In this paper, we investigate the initial value problem of a nonlocal sine-type µ-Camassa-Holm (µCH) equation, which is the µ-version of the sine-type CH equation. We first discuss its local well-posedness in the framework of Besov spaces. Then a sufficient condition on the initial data is provided to ensure the occurance of the wave-breaking phenomenon. We finally prove the H¨older continuity of the data-to-solution map, and find the explicit formula of the global weak periodic peakon solution.