References
- Ai, C., Liang, G., Sun, J., Wang, X., He, P., Zhou, W., & He, X.
(2015). Reduced dependence of rhizosphere microbiome on plant-derived
carbon in 32-year long-term inorganic and organic fertilized soils.Soil Biology & Biochemistry, 80, 70–78.
https://doi.org/10.1016/j.soilbio.2014.09.028
- Bardgett, R. D., Jones, A. C., Jones, D. L., Kemmitt, S. J., Cook, R.,
& Hobbs, P. J. (2001). Soil microbial community patterns related to
the history and intensity of grazing in sub-montane ecosystems.Soil Biology & Biochemistry, 33, 1653–1664.
https://doi.org/10.1016/S0038-0717(01)00086-4
- Bastida, F., Eldridge, D. J., Garcia, C., Kenny Png, G., Bardgett, R.
D., & Delgado-Baquerizo, M. (2021). Soil microbial diversity-biomass
relationships are driven by soil carbon content across global biomes.The ISME Journal, 15, 2081–2091.
https://doi.org/10.1038/s41396-021-00906-0
- Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T.,
O’Connor, T., O’Farrell P. J., Smith, H. G., & Lindborg, R. (2019).
Grasslands-more important for ecosystem services than you might think.Ecosphere, 10, e02582. https://doi.org/10.1002/ecs2.2582
- Caruso, T., Chan, Y., Lacap, D. C., Lau, M. C., McKay, C. P., &
Pointing, S. B. (2011). Stochastic and deterministic processes
interact in the assembly of desert microbial communities on a global
scale. The ISME Journal, 5, 1406–1413.
https://doi.org/10.1038/ismej.2011.21
- Chase, J.M. (2010). Stochastic community assembly causes higher
biodiversity in more productive environments. Science, 328,1388–1391. https://doi.org/10.1126/science.1187820
- Chase, J. M., & Myers, J. A.
(2011). Disentangling the importance of ecological niches from
stochastic processes across scales. Philosophical Transactions
of the Royal Society B-Biological Sciences, 366, 2351–2363.
https://doi.org/10.1098/rstb.2011.0063
- Chen, Y., Neilson, J. W., Kushwaha, P., Maier, R. M., & Barberan, A.
(2021). Life-history strategies of soil microbial communities in an
arid ecosystem. The ISME Journal, 15, 649–657.
https://doi.org/10.1038/S41396-020-00803-Y
- Chen, Y. L., Ding, J. Z., Peng, Y. F., Li, F., Yang, G. B., Liu, L.,
Qin, S. Q., Fang, K., & Yang, Y. H. (2016). Patterns and drivers of
soil microbial communities in Tibetan alpine and global terrestrial
ecosystems. Journal of Biogeography, 43, 2027–2039.
https://doi.org/ 10.1111/jbi.12806
- Cleveland, C. C., Nemergut, D. R., Schmidt, S. K., & Townsend, A. R.
(2006). Increases in soil respiration following labile carbon
additions linked to rapid shifts in soil microbial community
composition. Biogeochemistry, 82, 229–240.
https://doi.org/10.1016/j.tim.2013.09.005
- Delgado‐Baquerizo, M., Maestre, F. T., Reich, P. B., Trivedi, P.,
Osanai, Y., Liu, Y. R., Hamonts, K., Jeffries, T. C., & Singh, B. K.
(2016). Carbon content and climate variability drive global soil
bacterial diversity patterns. Ecological Monographs, 86,373–390. https://doi.org/10.1002/ecm.1216
- DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,
Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006).
Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Applied and Environmental Microbiology,
72, 5069–5072. https://doi.org/10.1128/aem.03006-05
- de Vries,
F.T., & Shade, A. (2013).
Controls on soil microbial community stability under climate change.Frontiers in Microbiology, 4, 265.
https://doi.org/10.3389/fmicb.2013.00265
- Dong, C., Shi, Y., Wang, J., Zeng, H., & Wang, W. (2021). Divergent
responses of the soil bacteria community to multi‐level nitrogen
enrichment in temperate grasslands under different degrees of
degradation. Land Degradation & Development, 32, 3524–3535.
https://doi.org/10.1002/ldr.3935
- Dong, C., Wang, W., Liu, H., Xu, X., Chen, X., & Zeng, H. (2021).
Comparison of soil microbial responses to nitrogen addition between
ex-arable grassland and natural grassland. Journal of Soils and
Sediments, 21, 1371–1384. https://doi.org/10.1007/s11368-021-02892-4
- Dong, L., Liang, C., Li, F. Y., Zhao, L., Ma, W., Wang, L., Wen, L.,
Zheng, Y., Li, Z., Zhao, C., & Tuvshintogtokh, I. (2019). Community
phylogenetic structure of grasslands and its relationship with
environmental factors on the Mongolian Plateau. Journal of Arid
Land, 11, 595–607. https://doi.org/10.1007/s40333-019-0122-6
- Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown,
J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020).
PICRUSt2 for prediction of metagenome functions. Nature
Biotechnology, 38, 685–688.
https://doi.org/10.1038/s41587-020-0548-6
- Evans, S. E., & Wallenstein, M. D. (2014). Climate change alters
ecological strategies of soil bacteria. Ecology Letters, 17,155–164. https://doi.org/10.1111/ele.12206
- Fan, K., Weisenhorn, P., Gilbert, J. A., Shi, Y., Bai, Y., & Chu, H.
(2018). Soil pH correlates with the co-occurrence and assemblage
process of diazotrophic communities in rhizosphere and bulk soils of
wheat fields. Soil Biology & Biochemistry, 121,185–192. https://doi.org/10.1016/j.soilbio.2018.03.017
- Feng, Y., Chen, R., Stegen, J. C., Guo, Z., Zhang, J., Li, Z., & Lin,
X. (2018). Two key features influencing community assembly processes
at regional scale: Initial state and degree of change in environmental
conditions. Molecular Ecology, 27, 5238–5251.
https://doi.org/10.1111/mec.14914
- Feng, Y., Guo, Z., Zhong, L., Zhao, F., Zhang, J., & Lin, X. (2017).
Balanced fertilization decreases environmental filtering on soil
bacterial community assemblage in North China. Frontiers in
Microbiology, 8, 2376. https://doi.org/10.3389/fmicb.2017.02376
- Ferrenberg, S., O’Neill, S. P., Knelman, J. E., Todd, B., Duggan, S.,
Bradley, D., Robinson, T., Schmidt, S. K., Townsend, A. R., Williams,
M. W., Cleveland, C. C., Melbourne, B. A., Jiang, L., & Nemergut, D.
R. (2013). Changes in assembly processes in soil bacterial communities
following a wildfire disturbance. The ISME Journal, 7,1102–1111. https://doi.org/10.1038/ismej.2013.11
- Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an
ecological classification of soil bacteria. Ecology, 88,1354–1364. https://doi.org/10.1890/05-1839
- Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M.
A., & Knight, R. (2012). Comparative metagenomic, phylogenetic and
physiological analyses of soil microbial communities across nitrogen
gradients. The ISME Journal, 6, 1007–1017.
https://doi.org/10.1038/ISMEJ.2011.159
- Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., &
Odeh, I. (2014). Quantitative assessment of the contributions of
climate change and human activities on global grassland degradation.Environmental Earth Sciences, 72, 4273–4282.
https://doi.org/10.1007/s12665-014-3322-6
- Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S.,
Breulmann, M., Yannarell, A., Beman, J. M., Abell, G., Philippot, L.,
Prosser, J., Foulquier, A., Yuste, J. C., Glanville, H. C., Jones, D.
L., Angel, R., Salminen, J., Newton, R. J., Burgmann, H., Ingram, L.
J., Hamer, U., et al. (2016). Microbes as engines of ecosystem
function: When does community structure enhance predictions of
ecosystem processes? Frontiers in Microbiology, 7, 214.
https://doi.org/10.3389/fmicb.2016.00214.
- Habel, J. C., Dengler, J., Janišová, M., Török, P., Wellstein, C., &
Wiezik, M. (2013). European grassland ecosystems: threatened hotspots
of biodiversity. Biodiversity and Conservation, 22, 2131–2138.
https://doi.org/10.1007/s10531-013-0537-x
- Han, X., Li, Y., Du, X., Li, Y., Wang, Z., Jiang, S., & Li, Q.
(2020). Effect of grassland degradation on soil quality and soil
biotic community in a semi-arid temperate steppe. Ecological
Processes, 9, 63. https://doi.org/10.1186/s13717-020-00256-3
- Ho, A., Di Lonardo, D. P., & Bodelier, P. L. (2017). Revisiting life
strategy concepts in environmental microbial ecology. FEMS
Microbiology Ecology, 93. https://doi.org/10.1093/femsec/fix006
- Hu, Y., Xiang, D., Veresoglou, S. D., Chen, F., Chen, Y., Hao, Z.,
Zhang, X., & Chen, B. (2014). Soil organic carbon and soil structure
are driving microbial abundance and community composition across the
arid and semi-arid grasslands in northern China. Soil Biology &
Biochemistry, 77, 51–57.
https://doi.org/10.1016/j.soilbio.2014.06.014
- Hu, Z., Li, S., Guo, Q., Niu, S., He, N., Li, L., & Yu, G. (2016). A
synthesis of the effect of grazing exclusion on carbon dynamics in
grasslands in China. Global Change Biology, 22, 1385–1393.
https://doi.org/10.1111/gcb.13133
- Ke, P. J., Miki, T., & Ding, T. S. (2015). The soil microbial
community predicts the importance of plant traits in plant-soil
feedback. New Phytol, 206, 329–341. https://doi.org/
10.1111/nph.13215
- Knelman, J., Schmidt, S., Garayburu-Caruso, V., Kumar, S., & Graham,
E. (2019). Multiple, compounding disturbances in a forest ecosystem:
fire Increases susceptibility of soil edaphic properties, bacterial
community structure, and function to change with extreme precipitation
event. Soil Systems, 3. https://doi.org/10.3390/soils ystem
s3020040
- Leff, J. W., Jones, S. E., Prober, S. M., Barberan, A., Borer, E. T.,
Firn, J. L., Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops,
J. M., McCulley, R. L., La Pierre, K., Risch, A. C., Seabloom, E. W.,
Schutz, M., Steenbock, C., Stevens, C. J., & Fierer, N. (2015).
Consistent responses of soil microbial communities to elevated
nutrient inputs in grasslands across the globe. Proceedings of
the National Academy of Sciences, 112, 10967–10972.
https://doi.org/10.1073/pnas.1508382112
- Li, H., Yang, S., Semenov, M. V., Yao, F., Ye, J., Bu, R., Ma, R.,
Lin, J., Kurganova, I., Wang, X., Deng, Y., Kravchenko, I., Jiang, Y.,
& Kuzyakov, Y. (2021). Temperature sensitivity of SOM decomposition
is linked with a K -selected microbial community. Global
Change Biology, 27, 2763–2779. https://doi.org/10.1111/gcb.15593
- Li, P., Liu, J., Jiang, C., Wu, M., Liu, M., & Li, Z. (2019).
Distinct successions of common and rare bacteria in soil under humic
acid amendment - A microcosm study. Frontiers in Microbiology,
10, 2271. https://doi.org/10.3389/fmicb.2019.02271
- Liu, W., Graham, E. B., Zhong, L., Zhang, J., Li, W., Li, Z., Lin, X.,
Feng, Y., & Wang, J. (2020). Dynamic microbial assembly processes
correspond to soil fertility in sustainable paddy agroecosystems.Functional Ecology, 34, 1244–1256.
https://doi.org/10.1111/1365-2435.13550
- Liu, W., Jiang, L., Yang, S., Wang, Z., Tian, R., Peng, Z., Chen, Y.,
Zhang, X., Kuang, J., Ling, N., Wang, S., & Liu, L. (2020). Critical
transition of soil bacterial diversity and composition triggered by
nitrogen enrichment. Ecology, 101, e03053.
https://doi.org/10.1002/ecy.3053
- Loreau, M., & de Mazancourt, C.
(2013). Biodiversity and ecosystem stability: a synthesis of
underlying mechanisms. Ecology Letters, 16, 106–115.
https://doi.org/10.1111/ele.12073
- Luan, L., Liang, C., Chen, L., Wang, H., Xu, Q., Jiang, Y., & Sun, B.
(2020). Coupling bacterial community assembly to microbial metabolism
across soil profiles. mSystems, 5.https://doi.org/10.1128/mSystems.00298-20
- Luo, Z., Liu, J., Jia, T., Chai, B., & Wu, T. (2020). Soil bacterial
community response and nitrogen cycling variations associated with
subalpine meadow degradation on the Loess Plateau, China.Applied Environmental Microbiology, 86.https://doi.org/10.1128/AEM.00180-20
- Lyu, X., Li, X., Gong, J., Wang,
H., Dang, D., Dou, H., Li, S., & Liu, S. (2020). Comprehensive
grassland degradation monitoring by remote sensing in Xilinhot, Inner
Mongolia, China. Sustainability, 12, 3682.
https://doi.org/10.3390/su12093682
- Maharning, A. R., Mills, A. A. S., & Adl, S. M. (2009). Soil
community changes during secondary succession to naturalized
grasslands. Applied Soil Ecology, 41, 137–147.
https://doi.org/10.1016/j.apsoil.2008.11.003
- Morin, P. J., &
McGrady-Steed, J. (2004).
Biodiversity and ecosystem functioning in aquatic microbial systems: a
new analysis of temporal variation and species richness predictability
relations. Oikos, 104, 458–466.
https://doi.org/10.1111/j.0030-1299.2004.13256.x
- Nie, Y., Wang, M., Zhang, W., Ni, Z., Hashidoko, Y., & Shen, W.
(2018). Ammonium nitrogen content is a dominant predictor of bacterial
community composition in an acidic forest soil with exogenous nitrogen
enrichment. Science of the Total Environment, 624 , 407–415.
https://doi.org/10.1016/j.scitotenv.2017.12.142
- Pandit, S. N., Kolasa, J., & Cottenie, K. (2009). Contrasts between
habitat generalists and specialists: an empirical extension to the
basic metacommunity framework. Ecology, 90, 2253–2262.
https://doi.org/10.1890/08-0851.1
- Pianka, E. R. (1970) On r and K -selection. The American
Naturalist, 104, 592–597. https://doi.org/10.2307/2459020
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza,
P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA
gene database project: improved data processing and web-based tools.Nucleic Acids Research, 41, 590–596.
https://doi.org/10.1093/nar/gks1219
- Raiesi, F., & Salek‐Gilani, S.
(2020). Development of a soil quality index for characterizing effects
of land‐use changes on degradation and ecological restoration of
rangeland soils in a semi‐arid ecosystem. Land Degradation &
Development, 31, 1533–1544. https://doi.org/10.1002/ldr.3553
- Ramette A., & Tiedje, J. M.
(2007). Multiscale responses of microbial life to spatial distance and
environmental heterogeneity in a patchy ecosystem. Proceedings
of the National Academy of Sciences, 104, 2761–2766.
https://doi.org/10.1073/pnas.0610671104
- Rashid, M.I., de Goede, R.G.M., Corral Nunez, G.A., Brussaard, L., &
Lantinga, E.A. (2014). Soil pH and earthworms affect herbage nitrogen
recovery from solid cattle manure in production grassland. Soil
Biology & Biochemistry, 68, 1–8.
https://doi.org/10.1016/j.soilbio.2013.09.013
- Ren, B., Hu, Y., Chen, B., Zhang, Y., Thiele, J., Shi, R., Liu, M., &
Bu, R. (2018). Soil pH and plant diversity shape soil bacterial
community structure in the active layer across the latitudinal
gradients in continuous permafrost region of Northeastern China.Scientific Reports, 8, 5619.
https://doi.org/10.1038/s41598-018-24040-8
- Ren, Z., Wang, Z., Wang, Y., Ma, P., Niu, D., Fu, H., & Elser, J. J.
(2021). Soil bacterial communities vary with grassland degradation in
the Qinghai Lake watershed. Plant and Soil, 460, 541–557.
http://dx.doi.org/10.1007/s11104-020-04823-7
- Reznick, D., Bryant, M. J., & Bashey, F. (2002). r - andK -selection revisited: The role of population regulation in
life-history evolution. Ecology, 83, 1509–1520.
https://doi.org/10.2307/3071970
- Schimel, J. P.,
& Bennett, J. (2004). Nitrogen
mineralization: Challenges of a changing paradigm. Ecology, 85,591–602. https://doi.org/10.1890/03-8002.
- Seong, C. N., Kang, J. W., Lee, J. H., Seo, S. Y., Woo, J. J., Park,
C., Bae, K. S., & Kim, M. S. (2018). Taxonomic hierarchy of the
phylum Firmicutes and novel Firmicutes species originated from various
environments in Korea. Journal of Microbiology, 56, 1–10.
http://dx.doi.org/10.1007/s12275-018-7318-x
- Shin, N. R., Whon, T. W., & Bae, J. W. (2015) Proteobacteria:
microbial signature of dysbiosis in gut microbiota. Trends in
Biotechnology, 33, 496–503.
http://dx.doi.org/10.1016/j.tibtech.2015.06.011
- Siciliano, S. D., Palmer, A. S., Winsley, T., Lamb, E., Bissett, A.,
Brown, M. V., van Dorst, J., Ji, M., Ferrari, B. C., Grogan, P., Chu,
H., & Snape, I. (2014). Soil fertility is associated with fungal and
bacterial richness, whereas pH is associated with community
composition in polar soil microbial communities. Soil Biology& Biochemistry, 78, 10–20.
https://doi.org/10.1016/j.soilbio.2014.07.005
- Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W.,
Murray, C. J., Rockhold, M. L., & Konopka, A. (2013). Quantifying
community assembly processes and identifying features that impose
them. The ISME Journal, 7, 2069–2079.
https://doi.org/10.1038/ismej.2013.93
- Stegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. (2012).
Stochastic and deterministic assembly processes in subsurface
microbial communities. The ISME Journal, 6, 1653–1664.
https://doi.org/10.1038/ismej.2012.22
- Tan, W., Wang, J., Bai, W., Qi, J., & Chen, W. (2020). Soil bacterial
diversity correlates with precipitation and soil pH in long-term maize
cropping systems. Scientific Reports, 10, 6012.
https://doi.org/10.1038/s41598-020-62919-7
- Vadstein, O., Attramadal, K. J. K., Bakke, I., & Olsen, Y. (2018).K -selection as microbial community management strategy: A
method for improved viability of larvae in aquaculture.Frontiers in Microbiology, 9, 2730.
https://doi.org/10.3389/fmicb.2018.02730
- Wang, C., Liu, D., & Bai, E.
(2018). Decreasing soil microbial diversity is associated with
decreasing microbial biomass under nitrogen addition. Soil
Biology & Biochemistry, 120, 126–133.
https://doi.org/10.1016/j.soilbio.2018.02.003
- Wang, S., Wang, X., Han, X., & Deng, Y. (2018). Higher precipitation
strengthens the microbial interactions in semi-arid grassland soils.Global Ecology and Biogeography, 27, 570–580.
https://doi.org/10.1111/geb.12718
- Wang, X., Zhang, W., Liu, Y., Jia, Z., Li, H., Yang, Y., Wang, D., He,
H., & Zhang, X. (2021). Identification of microbial strategies for
labile substrate utilization at phylogenetic classification using a
microcosm approach. Soil Biology & Biochemistry ,153, 107970. https://doi.org/10.1016/j.soilbio.2020.107970
- Wang, X., Zhang, Y., Li, Y., Luo, Y. L., Pan, Y. R., Liu, J., &
Butler, D. (2021). Alkaline environments benefit microbialK- strategists to efficiently utilize protein substrate and
promote valorization of protein waste into short-chain fatty acids.Chemical Engineering Journal, 404, 127147.
https://doi.org/10.1016/j.cej.2020.127147
- Wang, Y., Li, C., Tu, C., Hoyt, G. D., DeForest, J. L., & Hu, S.
(2017). Long-term no-tillage and organic input management enhanced the
diversity and stability of soil microbial community. Science of
the Total Environment, 609, 341–347.
https://doi.org/10.1016/j.scitotenv.2017.07.053
- Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002).
Phylogenies and community ecology. Annual Review of Ecology and
Systematics, 33, 475–505.
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
- Widdig, M., Heintz-Buschart, A., Schleuss, P. M., Guhr, A., Borer, E.
T., Seabloom, E. W., & Spohn, M. (2020). Effects of nitrogen and
phosphorus addition on microbial community composition and element
cycling in a grassland soil. Soil Biology & Biochemistry, 151 ,
108041. https://doi.org/10.1016/j.soilbio.2020.108041
- Yang, Y., Wu, L., Lin, Q., Yuan, M., Xu, D., Yu, H., Hu, Y., Duan, J.,
Li, X., He, Z., Xue, K., van Nostrand, J., Wang, S., & Zhou, J.
(2013). Responses of the functional structure of soil microbial
community to livestock grazing in the Tibetan alpine grassland.Global Change Biology, 19, 637–648.
https://doi.org/10.1111/gcb.12065
- Yao, X., Zhang, N., Zeng, H., & Wang, W. (2018). Effects of soil
depth and plant-soil interaction on microbial community in temperate
grasslands of northern China. Science of the Total Environment,
630, 96–102. https://doi.org/10.1016/j.scitotenv.2018.02.155
- Ye, F., Ma, M. H., Op den Camp, H. J. M., Chatzinotas, A., Li, L., Lv,
M. Q., Wu, S. J., & Wang, Y. (2018). Different recovery processes of
soil ammonia oxidizers from flooding disturbance. Microbial
Ecology, 76, 1041–1052. https://doi.org/10.1007/s00248-018-1183-3
- Yu, X., Polz, M. F., & Alm, E. J. (2019). Interactions in
self-assembled microbial communities saturate with diversity.The ISME Journal, 13, 1602–1617.
https://doi.org/10.1038/s41396-019-0356-5
- Yu, Y., Wu, M., Petropoulos, E., Zhang, J., Nie, J., Liao, Y., Li, Z.,
Lin, X., & Feng, Y. (2019). Responses of paddy soil bacterial
community assembly to different long-term fertilizations in southeast
China. Science of the Total Environment, 656, 625–633.
https://doi.org/10.1016/j.scitotenv.2018.11.359
- Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., & Chu, H.
(2016). Nitrogen fertilization directly affects soil bacterial
diversity and indirectly affects bacterial community composition.Soil Biology & Biochemistry, 92, 41–49.
https://doi.org/10.1016/j.soilbio.2015.09.018
- Zhalnina, K., Dias, R., de Quadros, P. D., Davis-Richardson, A.,
Camargo, F. A., Clark, I. M., McGrath, S. P., Hirsch, P. R., &
Triplett, E. W. (2015). Soil pH determines microbial diversity and
composition in the park grass experiment. Microbial Ecology,
69, 395–406. https://doi.org/10.1007/s00248-014-0530-2
- Zhang, X., Johnston, E. R., Liu, W., Li, L., & Han, X. (2016).
Environmental changes affect the assembly of soil bacterial community
primarily by mediating stochastic processes. Global Change
Biology, 22, 198–207. https://doi.org/10.1111/gcb.13080
- Zhou, J., Kang, S., Schadt, C. W., & Garten Jr., C. T. (2008).
Spatial scaling of functional gene diversity across various microbial
taxa. Proceedings of the National Academy of Sciences, 105,7768–7773. https://doi.org/10.1073/pnas.0709016105
- Zhou, J., Liu, W., Deng, Y., Jiang, Y. H., Xue, K., He, Z., Van
Nostrand, J. D., Wu, L., Yang, Y., & Wang, A. (2013). Stochastic
assembly leads to alternative communities with distinct functions in a
bioreactor microbial community. mBio, 4, e00584-12.
https://doi.org/10.1128/mBio.00584-12
- Zhou, J., & Ning, D. (2017). Stochastic community assembly: Does it
matter in microbial ecology? Microbiology and Molecular, 81,e00002-17.
https://doi.org/10.1128/MMBR.00002-17
Figure 1 . Bacterial community composition at phylum level
across different degradation levels in grassland 1 (A ) and
grassland 2 (C ); Pearson correlation between relative abundance
of dominant phyla and soil nutrient contents in grassland 1 (B )
and grassland 2 (D ).
There were six levels of degradation in grassland 1 and five levels of
degradation in grassland 2, which are represented by numerical indices.
The magnitude of the number represents the level of degradation. A
smaller numerical index indicates a lower degradation level.
The red blocks in heatmap represent positive correlation and the blue
blocks represent negative correlation. “*”, “**”, “***” represent
significant correlations with P values less than 0.05, 0.01, and
0.001, respectively. TP, total phosphorous; TN, total nitrogen; TK,
total potassium; OM, organic matter.
Figure 2 . Bacterial community dynamics in response to grassland
degradation. The proportions of unique species of different phyla in
communities across the degradation levels in grassland 1 (A )
and grassland 2 (B ); The proportions of enriched and deleted
species of different phyla in communities across different degradation
levels in grassland 1 (C ) and grassland 2 (D ); Heatmap
showing correlations between the relative abundances of the top 30
predictive operational taxonomic units (OTUs) and nutrient contents in
grassland 1 (E ) and grassland 2 (F ).
The magnitude of the number represents level of degradation. A smaller
numerical index indicates lower degradation level.
The enriched (depleted) OTUs indicated that the relative abundance of
OTUs in degraded grassland regions was significantly higher (lower) than
that in the region with the least degradation level.
The red blocks in heatmap represent positive correlation and the blue
blocks represent negative correlation. “*”, “**”, “***” represent
significant correlations with P values less than 0.05, 0.01, and
0.001, respectively.
Figure 3 . Variation in
niche breadth and niche overlap of phyla under grassland degradation.
The mean niche breadths (Z-score-transformed) of members in each phyla
across the degradation levels in grassland 1 (A ) and grassland
2 (B ); The mean niche overlaps (Z-score-transformed) of members
in each phyla across the different degradation levels in grassland 1
(C ) and grassland 2 (D )
Figure 4 . Assembly patterns of bacterial communities under
grassland degradation. Patterns of between-community nearest taxon index
(βNTI) across different degradation levels in grassland 1 (A )
and grassland 2 (B ). Horizontal dashed lines indicate upper and
lower significant thresholds at +2 and -2, respectively; The
correlations between ses.MNTD values of phyla and synergic soil nutrient
content (Z-score-transformed) in grassland 1 (C ) and grassland
2 (D ), respectively. PB indicates community members belonging
to Proteobacteria and Bacteroidetes, OUT-PB indicates all community
members excluding Proteobacteria and Bacteroidetes.
Figure 5 . Correction between the average amounts of KO genes
within each species and ses.MNTD values of communities.
Figure 6. Conceptual model of response strategies of bacterial
communities under grassland degradation. In the conceptual model,
stochasticity dominates the assembly processes of bacterial communities
in response to grassland degradation with mild/continuous resource
changes. Along the degradation gradient, the members (mainly
Proteobacteria and Bacteroidetes) with r - strategy gradually
increase to improve community productivity and opportunity, while other
members with K - strategy (mainly Acidobacteria, Actinobacteria,
and Chloroflexi) decrease due to adjustment due functional redundancy
for enhanced community efficiency. A balance in community betweenr - and K - strategies facilitates adaptation to resource
disturbance under grassland degradation.