This work proposes a new strategy for the scaling of bubbling fluidized bed reactors. This strategy is based on the bubble size distribution, bubble coalescence phenomenon, and the chemical reactivity, allowing to deduct the dimensionless number Chejne-Macias-Maya that must remain constant at different scales to guarantee the fluidization regime. The proposed strategy is validated from computational simulations carried out at different operating conditions. Additionally, limits for the validity of this scaling strategy were determined, which agrees with those reported in the literature.