REFERENCES:
1. Larsson, P., et al., The complete genome sequence of
Francisella tularensis, the causative agent of tularemia. Nat Genet,
2005. 37 (2): p. 153-9.
2. Prevention, C.f.D.C.a. Tularemia . 2020; Available from:
https://www.cdc.gov/tularemia/index.html.
3. Dennis, D.T., et al., Tularemia as a biological weapon: medical
and public health management. JAMA, 2001. 285 (21): p. 2763-73.
4. Andersson, H., et al., Transcriptional profiling of host
responses in mouse lungs following aerosol infection with type A
Francisella tularensis. J Med Microbiol, 2006. 55 (Pt 3): p.
263-271.
5. Keim, P., A. Johansson, and D.M. Wagner, Molecular
epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci,
2007. 1105 : p. 30-66.
6. Ellis, J., et al., Tularemia. Clin Microbiol Rev, 2002.15 (4): p. 631-46.
7. Heras, B., et al., DSB proteins and bacterial pathogenicity.Nat Rev Microbiol, 2009. 7 (3): p. 215-25.
8. Chandler, J.C., The Surface proteome of Francisella
tularensis , in Department of Microbiology, Immunology, and
Pathology . 2011, Colorado State University, Fort Collins.
9. Chu, P., et al., Live attenuated Francisella novicida vaccine
protects against Francisella tularensis pulmonary challenge in rats and
non-human primates. PLoS Pathog, 2014. 10 (10): p. e1004439.
10. El-Gebali, S., et al., The Pfam protein families database in
2019. Nucleic Acids Res, 2019. 47 (D1): p. D427-D432.
11. O’Leary, N.A., et al., Reference sequence (RefSeq) database at
NCBI: current status, taxonomic expansion, and functional annotation.Nucleic Acids Res, 2016. 44 (D1): p. D733-45.
12. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res,
1997. 25 (17): p. 3389-402.
13. Jaroszewski, L., et al., FFAS server: novel features and
applications. Nucleic Acids Res, 2011. 39 (Web Server issue):
p. W38-44.
14. Zimmermann, L., et al., A Completely Reimplemented MPI
Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol
Biol, 2018. 430 (15): p. 2237-2243.
15. Holm, L., Using Dali for Protein Structure Comparison.Methods Mol Biol, 2020. 2112 : p. 29-42.
16. Ye, Y. and A. Godzik, FATCAT: a web server for flexible
structure comparison and structure similarity searching. Nucleic Acids
Res, 2004. 32 (Web Server issue): p. W582-5.
17. Tosi, T., et al., Structures of the tumor necrosis factor
alpha inducing protein Tipalpha: a novel virulence factor from
Helicobacter pylori. FEBS Lett, 2009. 583 (10): p. 1581-5.
18. Anantharaman, V. and L. Aravind, The SHS2 module is a common
structural theme in functionally diverse protein groups, like Rpb7p,
FtsA, GyrI, and MTH1598/TM1083 superfamilies. Proteins, 2004.56 (4): p. 795-807.
19. Quarantini, S., L. Cendron, and G. Zanotti, Crystal structure
of the secreted protein HP1454 from the human pathogen Helicobacter
pylori. Proteins, 2014. 82 (10): p. 2868-73.
20. Vallese, F., et al., Helicobacter pylori antigenic Lpp20 is a
structural homologue of Tipalpha and promotes epithelial-mesenchymal
transition. Biochim Biophys Acta Gen Subj, 2017. 1861 (12): p.
3263-3271.
21. Kostrzynska, M., et al., Molecular characterization of a
conserved 20-kilodalton membrane-associated lipoprotein antigen of
Helicobacter pylori. J Bacteriol, 1994. 176 (19): p. 5938-48.
22. Gao, M., et al., Crystal structure of TNF-alpha-inducing
protein from Helicobacter pylori in active form reveals the intrinsic
molecular flexibility for unique DNA-binding. PLoS One, 2012.7 (7): p. e41871.
23. Arockiasamy, A., et al., Crystal structure of calcium dodecin
(Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding
site. Protein Sci, 2011. 20 (5): p. 827-33.
24. Walters, K.A., et al., Francisella tularensis subsp.
tularensis induces a unique pulmonary inflammatory response: role of
bacterial gene expression in temporal regulation of host defense
responses. PLoS One, 2013. 8 (5): p. e62412.
25. Kwon, K. and S.N. Peterson, High-Throughput Cloning for
Biophysical Applications in Structural Genomics and Drug
Discovery: Methods and Protocols , W.F. Anderson, Editor. 2014,
Springer: New York.
26. Millard, C.S., et al., A less laborious approach to the
high-throughput production of recombinant proteins in Escherichia coli
using 2-liter plastic bottles. Protein Expr Purif, 2003.29 (2): p. 311-20.
27. Shuvalova, L., Parallel protein purification. Methods Mol
Biol, 2014. 1140 : p. 137-43.
28. Klancher, C.A., et al., The ChiS-Family DNA-Binding Domain
Contains a Cryptic Helix-Turn-Helix Variant. mBio, 2021.12 (2).
29. Schrödinger, L., The PyMOL Molecular Graphics System, Version
2.0 Schrödinger, LLC. 2020.
30. Pettersen, E.F., et al., UCSF Chimera–a visualization
system for exploratory research and analysis. J Comput Chem, 2004.25 (13): p. 1605-12.
31. Li, Z., et al., POSA: a user-driven, interactive multiple
protein structure alignment server. Nucleic Acids Res, 2014.42 (Web Server issue): p. W240-5.
32. Potter, S.C., et al., HMMER web server: 2018 update. Nucleic
Acids Res, 2018. 46 (W1): p. W200-W204.