V., 2017.
Genetic differentiation and plasticity interact along temperature and
precipitation gradients to determine plant performance under climate
change. Journal of Ecology, 105(5), pp.1358-1373.
- Munoz A.-R. & Real R. (2006) Assessing the potential range expansion
of the exotic monk parakeet in Spain. Diversity and Distributions 12:
656-665.
- NEON (National Ecological Observatory Network), 2020. Plant foliar
traits (DP1.10026.001). Provisional data downloaded from
http://data.neonscience.org on 2 Jan 2020. Battelle, Boulder, CO, USA
- Niinemets, Ü., Keenan, T.F. and Hallik, L., 2015. A worldwide analysis
of within‐canopy variations in leaf structural, chemical and
physiological traits across plant functional types. New Phytologist,
205(3), pp.973-993.
- Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the
conterminous United States: evolution of a hierarchical spatial
framework. Environmental management, 54(6), 1249-1266.
- Ordoñez, Jenny C., et al. ”A global study of relationships between
leaf traits, climate and soil measures of nutrient fertility.” Global
Ecology and Biogeography 18.2 (2009): 137-149.
- Osnas, J.L., Katabuchi, M., Kitajima, K., Wright, S.J., Reich, P.B.,
Van Bael, S.A., Kraft, N.J., Samaniego, M.J., Pacala, S.W. and
Lichstein, J.W., 2018. Divergent drivers of leaf trait variation
within species, among species, and among functional groups.
Proceedings of the National Academy of Sciences, 115(21),
pp.5480-5485.
- Paradis, E., Blomberg, S., Bolker, B., Brown, J., Claude, J., Cuong,
H.S. and Desper, R., 2019. Package ‘ape’. Analyses of phylogenetics
and evolution, version, 2(4).
- Peaucelle, M., Bacour, C., Ciais, P., Vuichard, N., Kuppel, S.,
Peñuelas, J., Belelli Marchesini, L., Blanken, P.D., Buchmann, N.,
Chen, J. and Delpierre, N., Covariations between plant functional
traits emerge from constraining parameterization of a terrestrial
biosphere model. Global Ecology and Biogeography.
- Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C.,
Chen, I.C., Clark, T.D., Colwell, R.K., Danielsen, F., Evengård, B.
and Falconi, L., 2017. Biodiversity redistribution under climate
change: Impacts on ecosystems and human well-being. Science,
355(6332), p.eaai9214.
- Pérez-Harguindeguy, N., et al. 2013. New handbook for standardised
measurement of plant functional traits worldwide. - Australian Journal
of Botany 61: 167-234.
- Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. and Villar, R.,
2009. Causes and consequences of variation in leaf mass per area
(LMA): a meta‐analysis. New phytologist, 182(3), pp.565-588.
- Räty, Minna, Juha Heikkinen, and Annika Kangas. ”Assessment of
sampling strategies utilizing auxiliary information in large-scale
forest inventory.” Canadian Journal of Forest Research 48.7 (2018):
749-757.
- Redelings BD, Holder MT. ”A supertree pipeline for summarizing
phylogenetic and taxonomic information for millions of species.”
PeerJ. 2017;5:e3058. https://doi.org/10.7717/peerj.3058
- Reich, Peter B. ”The world‐wide ‘fast–slow’plant economics spectrum:
a traits manifesto.” Journal of Ecology 102.2 (2014): 275-301.
- Reich, P.B., Oleksyn., J., 2004. Global patterns of plant leaf N and P
in relation to temperature and latitude. Proceedings of the National
Academy of Sciences, 101 (30) 11001-11006; DOI:
10.1073/pnas.0403588101
- Reich, P.B., Walters, M.B. & Ellsworth, D.S. (1997). From tropics to
tundra: Global convergence in plant functioning. Proc. Natl. Acad.
Sci. U.S.A., 94, 13730–13734.
- Reichstein, M., Bahn, M., Mahecha, M.D., Kattge, J. and Baldocchi,
D.D., 2014. Linking plant and ecosystem functional biogeography.
Proceedings of the National Academy of Sciences, 111(38),
pp.13697-13702.
- Ribas A., Barbosa A.M., Casanova J.C., Real R., Feliu C. & Vargas
J.M. (2006) Geographical patterns of the species richness of helminth
parasites of moles (Talpa spp.) in Spain: separating the effect of
sampling effort from those of other conditioning factors. Vie et
Milieu 56: 1-8.
- Schelhaas, M.J., Varis, S., Schuck, A. and Nabuurs, G.J., 2006,
EFISCEN Inventory Database, European Forest Institute, Joensuu,
Finland, http://www.efi.int/portal/virtual_library/databases/efiscen/
- Siefert, A., et al. 2015. A global meta-analysis of the relative
extent of intraspecific trait variation in plant communities. -
Ecology Letters 18: 1406-1419.
- Simpson, A.H., Richardson, S.J. and Laughlin, D.C., 2016.
Soil–climate interactions explain variation in foliar, stem, root and
reproductive traits across temperate forests. Global Ecology and
Biogeography, 25(8), pp.964-978.
- Smith, W.B., 2002. Forest inventory and analysis: a national inventory
and monitoring program. Environmental pollution, 116, pp.S233-S242.
- Stahl, U., Reu, B. and Wirth, C., 2014. Predicting species’ range
limits from functional traits for the tree flora of North America.
Proceedings of the National Academy of Sciences, 111(38),
pp.13739-13744.
- Sterck, F., Markesteijn, L., Schieving, F. and Poorter, L., 2011.
Functional traits determine trade-offs and niches in a tropical forest
community. Proceedings of the National Academy of Sciences, 108(51),
pp.20627-20632.
- Swenson, N.G., Weiser, M.D., Mao, L., Araújo, M.B., Diniz‐Filho,
J.A.F., Kollmann, J., Nogués‐Bravo, D., Normand, S., Rodríguez, M.A.,
García‐Valdés, R. and Valladares, F., 2017. Phylogeny and the
prediction of tree functional diversity across novel continental
settings. Global Ecology and Biogeography, 26(5), pp.553-562.
- Swenson, N.G., 2014. Phylogenetic imputation of plant functional trait
databases. Ecography, 37(2), pp.105-110.
- Swenson, N.G., 2013. The assembly of tropical tree communities–the
advances and shortcomings of phylogenetic and functional trait
analyses. Ecography, 36(3), pp.264-276.
- Swenson, N. G., & Weiser, M. D. (2010). Plant geography upon the
basis of functional traits: an example from eastern North American
trees. Ecology, 91(8), 2234-2241.
- Tjoelker, M. G., Oleksyn, J., & Reich, P. B. (2001). Modelling
respiration of vegetation: evidence for a general
temperature‐dependent Q10. Global change biology, 7(2), 223-230.
- Thornton, M.M., P.E. Thornton, Y. Wei, B.W. Mayer, R.B. Cook, and R.S.
Vose. 2018. Daymet: Annual Climate Summaries on a 1-km Grid for North
America, Version 3. ORNL DAAC, Oak Ridge, Tennessee, USA.
https://doi.org/10.3334/ORNLDAAC/1343
- USDA Forest Service, 2001. Forest Inventory and Analysis National Core
Field Guide, Volume I: Field Data Collection Procedures For Phase 2
Plots, Version 1.5. US Department of Agriculture, Forest Service,
Washington, DC.
- Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer,
L., Benito‐Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M.,
Naya, D.E. and Nicotra, A.B., 2014. The effects of phenotypic
plasticity and local adaptation on forecasts of species range shifts
under climate change. Ecology letters, 17(11), pp.1351-1364.
- Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J. and Kattge, J.,
2014. The emergence and promise of functional biogeography.
Proceedings of the National Academy of Sciences, 111(38),
pp.13690-13696.
- Weih, M., & Karlsson, P. S. (2001). Growth response of Mountain birch
to air and soil temperature: is increasing leaf‐nitrogen content an
acclimation to lower air temperature?. New Phytologist, 150(1),
147-155.
- Weng, Ensheng, Caroline E. Farrior, Ray Dybzinski, and Stephen W.
Pacala. ”Predicting vegetation type through physiological and
environmental interactions with leaf traits: evergreen and deciduous
forests in an earth system modeling framework.” Global change biology
23, no. 6 (2017): 2482-2498.
- Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson,
A.N., Hulshof, C.M., Kerkhoff, A.J., McCarthy, M.C., Michaletz, S.T.,
Swenson, N.G. and Asner, G.P., 2019. Climate shapes and shifts
functional biodiversity in forests worldwide. Proceedings of the
National Academy of Sciences, 116(2), pp.587-592.
- Wilkinson, D. P., Golding, N., Guillera‐Arroita, G., Tingley, R., &
McCarthy, M. A. (2021). Defining and evaluating predictions of joint
species distribution models. Methods in Ecology and Evolution, 12(3),
394-404.
- Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z.,
Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.,
Diemer, M. and Flexas, J., 2004. The worldwide leaf economics
spectrum. Nature, 428(6985), p.821.
- Yang, J., Cao, M. and Swenson, N.G., 2018. Why functional traits do
not predict tree demographic rates. Trends in ecology & evolution,
33(5), pp.326-336
- Zhang, Y.J., Sack, L., Cao, K.F., Wei, X.M. and Li, N., 2017. Speed
versus endurance tradeoff in plants: Leaves with higher photosynthetic
rates show stronger seasonal declines. Scientific reports, 7, p.42085.