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Process understanding of the interaction between stream-
flow, groundwater andwater usages under drought are ham-
pered by a limited number of gauging stations, especially in
tributaries. Recent technological advances facilitate the ap-
plication of non-commercial measurement devices formon-
itoring environmental systems. The Dreisam River in the
South-West of Germany was affected by several hydrolog-
ical drought events from 2015 to 2020, when parts of the
main stream and tributaries fell dry. A flexible longitudinal
water quality and quantity monitoring network was set up
in 2018. Among other measurements it employs an image
based method with QR codes as fiducial marker. In order
to assess under which conditions the QR-code based water
level loggers (WLL) deliver data according to scientific stan-
dards, we present a comparison to conventional capacitive
based WLL. The results from 20 monitoring stations reveal
that the riverbed was dry for > 50 % at several locations
and even for > 70% atmost severely affected locations dur-
ing July and August 2020, with the north western parts of
the catchment being especially concerned. Thus, the highly
variable longitudinal drying patterns of the stream reaches

Abbreviations: WLL, water level loggers; IRES, intermittent rivers and ephemeral streams; T, threshold.
*Equally contributing authors.
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could be monitored. The image-based method was found
to be a valuable asset for identification of confounding fac-
tors and validation of zero level occurrences. Nevertheless,
a simple image processing approach (based on an automatic
thresholding algorithm) did not compensate for errors due
to natural conditions and technical setup. Our findings high-
light that the complexity ofmeasurement environments is a
major challenge when working with image-based methods.
K E YWORD S
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1 | INTRODUCTION

Extreme low flows during drought affect water availability, quality and the aquatic ecosystem (Leigh and Datry, 2017).
Their most extreme form is a partial or full drying-up of streambeds. Rivers with periodic and temporary streamflow
are classified as Intermittent Rivers and Ephemeral Streams (IRES). The proportion of IRES in the global river network
is estimated at 30 % excluding and 50 % including headwater streams (Fortesa et al., 2021; Costigan et al., 2016).
Regime shifts from perennial to intermittent streamflow are estimated to occur more often in the future, also on
the Northern Hemisphere (Petra Döll and Hannes Müller Schmied, 2012). Streamflow intermittency can have severe
consequences for riverine ecosystems, especially where aquatic biota is not adapted to this temporary drying (Acuña
et al., 2020; Leigh and Datry, 2017). To capture the dynamics of streamflow recession and rewetting in intermittent
and ephemeral streams IRES, the measurement of the hydrological state of the streams (water, no water, flow, no
flow) is of particular interest (Meerveld et al., 2020; Datry et al., 2017). Continuous observation and monitoring of
stream reaches and tributaries is vital to obtain more data on IRES. In global hydrometric datasets, however, stream
reaches and streams with a mean annual flow < 50 m3 s−1, with a snow cover of > 75 % in the upstream drainage
area and streams in extreme climates are likely to be underrepresented (Messager et al., 2021). Due to this data gap,
simulating and predicting streamflow intermittency has often been based on spatial predictors, such as topography,
slopes or drainage area, transmissivity (Kaplan et al., 2019; Olson and Brouillette, 2006) and has often been validated
using hydrographic maps or field mapping (Botter and Durighetto, 2020; Zimmer and McGlynn, 2017).
The collection of hydrometric data for smaller streams is therefore indispensable especially for purposes such as en-
vironmental flow modeling or global mapping of intermittent rivers. However, a water level measurement is taken at
one isolated point in a stream crosssection. In practice, many gauging stations make use of water level data and ad-
ditional streamflow measurements to calculate streamflow at any given time based on rating curves. Moreover, zero
flow and zero water level measurement is challenging with conventional techniques because installation errors, data
errors and ambiguity hinder a correct interpretation of zero flow readings (Zimmer et al., 2020; Heiner et al., 2011).
The heterogeneity of the stream bed, which is subject to a strong variability due to changing flow conditions and sedi-
ment transport may lead to erroneous zero flow or zero water level measurement. Measurement of zero-water levels
remains difficult, for example if ponding occurs locally along the river section. As long as the occurrence of zero-flow
or zero-water level is not measured with sufficient accuracy and temporal and spatial resolution, the potential to use
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modeling for water resource management and the prediction of drought and low flow is restricted because validation
and calibration of model results require reliable hydrometric data (Hannah et al., 2011).
The development of non-conventional sensors for monitoring is useful to gather more observational data in tribu-
taries and stream reaches. The simple installation of such in-situ sensors in remote areas, their potential to measure
continuously with high resolution, the affordable cost and therefore also less risk of financial losses in case of damages
occurring under changing natural conditions make them an appropriate alternative to conventional methods (Chapin
et al., 2014). Electrical conductivity and temperature loggers (Larson and Runyan, 2009; Peirce and Lindsay, 2015;
Zimmer andMcGlynn, 2017; Zanetti et al., 2021; Bhamjee et al., 2016; Blasch et al., 2002) and float switch or flow sen-
sors (Assendelft and van Meerveld, 2019) have been successfully used to monitor state changes of small headwater
streams and stream reaches. The use of remote sensing is often proposed to study connectivity of stream networks
for ungauged catchments and areas suffering from data scarcity (Stoll and Weiler, 2010; Gleason and Smith, 2014).
Disadvantages are however the low temporal resolution, data gaps due to obstacles such as cloud cover (Spence and
Mengistu, 2016). In general, aerial surveys are not applicable in areas with dense tree cover along streams (Roelens
et al., 2018) and vegetation, leading to misinterpretation due to moisture (Spence and Mengistu, 2016; Eltner et al.,
2018).
On-site image-based techniques are increasingly applied for monitoring as they contain an additional visual informa-
tion and thus reduce the probability of misinterpretation (Leduc et al., 2018). Another advantage is, that they do not
require on-site calibration (Gilmore et al., 2013; Kaplan et al., 2019). (Young et al., 2015; Leduc et al., 2018) detected
the edge position of streams manually and assume that each edge coordinate is linearly related to the water height.
Furthermore, they used a width-stage relationship to derive streamflow. In addition, not only water level, but also
water velocity observations are possible using short videos and particle image velocimetry (Perks et al., 2020; Piton
et al., 2018). Another option to obtain information on the water level or streamflow is to use image pattern recog-
nition algorithms (Eltner et al., 2018; Elias et al., 2020; Eltner et al., 2021). Staff gauges (Seibert et al., 2019; Strobl
et al., 2020; Bruinink et al., 2015) or fiducial grid patterns (Gilmore et al., 2013; Kaplan et al., 2020). Citizen science
and crowd-based water level measurement have received rising attention in recent years (Simon Etter et al., 2020;
Strobl et al., 2020; Seibert et al., 2019) because they are a valuable extension to monitoring data, especially with
regard to the lack of data on IRES. While citizen science approaches reduce errors related to measurement installa-
tion and maintenance, the information is not collected during fixed time intervals and the information content may
deviate depending on the person who collected the data. The use of fiducial markers therefore also holds potential
for enhancing the quality of data collected with citizen science approaches because it transports an exact value when
recognized correctly.
The catchment of the Dreisam river in south western Germany is known as a perennial river; But its tributaries as well
as parts of the upper and lower main stream can fall dry during extreme meteorological drought events, such as in
the years 2003 and 2018 (Erfurt et al., 2020). The main gauging station, located in the Dreisam Valley at Ebnet, a sub-
divison upstream of the city of Freiburg, has been found not to be representative of water level and flow conditions
across the basin during hydrological drought or low flow (Blauthut et al., 2017). Until a recent reconstruction of the
station’s crosssection (Baden-Württemberg, 2021), zero water levels could not be derived from the multiple decades-
long time series of hydrometric data from the main gauging station in the valley due to uncertainties for recordings of
water levels below 20 cm. A modified rating curve is not yet available. In addition, hydrological dynamics of different
river reaches might be different in comparison to the location of the gauging station depending on the hydraulic prop-
erties and the geometry of the riverbed and its interaction with the groundwater. Hence, the main gauging station
has provided little indication of the true dry river conditions in the valley. To better understand the drying pattern in
the catchment a network of water level gauges was installed and allowed to monitor a hydrological drought event in
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2020.
With this study we aim to address three research questions:

1. Is it possible to use an image based method for water level measurements based on QR-code detection?
2. What are problems and possible causes related to a QR-code image based water level logging?
3. Is it possible to identify zero level occurrences and drying patterns of the stream reaches using the specific mea-

surement techniques?

Due to the aforementioned challenges whenmeasuring zerowater level more knowledge on the suitability of different
measurement methods is needed. In this study, we therefore compare the time series of two different measurement
methods: an image-based measurement method using QR-codes as fiducial markers and a conventional capacitive
Water Level Loggers (WLL) technique. We explore the range, temporal evolution and the correlation of the water
level time series measured with both methods at 11 locations in the study area. Subsequently, we identify potential
error sources for the measurement of zero water levels using image-based WLL and propose specific corrections
for different error sources. We then implement a method to determine zero water level occurrences and use the
image-based method as an additional source of information to validate the event selection.

2 | METHODS

2.1 | Measurement approach

Image-based measurements have been used more often in recent years to measure water levels (Gilmore et al., 2013;
Kaplan et al., 2019). The additional visual information contained in each image provides an additional possibility to
validate the dry status of the riverbed. In order to obtain an information on the water level, a reference point or fidu-
cial marker is necessary. Due to numerous industrial applications of QR-Codes, a selection of open source libraries
(Abeles, 2016; Hudson et al., 2015; Abeles, 2013) is available for the detection of QR-codes, which makes it a realistic
target to use QR-Codes as fiducial marker for the measurement of water levels. In our measurement setup we used

F IGURE 1 Measurement setup
Wagensteig tributary summer 2020

TABLE 1 Main properties of the measurement methods
Image-based WLL capacitive WLL

Method QR Ody
Data transmission manual manual

Accuracy 3 cm ±0.5 cm
Data Processing yes no

Pre-/Post-Processing yes no

QR-codes as fiducial markers (Figure 1). The QR-Codes are printed onto a HPL (high pressure laminat) panel (dimen-
sions 60x85cm). Each QR-Code covers 10x10cm. The horizontal distance between the codes is 44mm and the vertical
distance is 20mm. Between the columns, there is a vertical offset of 33mm. A key factor for the choice of the size and
placement of the QR-codes is to find the optimal compromise between picture resolution and the distance between
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the camera and the panel. Each QR-code represents a distinct water level of 0 − 72 cm in steps of 3 cm (a total of 25
QR-codes per panel) (Figure 1, Table 1). With this QR-code configuration, the water level can thus be measured at
a maximum accuracy of 3 cm. The lowest QR-Code recognized by the software is representative for the water level.
The camera used is a DOERR SnapShot Mini 5.0 wildlife camera and measures at an image resolution of 8 MP. During
nighttime, the camera automatically switches to infrared mode while lowering the resolution. The cameras take an
image every 15minutes. This high temporal resolution was chosen to capture fast water level rise and recession. A
battery with an initial electric potential of 6.5V and an electric charge of 4.5Ah was used.
A variety of software is available to read QR-codes due to the numerous applications of QR-codes in industry and
other sectors (a comparison of the performance of different software for QR-code detection is available online (Abeles,
2018)). The QR-codes are read using the python wrapper pyboof for the java library BoofCV (Abeles, 2016). The pack-
age detects the positioning detection markers of a QR code and the alignment markings. According to a performance
evaluation of the provider, BoofCV is able to read multiple QR codes in one image, while the processing time is not
longer than with other packages. For all of the available QR code software, damaged QR codes, images with bright
spots and non-compliant QR codes are problematic for detection performance of the software. The package can also
be implemented on Rasperry PI which is promising if automatic data transmission is envisioned in the future. Addi-
tionally, an android app is already available for BoofCV.
The second method used in this study is a capacitive water level observation. Therefore, an Odyssey Capacitance
water level logger (Ody) (Ltd, 2013) was additionally installed at every measurement location. Measured is the capac-
ity of a condensator consisting of a teflon coated wire and the water in the river bed. Teflon coating is the dielectric
between the wire and the water. The higher the water level, the larger is the plate of the condensator and thus, the
higher the measured voltage. The Ody Loggers can measure with an accuracy of ±0.5 cm and do not require data
processing in contrast to the QR measurements (Table 1). Each logger was calibrated in a laboratory environment
according to the manual. Ody loggers were installed in the field using PVC pipes (Figure 1) in order to compare the
image-based to a capacitive (conventional) measurement method with regard to their suitability for measurement of
zero water level. Considering the technical properties of both measurement methods alone, QR has a lower accuracy
and requires also more effort for post processing (Table 1).

2.2 | Image processing

Errors due to image-based water level measurements can be classified into three categories according to (Gilmore
et al., 2013): Errors due to the quality of the pictures (also mentioned in (Leduc et al., 2018)), due to local environment
(light conditions) or due to software and image recognition. An option to reduce the effect of the errors on the
final data set, a possibility is pre- or post processing of the images. In order to find a methodology for pre- or post
processing, it is necessary to know how the software deals with these error types. In the case of images with over
exposure and strong light reflections, the software will not recognize any QR code and ultimately issue a NAN value.
Post processing is thus not needed and the erroneous values can be excluded without much effort. However, pre-
processing might be valuable in order to reduce the duration for reading of the images. Images with overexposure and
strong light reflections can be filtered using a threshold on the gray-scale image for bright colors. Major inaccuracies in
the water level data set however, are caused by images with few light reflections and with sediment accumulation. In
such cases, the information on a single QR code is lost where light reflections or sediment accumulation occur but the
software still reads the remaining QR codes. Sediment accumulations occur most likely on the bottom of the QR code
panel below the water surface and deposits remain on the panel once the water level decreases. Where sediment
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accumulation occurs, the resulting measured water level will thus be biased towards higher values in comparison to
the actual, true water level. This may also be the case for images with few light reflections, if those appear on the
bottom of the visible part of the QR code panel right above the water surface.
We wanted to know if it was possible to identify images concerned by sediment accumulation or light reflections with
a multi-threshold approach. Hereby, multiple thresholds are defined based on the intensity of gray scale values of
the pixels in an image. Thus, the different pixels can be classified into different "regions" based on these thresholds.
Ideally, the pixels concerned by an error source (i.e. by sediment deposits or light reflections) belong to one specific
region. If the number of pixels in an image belonging to this specific region is large, the image is most likely affected by
the error source and can be pre-selected. This method could be either applied as a pre- or post processing strategy.
In this study, we used images with sediment accumulation, strong light reflections, relatively few light reflections and
overexposure as a benchmark in order to demonstrate in which cases, a multi threshold approach may be useful to
filter images that are subject to error sources. The thresholds can either be specifiedmanually or using an algorithm for
automatic thresholding. Due to their accuracy and speed, algorithms that are calculating thresholds bymaximization of
between class variance (Otsu’s method) are commonly used (Kotte et al., 2018; Otsu, 1979). Here, we use aMulti Otsu
threshold with 5 classes. The benchmark images as examples with the corresponding histograms and the resulting
colored regions are shown in Figure 2.
To identify overexposure and light reflections, the pixels in region 4 and to identify sediment accumulation, the

percentage of pixels with respect to total pixels in region 3 was calculated (Table 2). The results show, that it is
TABLE 2 Counted pixels per region

Error source Region Pixel (%)

Normal 3 12.01
Sediment accumulation 3 11.38

Normal 4 20.27
Light reflections 4 16.01
Strong reflections 4 44.84
Overexposure 4 44.88

possible to distinguish between strong overexposure or strong light reflections and normal conditions. However, it is
not possible to distinguish between normal conditions and sediment accumulation or few local light reflections in the
image. The filtering of such images is complex and therefore, a specific methodological approach needs to be applied
rather than a simple algorithm for automatic thresholding.
Few light reflections occur likely at the start or at the end of the time window, during which light reflections and
overexposure occur. An algorithm, that compares the threshold of a particular image to the prior or following image
taken could probably be useful to identify time windows during which light reflections occur automatically. There
may be other image processing techniques that could be applied but it is out of the scope of this study to develop a
new methodological approach.
Due to the complexity of filtering theQR code images and the lower accuracy in comparison to theOdymeasurements
(which would call for an entire study of its own), we used only the Ody data for data analysis and selection of zero
level occurrences. However, we can make use of the visual information in the images in order to validate the zero
level occurrences based on the Ody data.
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F IGURE 2 The benchmark images from the different error sources, histograms with thresholds and the resulting
classification after Multi-Otsu Thresholding

2.3 | Zero water level identification

The water level (often also refered to as river stage, water height, stage height) is described as the perpendicular dis-
tance from the bottom of the riverbed to the water surface. Zero water level is the status where no water is left in
the whole riverbed’s cross section. More specifically, this means that there is no more water present at the deepest
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point of the river cross section and, that there is neither flowing nor standing water present in the riverbed. For the
characterisation of IRES, the status information (dry, standing water, flowing water) is particularly important (Datry
et al., 2017; Meerveld et al., 2020). With the measurement methods used in this study it is not possible to determine
the status change from flowing to standing water. Furthermore, the measurement devices are installed at one spe-
cific point along the river at the border of the river bed next to the river bank and the water level is therefore only
measured directly at this spot. Ponding can not be directly measured if the measurement device is not located at the
deepest point in the river bed section, which may change after each sediment transport event.
If there is a vertical offset between the deepest point of the river bed and the location of the measurement device, it
is hard to distinguish if the riverbed is entirely dry or if it is only dry at the borders while standing water remains at
the deepest point. To make a distinction here, the water level, at which the water is likely standing and not flowing
anymore needs to be known. However, the point of no flow is site specific as it depends largely on the hydraulic
properties and geometry of the river section (and not only on the cross-section of the river bed) and therefore, the
generation of a rating curve for each location is a prerequisite. This should be kept in mind if any of the presented
methods are used to establish a data-set of zero water levels.
Potential sources of inaccuracy for both measurement methods can be due to measurement installation and mea-
surement principle. Specifically for the QR method, a software is required to read the images in order to obtain an
information from the fiducial markers on the images. The result of the measurement thus also depends largely on the
quality of the image, the local environment (light conditions) and on the software and image recognition algorithms
used (Gilmore et al., 2013). The quality of the image and the chances for recognition of the fiducial marker also rely
on the ratio of the distance of the panel and the camera and on the focal point.

In order to measure zero water level with the measurement methods used in this study, corrections are required
for both, the capacitve and the image based method. Corrections of the QR data can be needed for specific locations
where the panel position is not vertical and where there is an offset between the bottom edge of the panel and the
bottom of the river bed. However, specific care was taken in order to avoid inclination and a vertical offset of the QR
panels and accordingly no offset correction was required for the QR data.
An offset correction was however necessary for the Ody data. The Ody loggers are hanging vertically in PVC tubes
without direct connection to the bottom of the river bed. Also, water levels measured by the Ody loggers may over-
estimate water levels for low electrical conductivities. A small, positive offset of the Ody measurements is therefore
expected. To take this offset into account, we applied a correction based on the minimum in the time series. This
means that a low water level between 0 − 10 cm is measured once the water level reaches zero. A correction of this
offset can either be done manually using the pictures from the cameras installed at most of the stations or by defining
an offset. Here, the latter was chosen and the offset was corrected by the mean of the minima in the Ody water level
time series for all stations, where a minimum value below 10 cm had been measured. Additionally, a general source
of uncertainty for the Ody measurements is, that the loggers are sensitive to soil moisture. This could result in a time
lag between the true occurence of zero water level and the actual, recorded zero water level. Here, we assume that
the additional visual information could be helpful to determine the time lag.

2.4 | Measurement comparison

The main objective of this study is the distinction between different error sources of an image-based and a capacitive
water level logging technique with regard to measurement of zero water level. For this purpose, we use a comparative
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approach and we consider that a correction using the deepest point in the river bed is not required. A comparison
to the main gauging station in the catchment is not possible due to the particular situation, that it was not suitable
for measuring low flows before 2019 and it could not be excluded that reconstruction still affected data collection in
2020.
In a first step we compare the performance of the measurement methods with regard to data availability, time and
effort for maintenance as well as for the evaluation and data handling.
Furthermore, we inquired if there is an association between the water levels measured with both methods. A general
measure to investigate the strength and direction of an association between two variables is the correlation coefficient
R.

Here, we calculated the Spearman rank correlation for a rolling window with a window width of 96 steps (equals
1 day). If the spearman correlation indicates a perfect correlation, the relationship between the two variables is rep-
resented by a monotonic function. This allows to evaluate whether the water levels are rising or falling at the same
moment or not within the time interval of a day and if this association changes over the course of time.
Subsequent to the method comparison and the corrections, a method for filtering of zero level occurrences from the
available time series is presented. Zero level occurrences were selected based on the choice of a threshold and the
coefficient of variation. First, the Threshold (T) was defined as the sum of the minimum and 5% of the maximum value
in the time series:

T = xmin + 0.05xmax (1)
with xmin and xmax being the minimum and maximum in the time series at each measurement location. In a next step,
the coefficient of variation based on a hourly mean (or daily mean) was calculated. If the variation remained below 0.1

with respect to the hourly mean for at least 4 hours at a specific time, it was considered that zero water level occurred.
Furthermore, the additional visual information contained in theQR images allows a validation of zero level occurrences
for each location. Therefore, the images corresponding to the date and time of the zero level occurrences were
filtered at first. Secondly, images were visually inspected and classified as "dry" and "not dry". Hereby, a dry riverbed
corresponds to the statuswhere there is neither standing nor flowingwater visible in the image. Finally, the percentage
of images (among a random choice of 10 % of all images) recognized as "dry" defines if the validation was successful
or not.

3 | THE STUDY AREA

The Dreisam catchment covers a total area of 577 km2). Figure 3 shows the total extension of the catchment and
the locations of the measurement devices in the Dreisam valley (25 km2). The porous aquifer consisting of alluvial
materials with 30 − 50 m depth in the subsurface is used for water supply of the city of Freiburg im Breisgau. Within
this area, slopes are flat ( 8 %) while the topographic gradient in the whole catchment is large (with topography rang-
ing between 309m a.sl. at the lowest point and 1480m a.s.l. at the highest point) and steep hill slopes dominate in
the mountainous part of the catchment (Wissmeier and Uhlenbrook, 2007). The length of the river network in the
Dreisam valley is about 108 km.
The monitoring system in the Dreisam valley consists of 20measurement stations located in the main tributaries and
the main river (Dreisam) (Figure 3). At 11 locations, the water level is measured with both, the QR and Ody method.
Each measurement is representative for a longitudinal section of the stream reach downstream of the measurement
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F IGURE 3 Overview of the extent of the Dreisam catchment in South Western Germany, the upper part of the
Dreisam catchment and the monitoring system in the Dreisam valley (Zartener Becken)

location until the next station or themouth into themain river. The choice ofmeasurement locationswasmade accord-
ing to their distance to the mouth of the river reach into the main river and in order to account for different settings
with different environmental conditions. In all of the important stream reaches, water level loggers were installed at
least at one location close to the mouth of the stream reaches into the main river and at one location upstream close
to the alluvial aquifer borders. If an official gauging station was present upstream (such as at the Rotbach tributary or
in the Brugga tributary), no additional station was installed upstream.
The drying events from observations and public media in specific river sections during the previous years was con-
sidered for the choice of the locations. The image-based method with QR-code panels was only used in locations
where the panels could be deployed on a vertical surface. These were either large rocks or bridges, weirs or small
hydroelectric power plants. Settings differ with regard to light conditions and shape or size of the river sections. In
order to investigate the effect of light reflections on the output of the image-based method, some of the cameras
were placed below bridges. Furthermore, care was taken that the panel position was vertical and, that the distance
between the panel and the camera was adequate to maintain the necessary image resolution. The position of the
camera was adjusted as such that the panel was portrayed in the center of the image. However, due to the manual
maintenance of the cameras and the influence of the natural environment, it was not guaranteed that the position
remained exactly the same during the whole measurement time span. At each measurement location additional staff
gauges were installed. Water levels are logged by Ody and QR WLL with a temporal resolution of 15min.

4 | RESULTS

4.1 | Comparison of the measured water levels

Both WLL methods are firstly compared with regard to their application and operability through a comparison of the
operational time, time and effort for installation and processing of the data. The Ody data was processed with the
Odyssey Software (Ltd, 2012). Processing of the QR images took significantly longer than reading of the Ody data. It
is not possible to obtain the exact duration for reading one image with QR because the number of QR codes detected
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per image varies according to water level and error sources. For example, reading of 100 images took 1.57min with
an Core i7 processor. The effort for the installation was comparable for both methods. Overall, the maintenance cost
for the image-based method was greater. On the one hand, this is due to the energy consumption of the camera at
this resolution. A battery with an electric charge of 4.5Ah was sufficient to keep the cameras running for approxi-
mately 1 month in winter and 2 months in summer on average. According to the manufacturer of the Ody loggers,
the battery life is > 9 months. Thus, battery replacement and data collection needs to be done at higher frequency
for the QR method. On the other hand, the maintenance cost and effort for the QR measurements was high due to
manual verification of the image section, the manual data collection and regular replacement of the memory cards.
A possibility to reduce maintenance cost for both methods is to use cameras or data loggers with automatic data
transmission to simplify data collection and troubleshooting and to improve the measurement setup for long term
operation (which would in turn require more financial resources). Secondly, the data sets obtained with the different
measurement methods can be compared with regard to data availability and completeness of the time series, data
quality and consistency of the measured water levels. The data measured by the monitoring system was processed
for the time period between June and October 2020. The density distribution of all water levels measured during
the study period at each station separately for each of the measurement methods vary (Figure 4). The shape of the
distribution differs depending on the measurement method used for some locations (e.g. K1, RE1, E4). The violin plots
indicate that low water levels occur at higher frequency in the Odyssey data set, where the shape of the violin of the
Odyssey and QR code data are alike (E8, E6), except for B2 and RO2B. In general, there are more outliers towards
high water levels in the QR code data set. Overall, the violin plots underline that the hydrological dynamics may vary
depending on the river reach and location. Whereas the violin plot of some locations is multimodal or bimodal (K1,

F IGURE 4 Violin plots showing the distribution of all measured water levels per station for both measurement
methods. From left to right, the distance from the measurement location to the main gauging station near the
catchment outlet is increasing.
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W4, B2, E4, E2), the distribution is unimodal for other locations (E6,E8).
The percentage of available data per station is considerably lower for the QR data in comparison to the Ody data

F IGURE 5 Data availability and rolling R for Ody and QR water levels. a) The range of water levels measured
with each of the methods. b) Percentage of available data per method and measurement station. c) The rolling R
(ranked pearson) for both measurement methods.

(Figure 5 b). More than 50 % of data was missing at some locations (i.e. at RO2A, RO2B and E2. Additionally, the tem-
poral evolution of the water levels (15min resolution) between June and October 2020 at each measurement location
is analysed (Figure 5 a). While the water level remains constant at some locations during the measurement period (i.e.
constantly high water levels at RO2B and constantly low water levels at E6 and E8), other locations show stronger
fluctuations and in some cases also a stronger tendency for low water levels to occur in the summer months (i.e. D2,
E2, W4). Furthermore, the range of water levels measured with the Odyssey method suggests that the closer the
stations are to the main gauging station in Ebnet (which is located in the valley bottom at the western edge and near
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the outlet of the catchment), the lower are the water levels in general. The further away the measurement locations
are from the catchment outlet, the stronger are the fluctuations. With regard to the distance from the catchment
outlet of the gauging station, the QR code measured water levels do not show any clear differences. In general, fast
changes from low to very high water levels occur more often in the QR water level time series (i.e. RE1).
Figure 5 c) shows, that there is no clear relation of Ody and QR measurements visible. Exceptions are RE1 and
K1. At RE1, a relation of both measurements appears for most of the days. In some locations (i.e. K1) even a negative
relation exists, meaning that the Ody water levels increase (decrease) while QR water levels decrease (increase). Note,
that the Spearman’s R can not be calculated for a standard deviation of 0, which is the case when zero water level
occurs over longer time windows than a day (for example at E8, E6 and W4).

4.2 | Hydrographs

(a) (b)

(c) (d)

F IGURE 6 Hydrographs with 15min water levels of QR (a, c) and Ody (b,d) measurements in summer 2020 at
two measurement stations of the Wagensteigbach and Eschbach river reach and precipitation from the DWD. Raw
data is displayed in blue, corrected data in green and the rolling mean of the corrected time series in orange.
Standard deviation is shaded in grey.

The hydrographs (raw data in 15 min resolution without corrections) of the Ody and QR measurements show the
different temporal dynamics at different locations along the stream reaches (Figure 6 (a-d) blue lines. More hydro-
graphs are shown in the supplemental material Figure A.3 and A.4). Ody data was corrected using the mean of the
minimum in the water level time series for all stations, where the minimum was below 5 cm (Figure 6 b and d green
lines) (see section 2.3).
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In the hydrographs for locations E8 in the Eschbach tributary andW4 in theWagensteig tributary calculated with the
Ody data, a time span with constantly (slope close to zero) very low water levels below 5 cm in the corrected time
series (10 cm in uncorrected time series) appears several times in between the peaks during the study period (Figure6
b and d). Water level rise often occurs shortly after rainfall events, as expected due to the fast reacting character of
the hydrological system (Wissmeier and Uhlenbrook, 2007; Uhlenbrook, 1999). The QR hydrographs reflect the same
general pattern as the Ody hydrographs but with more outliers towards higher water levels. Longer time spans with
constantly low water levels are not visible in the QR hydrographs. Instead smaller, high frequency fluctuations occur
in between the marked peaks while water levels rarely drop below 10 cm (Figure6 a and c). The spread in the rolling
STD (shaded in grey in Figure 6) is also noticeably smaller for the water levels measured with the Ody method (water
levels are less scattered), regardless of the temporal resolution (15 min, hourly or daily). All in all, the hydrographs
show, that water levels measured via QR tend to be overestimated in comparison to the Ody data (despite QR mea-
surements being limited to 73 cm), similar to what the range of water levels in Figure 5 and 4 indicates.
The different results of Ody and QR code measurements can be explained by looking at different error sources that
are typical for image-based measurements of water levels. After visual inspection of the images in our data set, we
identified sediment accumulation on the panel, light reflections and overexposure as the major error sources (supple-
mental Material Figure A.1). Overexposure occurs in locations, where the angle between QR code panel and the sun
is particularly unfavorable at a certain time during the day. This effect of back radiation is probably enhanced by the
predominantly white panel background. Light reflections are mostly caused in places, where the interaction of sun
light and leaves of trees or other plants create a pattern of light and shadow on the panel. Sediment accumulation is
caused by the deposit of organic material on the panel at and below the water surface. When the river bed dries, the
deposits dry, remain on the panel and conceal a part of the QR codes. The three error types are caused by the local
environment. We therefore focused on errors due to local environment for pre-and post processing of the images
(see section 2.2).

4.3 | Zero level occurrences

With the Ody data set we conducted an analysis of zero level occurrences for all stations. Zero level events were
selected from the Ody data based on a threshold value and a rolling coefficient of variation (see also section 2.3). In
Figure 7 a) and 7 b), the hydrographs, the threshold and the selected zero level occurrences in the time series are
highlighted in red are shown for the two locations with different dynamics at the Eschbach tributary (E8) and the
Wagensteig tributary (W4) (see also Figure 3). E8 represents an example with particularly long dry phases, whereas
the status is alternating between dry and wet phases with higher frequencies at W4. As time lapse cameras and
Ody loggers were closely installed and the river bed and loggers are on the images in most cases, it was assumed
that the images from the time lapse cameras can be used for validation of the zero level occurrences (see chapter
2.2. However, due to the high temporal resolution of 15min, the visual inspection of images at locations where the
riverbed is prone to run dry frequently and for several days requires tremendous time and effort. For E8, this would
have required to visually inspect 8323 images. Therefore, a random choice of 10 % of the images were validated. Of
the 10 % of the images, the riverbed was classified as dry for 92 % of the images at E8 and for 100 % of the images at
W4 . This illustrates, that the selection of zero level occurrences for the two measurement locations was correct. The
same methodology was applied for all other locations in the catchment (see Figure A.6 in the supplemental material.
All locations with Ody loggers are included as shown in Figure 3).
Hence, an analysis and intercomparison of the total zero level occurrences per month of the different locations for
the measurement period between June and October 2020 is feasible. An overview of the monthly percentage of
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(a) (b)

(c)

(d)

F IGURE 7 a, b) The zero level occurences selected from the data set for two of the measurement locations for
the locations E8 at the Eschbach tributary and for W4 at the Wagensteigbach tributary. c, d) Total monthly zero
water level occurences per measurement location in percent for the Ody data and percentage change between zero
occurences obtained with Ody and QR data.

zero occurrence between June and October 2020 is given in Table 3 for the Ody data set. The percentage of zero
level occurrence is calculated based on the total number of values N that was measured at each location per month.
Zero water levels occur at first in June 2020 and throughout July and August the severity of the hydrological drought
increases and a dry riverbed is measured at an increasing number of locations and over longer time periods (Figure
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TABLE 3 Total Number of measured values (N) and percentage of zero level occurences per Month
Month 2020 May Jun Jul Aug Sept Oct May Jun Jul Aug Sept Oct

stations N percentage (%)

B2 529 2880 2976 2976 2880 1312 - - - - - -
D1 0 0 826 2976 2880 1307 - - - - - -
D2 533 2880 1591 2192 4931 1900 - - - 34,63 1,8 -
D3 0 0 0 1105 2880 1298 - - - 8,6 54,37 -
E2 577 2880 2976 2976 2880 1303 - - 9,21 28,09 1,15 -
E4 0 0 1243 3913 2880 1301 - - 56,56 48,38 - -
E6 577 2880 2976 2976 2880 1298 - 23,3 57,49 42,88 18,75 -
E8 577 2880 2976 2976 2880 1296 - 36,28 100 67,54 65,69 30,86
IB1 261 3150 3255 3273 2900 1345 - - - 26,34 13,48 -
IB2 263 3150 4041 3812 2898 1345 - - 7,52 7,92 - -
K1 531 2881 2976 2976 2880 1310 - - - - - -
RE1 231 1589 2254 2976 2880 1315 - 17,62 - - - -
RO2A 375 3180 4074 4754 4338 2017 - 19,25 63,38 29,51 23,19 -
RO2B 371 3150 3255 4017 4320 2017 - - - - - -
W1 267 3150 4042 3830 2900 1345 - - - - - -
W2 522 6060 5454 4745 2971 1345 - 3,38 21,29 14,96 - -
W3 264 3150 4059 4774 4339 2017 - - 10,37 4,61 - -
W4 341 2880 2976 2976 2880 1305 - 0,31 33,06 29,1 24,03 -
ZA1 235 2880 3911 4743 4338 2017 - - - - - -

7 c)). E8 was dry for 100 % of the time in July, 67 % in August and 65 % in September (Figure 7 a)). In September,
zero level occurrences start to decrease and most locations recover from the drying until October 2020, E8 being the
only station where the riverbed is still partially dry. In general, this indicates, that especially the north western part of
the study area appears to be most vulnerable (see also supplemental material Figure A.2). Additionally, a longitudinal
drying pattern emerges along the Eschbach river, as downstream stations dry out at first and upstream stations start
to be affected later in July and August (Figure 7 c)).
Nevertheless, streams in the central part of the catchment also show relatively high monthly percentage of zero levels
from July to September. The least vulnerable to hydrological drought are the south western parts of the catchment.
Additionally, the percentage change ( (xody −xqr )|xody | ∗ 100) between Ody and QR zero level occurrences for the locations
where data on bothmeasurementmethods exist was calculated (Figure7 d), see also supplemental material Figure A.5).
At most locations, the percentage of zero levels measured with the Ody data surpasses the percentage of zero levels
measured with the QR data in July and August. This is strongest for the Eschbach tributary, where the percentage
change between Ody and QR zero occurrences is > 90%. Exceptions are the locations K1 and B2, were the evaluation
of QR records indicates more zero level occurrences.
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5 | DISCUSSION

5.1 | Technical challenges of QR code based WLL

In this this study we present a first attempt to measure with the QR WLL method in a natural environment with very
basic equipment and therefore measurement errors arise in part from the measurement setup. Different error sources
of QRWLL lead to higher measurement inaccuracy and especially to overestimation of lowwater levels in comparison
to the Ody WLL method. Any future application of QR WLL should therefore have to entail an improvement of the
measurement setup. Firstly, the accuracy of the QR WLL is limited to (3 cm) due to the size and arrangement of the
QR codes on the panel. This resolution is not sufficient for water level measurements according to the guidelines
of the federal state of Baden Württemberg (LAWA, 2018) and to develop rating curves. In general, the resolution is
dependent on the quality of the camera or image, the size of and the distance between the QR codes. In this study,
a key aspect was to find a low-cost solution. It is therefore expected, that the resolution problem could be enhanced
using smaller QR-codes and better photographic equipment (i.e. higher image resolution). Hence, the error sources
that were identified with our measurements in a natural environment (see supplemental material Figure A.1) indicate,
that the measurement technology requires further refinement to be directly applied in the field. This calls for testing
of varying technical setups in laboratory environment in order to find out at what smallest possible resolution the ap-
proach still deliver valuable results. Different coatings could be tested to solve problems with sediment accumulation
on the panel and for different light conditions and illumination. Problems with over exposure and light conditions may
also be avoidable if the geographical orientation of the measurement location is taken into account (a North oriented
panel is likely not as much affected by sunlight as a South, West or East oriented panel).
Wehave also shown that a distinction between different error sources bymeans of simple, automatic image-processing
techniques is not yet possible (Figure 2) and therefore cannot compensate for refinement of the experimental design
to avoid the above-mentioned problems. Concurrently, image-processing techniques also still need to be improved
to reliably filter erroneous images in a pre- or post-treatment.
Despite deliberate maintenance, several data gaps appear in our QR dataset (Figure 5). For long-term monitoring,
automatic data transmission is needed in order to reduce maintenance cost and to avoid deficiency of the devices
for longer time periods. However, problems related to the energy consumption of self-made automatic data loggers
based on Raspberry PI systems need to be solved first. For example, (Eltner et al., 2018) used a car battery to obtain
data with 30min to 1h resolution. Furthermore, data transmission with such data loggers only works in areas with
mobile coverage and such sensors may be sensitive to temperature as well, as it was shown by Elias et al. (2020) in
combination with smartphone cameras.

5.2 | Measurement comparison

The quality and the amount of the data obtained with the QR method is lower while the data handling is also more
complicated in comparison to the data obtained with capacitive water level logging. We therefore assumed that the
data obtained with the Odyssey loggers is more reliable for an analysis of zero levels. Specific for the measurement
of zero water levels, the combination of the general error sources when using image based measurements and the
use of QR codes as fiducial marker lead to an overestimation of low water levels. This should be kept in mind when
developing such image based methods using fiducial markers further also for applications like citizen science.
While the use of QR may reduce uncertainty due to subjectivity when interpreting the information on stage height
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contained in images visually, the flow status cannot be measured directly without making the assumption that the
presence of water automatically indicates flow as well (at least not using an automatic algorithm). Thus, this is one of
the shortcomings of the Ody method with respect to application in the context of IRES. Therefore it is essential to
contrast the Ody with other measurement methods. Those could also be electrical resistance measurements, which
have also been successfully used for monitoring (particularly for status changes) of IRES (Assendelft and vanMeerveld,
2019; Bhamjee et al., 2016; Blasch et al., 2002) , ultrasound and radar technologies, which are also commonly used in
hydrometry (LAWA, 2018) or even image-based if the information on flow status is assigned manually (Kaplan et al.,
2020, 2019).
Furthermore, the correlation analysis revealed a contradictory behavior of QR and Ody measurement, which impeded
complementary usage/merging of the two data sets. Nevertheless, the combination of the logged water levels and
the visual data contained in the images from the QR-codes provides several advantages. On the one hand, it allows to
counter check for external confounding factors in the river bed or the local environment that may influence measure-
ments. On the other hand, the information contained in the image was useful for validation of the Ody measurements.
Another advantage arises from the potential for examination of the time lag between different measurements.
A huge effort for image processing is necessary in comparison to the capacitive water level measurement. The quality
of the result is dependent on image processing software used and requires advanced image processing methods to
solve specific problems. Software was often developed for medical purposes and measurements under stable (lab-
oratory) conditions (e.g. Kaplan et al. (2019) used the open source software ImageJ (Schneider et al., 2012)). There
is potential in using image based measurements for hydrological purposes if new image processing techniques and
machine learning algorithms (neural networks) are further developed in order to identify specific patterns and to deal
with natural conditions for hydrological purposes (Eltner et al., 2021; Ljubičić et al., 2021). Convolution neural net-
works have shown to be more robust to environmental conditions but the findings of (Eltner et al., 2018, 2021) are in
agreement with our findings, that light conditions are amongst others a major error source. We presume that those
error sources have now been well identified but the solutions from an image treatment or artificial intelligence per-
spective have not yet been solved. This implies that up to date, particular care should be taken with respect to the
choice of measurement location when working with image-based technologies (particularly in environments with tree
shading).

5.3 | Zero level occurences

Using the Ody dataset, it was possible to analyse the longitudinal drying pattern and to evaluate the occurrence of
hydrological drought per month in different stream reaches in the Dreisam valley between June and October 2020
(Figure 7). Zero level or intermittency occurrence has often been validated using data from field mapping campaigns
(Jensen et al., 2019; Zimmer and McGlynn, 2017; Shaw et al., 2017; Shaw, 2016; Godsey and Kirchner, 2014; Olson
and Brouillette, 2006). Here, we successfully validated zero level occurrences based on the Ody data using images of
the river bed. Hence, our results show that validation with image-based measurement methods is a promising alterna-
tive and helps to identify potential errors when filtering zero water levels. The validation of zero level occurrences also
yields further potential for the application of deep learning techniques to identify zero water levels from the images.
Under the assumption that zero water levels measured with the Ody loggers are also represented by the information
contained in the images, the data sets could be used as training and validation data.
Altogether, the analysis of zero level occurrences denotes, that the obtained data set is suitable for an event based
analysis of zero level events in our example catchment. In addition to the longitudinal drying patterns we were able to
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show that there are spatio-temporal differences of the occurrence of zero water level at different locations (Figure 7).
However, a classification of the stream network into ephemeral, intermittent or perennial, data for the entire hydro-
logical year is required on the one hand and streamflow data is necessary for further analysis of the spatio-temporal
behavior of intermittent streams (for example in order to use active stream length vs. discharge relationships (Shaw
et al., 2017; Zanetti et al., 2021) or to differentiate between different origins of hydrological flow (Zimmer and McG-
lynn, 2017)). For the measurement methods used in this study, rating curves (the relationship to calculate discharge
as a function of recorded water levels) need to be developed to obtain discharge data. The generation of such rating
curves could be a next step to estimate the contribution of each of the stream reaches to themain river and to quantify
the amount of water that is missing once different stream reaches dry up. This is an essential step for the assessment
of different control factors for the observed spatio-temporal patterns, especially in the context of an altered river
system (with water abstraction and hydroelectric power generation).

6 | CONCLUSION

We evaluated the potential of an image-based measurement method using time lapse cameras and QR-codes as
fiducial marker and a capacitive measurement method for measuring zero water levels based on the example of a
meso-scale catchment with temperate climate in South Western Germany. We found, that the largest errors using
image-based measurements were produced due to the local environment. Up to date, the available open source QR
code readers are not able to distinguish between images affected by such error sources (i.e. light reflections due to
patterns of light and shadow or due to the water surface and sediment accumulation) and a normal image. Where
overexposure or sediment accumulation occurs, the information on the fiducial marker is lost leading to wrong mea-
surement results. Therefore, image processing can only be used in order to exclude the erroneous images prior to
reading the QR codes with a software. We experienced, however, that a simple algorithm for automatic thresholding
is not sufficient in order to account for error sources due to the natural environment. Thereby, we conclude, that the
choice of the measurement location is extremely important when working with image-based methods, especially if
stream reaches are partially tree-shaded. Due to the above mentioned error sources and the high efforts for main-
tenance and data handling, the data obtained with the image-based method could not be used alone for an analysis
of zero level occurrences. A brief analysis of zero level occurrences using the data of the capacitive measurement
method for the measurement period between spring and autumn 2020 showed, that the use of image-based data can
be rewarding in order to validate the results. As long as there are no specific solutions for image-processing available,
there is potential to use image-based measurement methods in combination with other measurement methods in
order to reduce measurement uncertainty.

acknowledgements

We acknowledge the work of Britta Kattenstroth and Jonas Schwarz for their help with the technical equipment of the
measurement locations. Furthermore, we acknowledge the valuable contribution of Klaus Meyer and Max Gregoire
for theirMSc thesis work on trial measurementswith the initial setup of theQR code basedwater level loggers. Verena
Völz also helped with data collection.



20 Herzog et al.

conflict of interest

The authors declare no conflict of interest.

references

Abeles, P. (2013). Examination of hybrid image feature trackers. In International Symposium on Visual Computing
(ISVC), Crete, Greece.

Abeles, P. (2016). Boofcv v0.25. http://boofcv.org/. (2021-12-23).
Abeles, P. (2018). Study of qr code scanning performance in different environments. v3.

https://boofcv.org/index.php?title=Performance:QrCode. (2021-12-23).
Acuña, V., Jorda-Capdevila, D., Vezza, P., de Girolamo, A. M., McClain, M. E., Stubbington, R., Pastor, A. V., Lamouroux,

N., Schiller, D., Munné, A., and Datry, T. (2020). Accounting for flow intermittency in environmental flows design.
Journal of Applied Ecology, 57(4):742–753.

Assendelft, R. and van Meerveld, H. (2019). A low-cost, multi-sensor system to monitor temporary stream dynamics
in mountainous headwater catchments. Sensors (Basel, Switzerland), 19(21).

Baden-Württemberg, H. (2021). Hochwasservorhersagezentrale baden-württemberg -pegel ebnet. https://hvz.baden-
wuerttemberg.de/pegel.html?id=00389. 2021-06-22.

Bhamjee, R., Lindsay, J., and Cockburn, J. (2016). Monitoring ephemeral headwater streams: a paired-sensor approach.
Hydrological Processes, 30(6):888–898.

Blasch, K., Ferré, T. P. A., Christensen, A., and Hoffmann, J. (2002). New field method to determine streamflow timing
using electrical resistance sensors. Vadose Zone Journal, 1(2):289–299.

Blauthut, V., Fleischer, C., and Stölzle, M. (2017). Pilotstudien zum niedrigwassermanagement in baden-württemberg.
Botter, G. and Durighetto, N. (2020). The stream length duration curve: A tool for characterizing the time variability

of the flowing stream length. Water Resources Research, 56(8):e2020WR027282.
Bruinink, M., Chandarr, A., Rudinac, M., van Overloop, P.-J., and Jonker, P. (2015). Portable, automatic water level

estimation using mobile phone cameras. In IAPR MVA 2015, pages 426–429, Piscataway, New Jersey. Institute
of Electrical and Electronics Engineers.

Chapin, T. P., Todd, A. S., and Zeigler, M. P. (2014). Robust, low-cost data loggers for stream temperature, flow inter-
mittency, and relative conductivity monitoring. Water Resources Research, 50(8):6542–6548.

Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M., and Goebel, P. C. (2016). Understanding controls on flow
permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover.
Ecohydrology, 9(7):1141–1153.

Datry, T., Bonada, N., and Boulton, A. J. (2017). Intermittent rivers and ephemeral streams: Ecology and management.
Academic Press, an imprint of Elsevier, London, United Kingdom.



Herzog et al. 21

Elias, M., Eltner, A., Liebold, F., and Maas, H.-G. (2020). Assessing the influence of temperature changes on the
geometric stability of smartphone- and raspberry pi cameras. Sensors (Basel, Switzerland), 20(3):643.

Eltner, A., Bressan, P. O., Akiyama, T., Gonçalves, W. N., and Marcato Junior, J. (2021). Using deep learning for
automatic water stage measurements. Water Resources Research, 57(3).

Eltner, A., Elias, M., Sardemann, H., and Spieler, D. (2018). Automatic image–based water stage measurement for
long–term observations in ungauged catchments. Water Resources Research, 54(12).

Erfurt, M., Skiadaresis, G., Tijdeman, E., Blauhut, V., Bauhus, J., Glaser, R., Schwarz, J., Tegel, W., and Stahl, K. (2020).
A multidisciplinary drought catalogue for southwestern germany dating back to 1801. Natural Hazards and Earth
System Sciences, 20(11):2979–2995.

Fortesa, J., Ricci, G. F., García-Comendador, J., Gentile, F., Estrany, J., Sauquet, E., Datry, T., and de Girolamo, A. M.
(2021). Analysing hydrological and sediment transport regime in two mediterranean intermittent rivers. CATENA,
196.

Gilmore, T., Birgand, F., and Chapman, K. (2013). Source and magnitude of error in an inexpensive image-based water
level measurement system. Journal of Hydrology, 496:178–186.

Gleason, C. J. and Smith, L. C. (2014). Toward global mapping of river discharge using satellite images and at-many-
stations hydraulic geometry. Proceedings of the National Academy of Sciences of the United States of America,
111(13):4788–4791.

Godsey, S. E. and Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: hydrologically driven variations in
active drainage density, flowing channels and stream order. Hydrological Processes, 28(23):5791–5803.

Hannah, D. M., Demuth, S., van Lanen, H. A. J., Looser, U., Prudhomme, C., Rees, G., Stahl, K., and Tallaksen, L. M.
(2011). Large-scale river flow archives: importance, current status and future needs. Hydrological Processes,
25(7):1191–1200.

Heiner, B., Barfuss, S., and Johnson, M. (2011). Conditional assessment of flow measurement accuracy. Journal of
Irrigation and Drainage Engineering, 137(6):367–374.

Hudson, L. N., Blagoderov, V., Heaton, A., Holtzhausen, P., Livermore, L., Price, B. W., van der Walt, S., and Smith, V. S.
(2015). Inselect: Automating the digitization of natural history collections. PLOS ONE, 10(11):1–15.

Jensen, C. K., McGuire, K. J., McLaughlin, D. L., and Scott, D. T. (2019). Quantifying spatiotemporal variation in head-
water stream length using flow intermittency sensors. Environmental Monitoring and Assessment, 191(4):226.

Kaplan, N. H., Blume, T., andWeiler, M. (2020). Predicting probabilities of streamflow intermittency across a temperate
mesoscale catchment. Hydrology and Earth System Sciences, 24(11):5453–5472.

Kaplan, N. H., Sohrt, E., Blume, T., and Weiler, M. (2019). Time series of streamflow occurrence from 182 sites in
ephemeral, intermittent and perennial streams in the attert catchment, luxembourg.

Kotte, S., Rajesh Kumar, P., and Injeti, S. K. (2018). An efficient approach for optimal multilevel thresholding selection
for gray scale images based on improved differential search algorithm. Ain Shams Engineering Journal, 9(4):1043–
1067.



22 Herzog et al.

Larson, P. and Runyan, C. (2009). Evaluation of a Capacitance Water Level Recorder and Calibration Methods in an
Urban Environment. Cuere technical memo 2009/003, University of Maryland, Baltimore County.

LAWA (2018). Leitfaden zur Hydrometrie des Bundes und der Länder - Pegelhandbuch., volume 2018. Kulturbuch-
Verlag GmbH, Stuttgart, Germany.

Leduc, P., Ashmore, P., and Sjogren, D. (2018). Technical note: Stage and water width measurement of a mountain
stream using a simple time-lapse camera. Hydrology and Earth System Sciences, 22(1):1–11.

Leigh, C. and Datry, T. (2017). Drying as a primary hydrological determinant of biodiversity in river systems: a broad-
scale analysis. Ecography, 40(4):487–499.

Ljubičić, R., Strelnikova, D., Perks, M. T., Eltner, A., Peña-Haro, S., Pizarro, A., Dal Sasso, S. F., Scherling, U., Vuono,
P., and Manfreda, S. (2021). A comparison of tools and techniques for stabilising unmanned aerial system (uas)
imagery for surface flow observations. Hydrology and Earth System Sciences, 25(9):5105–5132.

Ltd, D. S. (2012). Odyssey data logging software operatingmanual. http://odysseydatarecording.com/download/Odysse
Data Logging Software.pdf. (2021-05-25).

Ltd, D. S. (2013). Odyssey capacitive water level logger. http://odysseydatarecording.com/download/Odyssey Capac-
itive Water Level Logger 2013.pdf. (2021-05-25).

Meerveld, H. J. I., Sauquet, E., Gallart, F., Sefton, C., Seibert, J., and Bishop, K. (2020). Aqua temporaria incognita.
Hydrological Processes, 34(26):5704–5711.

Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C.,
and Datry, T. (2021). Global prevalence of non-perennial rivers and streams. Nature, 594(7863):391–397.

Olson, S. and Brouillette, M. (2006). A logistic regression equation for estimating the probability of a stream in vermont
having intermittent flow. https://pubs.usgs.gov/sir/2006/5217/. (17.06.2021).

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62–66.

Peirce, S. and Lindsay, J. (2015). Characterizing ephemeral streams in a southern ontario watershed using electrical
resistance sensors. Hydrological Processes, 29(1):103–111.

Perks, M. T., Dal Sasso, S. F., Hauet, A., Jamieson, E., Le Coz, J., Pearce, S., Peña-Haro, S., Pizarro, A., Strelnikova,
D., Tauro, F., Bomhof, J., Grimaldi, S., Goulet, A., Hortobágyi, B., Jodeau, M., Käfer, S., Ljubičić, R., Maddock, I.,
Mayr, P., Paulus, G., Pénard, L., Sinclair, L., and Manfreda, S. (2020). Towards harmonisation of image velocimetry
techniques for river surface velocity observations. Earth System Science Data, 12(3):1545–1559.

Petra Döll and Hannes Müller Schmied (2012). How is the impact of climate change on river flow regimes related to
the impact on mean annual runoff? a global-scale analysis. Environmental Research Letters, 7(1):014037.

Piton, G., Recking, A., Le Coz, J., Bellot, H., Hauet, A., and Jodeau, M. (2018). Reconstructing depth–averaged open–
channel flows using image velocimetry and photogrammetry. Water Resources Research, 54(6):4164–4179.



Herzog et al. 23

Roelens, J., Rosier, I., Dondeyne, S., van Orshoven, J., and Diels, J. (2018). Extracting drainage networks and their
connectivity using lidar data. Hydrological Processes, 32(8):1026–1037.

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). Nih image to imagej: 25 years of image analysis. Nature
Methods, 9(7):671–675.

Seibert, J., Strobl, B., Etter, S., Hummer, P., and vanMeerveld, H. J. (2019). Virtual staff gauges for crowd-based stream
level observations. Frontiers in Earth Science, 7:70.

Shaw, S. B. (2016). Investigating the linkage between streamflow recession rates and channel network contraction in
a mesoscale catchment in new york state. Hydrological Processes, 30(3):479–492.

Shaw, S. B., Bonville, D. B., and Chandler, D. G. (2017). Combining observations of channel network contraction and
spatial discharge variation to inform spatial controls on baseflow in birch creek, catskill mountains, usa. Journal of
Hydrology: Regional Studies, 12:1–12.

Simon Etter, Barbara Strobl, Ilja van Meerveld, and Jan Seibert (2020). Quality and timing of crowd–based water level
class observations. Hydrological Processes, 34(22):4365–4378.

Spence, C. and Mengistu, S. (2016). Deployment of an unmanned aerial system to assist in mapping an intermittent
stream. Hydrological Processes, 30(3):493–500.

Stoll, S. and Weiler, M. (2010). Explicit simulations of stream networks to guide hydrological modelling in ungauged
basins. Hydrology and Earth System Sciences, 14(8):1435–1448.

Strobl, B., Etter, S., van Meerveld, I., and Seibert, J. (2020). Accuracy of crowdsourced streamflow and stream level
class estimates. Hydrological Sciences Journal, 65(5):823–841.

Uhlenbrook, S. (1999). Untersuchung und modellierung der abflussbildung in einem mesoskaligen einzugsgebiet.
Freiburger Schriften zur Hydrologie, 10(10):201.

Wissmeier, L. and Uhlenbrook, S. (2007). Distributed, high-resolution modelling of 18o signals in a meso-scale catch-
ment. Journal of Hydrology, 332(3-4):497–510.

Young, D. S., Hart, J. K., andMartinez, K. (2015). Image analysis techniques to estimate river discharge using time-lapse
cameras in remote locations. Computers & Geosciences, 76:1–10.

Zanetti, F., Durighetto, N., Vingiani, F., and Botter, G. (2021). Analysing river network dynamics and active length -
discharge relationship using water presence sensors. Hydrology and Earth System Sciences Discussions, pages
1–27.

Zimmer, M. A., Kaiser, K. E., Blaszczak, J. R., Zipper, S. C., Hammond, J. C., Fritz, K. M., Costigan, K. H., Hosen, J.,
Godsey, S. E., Allen, G. H., Kampf, S., Burrows, R. M., Krabbenhoft, C. A., Dodds, W., Hale, R., OLDEN, J. D.,
Shanafield, M., DelVecchia, A. G., Ward, A. S., Mims, M. C., Datry, T., BOGAN, M. T., Boersma, K. S., Busch, M. H.,
Jones, C. N., Burgin, A. J., and Allen, D. C. (2020). Zero or not? causes and consequences of zero-flow stream gage
readings. WIREs Water, 7(3).

Zimmer, M. A. and McGlynn, B. L. (2017). Ephemeral and intermittent runoff generation processes in a low relief,
highly weathered catchment. Water Resources Research, 53(8):7055–7077.



24 Herzog et al.

GRAPHICAL ABSTRACT

Measuring zero water level in stream reaches: A comparison
of an image-based versus a conventional method

Amelie Herzog, Kerstin Stahl, Veit Blauhut, Markus Weiler


