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Introduction
• In the Western United States (U.S.), the combination of increased
and projected droughts, rising irrigation water demands, and pop-
ulation growth is expected to intensify groundwater consump-
tion, leading to adverse consequences like aquifer depletion and
land subsidence [1, 2, 3].

• New water management policies across the Western U.S.
states have begun to include mandatory reporting of ground-
water withdrawals or pumping.

• Understanding how much water is being withdrawn from aquifers
allows water managers to manage groundwater resources more
effectively.

• Most GP in U.S. western states is used for irrigated agriculture,
e.g., in Nevada, California, and Oregon, about 70% to 90% of
groundwater is used for irrigation [4].

• The existing methods for estimating groundwater withdrawals
are either costly and time-consuming, or they cannot generate
dependable predictions at the scales required for effective local
management.

• While our earlier works on integrating remote sensing and ma-
chine learning techniques to estimate gridded (1-5 km) ground-
water use in Kansas [5], Arizona [6, 7], and the Mississippi Allu-
vial Plain [8] have been successful, field-scale estimation is still
a challenge yet often required.

Research Goals and Objectives
• We hypothesize that satellite (Landsat)-based actual evapo-
transpiration (ET) estimates from OpenET [9] can be used to
predict groundwater pumping (GP) or withdrawals and aid
in QAQC of the reported GP data.

• For this purpose, the objectives of this study are as follows:
(a) to pair OpenET estimates of consumptive groundwater use
(Net ET, i.e., actual ET less effective precipitation) and metered
annual GP data from Diamond Valley (DV), Nevada, and Harney
Basin (HB), Oregon;
(b) to evaluate linear regression and ensemble machine learning
(ML) models (e.g., Random Forests) to establish the GP vs Net
ET relationship, and
(c) to compare GP estimates at the field- and basin-scales.

Study Areas
• Diamond Valley (DV) is located in Central Nevada and is a fully
metered groundwater-dependent basin.

• Harney Basn (HB) is located in south-eastern Oregon, where
irrigation is the primary user of groundwater, accounting for 95%
of all groundwater use.

• DV is fully groundwater-dependent, and HB has mixed water
rights, i.e., fields are irrigated with groundwater, surface water,
or a combination of the two.

• The primary crops irrigated in both these regions are alfalfa
and grass hay.

Methods and Datasets
• Net ET: Consumptive groundwater use calculated as satellite-
based actual ET from OpenET [9] minus effective precipitation
from gridMET [10] and ET-Demands [11].

• Irrigation Data: Carefully attributed field boundaries as part of
the OpenET project and water source type data [12].

• Handling outliers: Groundwater withdrawals (or pumping) and
Net ET ratios to identify discrepancies in the metering data. We
remove meter data which are 50% below or 150% above the con-
sumptive use.

• Linear Regression: Building linear regression models with Net
ET as the predictor in DV, Nevada, and HB, Oregon.

• Machine Learning: Comparing ensemble ML approaches, e.g.,
Random Forests (RF), Extremely Randomized Trees (ERT), and
Gradient Boosting Trees (GBT) in DV, Nevada.

• 70-30% train-test split with 5-Fold cross-validation for assessing
the ML models. The ML models have 28 predictors obtained
from various remote sensing and climate data.

Results and Analysis

• The regression models, including the machine learning ones in Kansas [5] and Arizona [7], can explain 50%-80% variance in the pumping depths and ∼90% variance in the pumping volumes.
• We find that the ERT model gives the best prediction performance with test R2 = 0.63, RMSE = 14.82%, MAE = 11.46%, and CV = 17.43%, which is marginally better than the DV, Nevada linear
regression model (R2 = 0.6, RMSE = 15.33%, MAE = 12.11%, and CV = 20.44%).

• The estimated average irrigation efficiency of 88% (92% and 83% in DV and HB, respectively) aligns with known center pivot system efficiencies.

Conclusions
• Here, we employed statistical (linear regression and bootstrapping) and ensemble machine learning approaches to
predict field-scale groundwater withdrawals in Diamond Valley, Nevada, and Harney Basin, Oregon.

• Our data-driven approaches provide a more systematic way of estimating groundwater withdrawals than conventional
methods based on water right duties, potential crop ET, low-quality meter readings, or assumed values.

• We provide improved field-scale assessments of groundwater pumping, consumptive groundwater use, and irrigation
efficiencies, thereby contributing to more efficient and sustainable water management solutions.

• We are currently compiling in-situ groundwater withdrawal measurements across multiple Western U.S. states and
working toward ingesting newer remote sensing products, such as the downscaled SMAP soil moisture data [13].
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