References
1. Morimoto, RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008;22:1427-1438.
2. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl, FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013;82: 323-355.
3. Li Y, Yan J, Zhang X, Huang K. Disulfide bonds in amyloidogenesis diseases related proteins. Proteins 2013;81:1862-1873.
4. Avni A, Swasthi HM, Majumdar A, Mukhopadhyay S. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. Progress in Molecular Biology and Translational Science 2019;166:109-143.
5. Wickner RB, Shewmaker FP, Bateman DA, Edskes HK, Gorkovskiy A, Dayani Y, Bezsonov EE. Yeast prions: structure, biology, and prion-handling systems. Microbiol Mol Biol Rev 2015;79:1-17.
6. Guo JL, Lee VM. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014;20:130-138.
7. Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 2011;470:540-542.
8. Kiktev DA, Melomed MM, Lu CD, Newnam GP, Chernoff YO. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex. Mol Microbiol 2015:96:621-632.
9. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004:428:323-328.
10. Liu Y, Wei H, Wang J, Qu J, Zhao W, Tao H. Effects of randomizing the Sup35NM prion domain sequence on formation of amyloid fibrils in vitro, Biochem Biophys Res Commun 2007:353:139-146.
11. Tanaka M, Weissman JS. An efficient protein transformation protocol for introducing prions into yeast. Methods Enzymol 2006:412:185-200.
12. Fink, GR. A transforming principle. Cell 2005;120:153-154.
13. Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV. Yeast[PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, J Biol Chem 2003;278:49636-49643.
14. Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 2004;304:1793-1797. 15. Ohta S, Kawai-Noma S, Kitamura A, Pack CG, Kinjo M, Taguchi H. The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy. Biochem Biophys Res Commun 2013;442:28-32. 16. Tessier PM, Lindquist S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol 2009;16:598-605. 17. Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M. Differences in prion strain conformations result from non-native interactions in a nucleus, Nat Chem Biol 2010;6:225-230. 18. Krishnan R, Goodman JL, Mukhopadhyay S, Pacheco CD, Lemke EA, Deniz A A, Lindquist S. Conserved features of intermediates in amyloid assembly determine their benign or toxic states. Proc Natl Acad Sci 2012;109:11172-11177. 19. Park S, Wang X, Xi W, Richardson R, Laue TM, Denis CL. The non-prion SUP35 preexists in large chaperone-containing molecular complexes. Proteins 2021;1- 12. 20. Marshall KE, Offerdahl DK, Speare JO, Dorward DW, Hasenkrug AB, Carmody AB, Baron GS. Glycosylphosphatidylinositol anchoring directs the assembly of Sup35NM protein into non-fibrillar, membrane-bound aggregates. J Bio Chem 2014: 289:12245-12263. 21. Garrity SJ, Sivanathan V, Dong J, Lindquist S, Hochschild A. Conversion of a yeast prion protein to an infectious form in bacteria. Proc Natl Acad Sci 2010;107: 10596-10601. 22. Krzewska J, Melki R. Molecular chaperones and the assembly of the prion Sup35p, an in vitro study, EMBO J 2006;25:822-833. 23. Krzewska J, Tanak, M, Burston SG, Melki R. Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain. J Biol Chem 2007;282:1679-1686. 24. Horstman AL, Kuehn MJ. Enterotoxigenic Escherichia colisecretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 2000;275: 12489-12496. 25. Chien P, DePace AH, Collins SR, Weissman JS. Generation of prion transmission barriers by mutational control of amyloid conformations. Nature 2003;424;948-951. 26. Wang MY, Zhang FF, Song C, Shi PF, Zhu J. A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System. Sci Rep 2016;6. 27. Lin J, Lucius AL. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding. Biochemistry 2016;55:1758-1771. 28. Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S. Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling. J Mo. Biol 2015; 427:3877-3889. 29. Freitag DG, Ouimet PM, Girvitz TL, Kapoor M. Heat shock protein 80 of Neurospora crassa, a cytosolic molecular chaperone of the eukaryotic stress 90 family, interacts directly with heat shock protein 70, Biochemistry 1997;36:10221-10229. 30. Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010;11:515-528. 31. Shorter J, Lindquist S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell 2006;23:425-438.