REFERENCES:
1. Larsson, P., et al., The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet, 2005. 37 (2): p. 153-9.
2. Prevention, C.f.D.C.a. Tularemia . 2020; Available from: https://www.cdc.gov/tularemia/index.html.
3. Dennis, D.T., et al., Tularemia as a biological weapon: medical and public health management. JAMA, 2001. 285 (21): p. 2763-73.
4. Andersson, H., et al., Transcriptional profiling of host responses in mouse lungs following aerosol infection with type A Francisella tularensis. J Med Microbiol, 2006. 55 (Pt 3): p. 263-271.
5. Keim, P., A. Johansson, and D.M. Wagner, Molecular epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci, 2007. 1105 : p. 30-66.
6. Ellis, J., et al., Tularemia. Clin Microbiol Rev, 2002.15 (4): p. 631-46.
7. Heras, B., et al., DSB proteins and bacterial pathogenicity.Nat Rev Microbiol, 2009. 7 (3): p. 215-25.
8. Chandler, J.C., The Surface proteome of Francisella tularensis , in Department of Microbiology, Immunology, and Pathology . 2011, Colorado State University, Fort Collins.
9. Chu, P., et al., Live attenuated Francisella novicida vaccine protects against Francisella tularensis pulmonary challenge in rats and non-human primates. PLoS Pathog, 2014. 10 (10): p. e1004439.
10. El-Gebali, S., et al., The Pfam protein families database in 2019. Nucleic Acids Res, 2019. 47 (D1): p. D427-D432.
11. O’Leary, N.A., et al., Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.Nucleic Acids Res, 2016. 44 (D1): p. D733-45.
12. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25 (17): p. 3389-402.
13. Jaroszewski, L., et al., FFAS server: novel features and applications. Nucleic Acids Res, 2011. 39 (Web Server issue): p. W38-44.
14. Zimmermann, L., et al., A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol, 2018. 430 (15): p. 2237-2243.
15. Holm, L., Using Dali for Protein Structure Comparison.Methods Mol Biol, 2020. 2112 : p. 29-42.
16. Ye, Y. and A. Godzik, FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res, 2004. 32 (Web Server issue): p. W582-5.
17. Tosi, T., et al., Structures of the tumor necrosis factor alpha inducing protein Tipalpha: a novel virulence factor from Helicobacter pylori. FEBS Lett, 2009. 583 (10): p. 1581-5.
18. Anantharaman, V. and L. Aravind, The SHS2 module is a common structural theme in functionally diverse protein groups, like Rpb7p, FtsA, GyrI, and MTH1598/TM1083 superfamilies. Proteins, 2004.56 (4): p. 795-807.
19. Quarantini, S., L. Cendron, and G. Zanotti, Crystal structure of the secreted protein HP1454 from the human pathogen Helicobacter pylori. Proteins, 2014. 82 (10): p. 2868-73.
20. Vallese, F., et al., Helicobacter pylori antigenic Lpp20 is a structural homologue of Tipalpha and promotes epithelial-mesenchymal transition. Biochim Biophys Acta Gen Subj, 2017. 1861 (12): p. 3263-3271.
21. Kostrzynska, M., et al., Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori. J Bacteriol, 1994. 176 (19): p. 5938-48.
22. Gao, M., et al., Crystal structure of TNF-alpha-inducing protein from Helicobacter pylori in active form reveals the intrinsic molecular flexibility for unique DNA-binding. PLoS One, 2012.7 (7): p. e41871.
23. Arockiasamy, A., et al., Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site. Protein Sci, 2011. 20 (5): p. 827-33.
24. Walters, K.A., et al., Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One, 2013. 8 (5): p. e62412.
25. Kwon, K. and S.N. Peterson, High-Throughput Cloning for Biophysical Applications in Structural Genomics and Drug Discovery: Methods and Protocols , W.F. Anderson, Editor. 2014, Springer: New York.
26. Millard, C.S., et al., A less laborious approach to the high-throughput production of recombinant proteins in Escherichia coli using 2-liter plastic bottles. Protein Expr Purif, 2003.29 (2): p. 311-20.
27. Shuvalova, L., Parallel protein purification. Methods Mol Biol, 2014. 1140 : p. 137-43.
28. Klancher, C.A., et al., The ChiS-Family DNA-Binding Domain Contains a Cryptic Helix-Turn-Helix Variant. mBio, 2021.12 (2).
29. Schrödinger, L., The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. 2020.
30. Pettersen, E.F., et al., UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem, 2004.25 (13): p. 1605-12.
31. Li, Z., et al., POSA: a user-driven, interactive multiple protein structure alignment server. Nucleic Acids Res, 2014.42 (Web Server issue): p. W240-5.
32. Potter, S.C., et al., HMMER web server: 2018 update. Nucleic Acids Res, 2018. 46 (W1): p. W200-W204.