LITERATURE CITED
Aartsma Y, Leroy B, van der Werf W, Dicke M, Poelman EH, Bianchi FJ. 2019. Intraspecific variation in herbivore‐induced plant volatiles influences the spatial range of plant–parasitoid interactions.
Oikos, 128: 77-86.
https://doi.org/10.1111/oik.05151 Aber J, Neilson RP, McNulty S, Lenihan JM, Bachelet D, Drapek RJ. 2001. Forest processes and global environmental change: predicting the effects of individual and multiple stressors: We review the effects of several rapidly changing environmental drivers on ecosystem function, discuss interactions among them, and summarize predicted changes in productivity, carbon storage, and water balance.
BioScience, 51: 735-751.
https://doi.org/10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S. 2010. Intraspecific functional variability: extent, structure and sources of variation.
Journal of Ecology, 98: 604-613.
https://doi.org/10.1111/j.1365-2745.2010.01651.x Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R. 2013. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.
Plant, Cell & Environment, 36: 856-868.
https://doi.org/10.1111/pce.12021 Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene.
Ecosphere, 6: 1-55.
https://doi.org/10.1890/ES15-00203.1Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N. 2015. Tree mortality from drought, insects, and their interactions in a changing climate.
New Phytologist, 208: 674-683.
https://doi.org/10.1111/nph.13477Anderegg WR, Kane JM, Anderegg LD. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress.
Nature Climate Change, 3: 30-36.
https://doi.org/10.1038/nclimate1635Ashraf MI, Bourque CP-A, MacLean DA, Erdle T, Meng F-R. 2015. Estimation of potential impacts of climate change on growth and yield of temperate tree species.
Mitigation and Adaptation Strategies for Global Change, 20: 159-178.
https://doi.org/10.1007/s11027-013-9484-9Barker HL, Holeski LM, Lindroth RL. 2019. Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: a meta‐analysis with Salicaceae.
Functional Ecology, 33: 422-435.
https://doi.org/10.1111/1365-2435.13249Barton KE, Valkama E, Vehviläinen H, Ruohomäki K, Knight TM, Koricheva J. 2015. Additive and non‐additive effects of birch genotypic diversity on arthropod herbivory in a long‐term field experiment.
Oikos, 124: 697-706.
https://doi.org/10.1111/oik.01663Bastiaanse H, Zinkgraf M, Canning C, Tsai H, Lieberman M, Comai L, Henry I, Groover A. 2019. A comprehensive genomic scan reveals gene dosage balance impacts on quantitative traits in
Populus trees.
Proceedings of the National Academy of Sciences, 116: 13690-13699.
https://doi.org/10.1073/pnas.1903229116Bateman A, Lewandrowski W, Stevens JC, Muñoz‐Rojas M. 2018. Ecophysiological indicators to assess drought responses of arid zone native seedlings in reconstructed soils.
Land Degradation & Development, 29: 984-993.
https://doi.org/10.1002/ldr.2660Bates D, Mächler M, Bolker B, Walker S. 2014. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67: 1-48
Batllori E, Lloret F, Aakala T, Anderegg WRL, Aynekulu E, Bendixsen DP, Bentouati A, Bigler C, Burk CJ, Camarero JJ, Colangelo M, Coop JD, Fensham R, Floyd ML, Galiano L, Ganey JL, Gonzalez P, Jacobsen AL, Kane JM, Kitzberger T, Linares JC, Marchetti SB, Matusick G, Michaelian M, Navarro-Cerrillo RM, Pratt RB, Redmond MD, Rigling A, Ripullone F, Sangüesa-Barreda G, Sasal Y, Saura-Mas S, Suarez ML, Veblen TT, Vilà-Cabrera A, Vincke C, Zeeman B. 2020. Forest and woodland replacement patterns following drought-related mortality.
Proceedings of the National Academy of Sciences: 202002314.
https://doi.org/10.1073/pnas.2002314117 Bell R, Owens C, Shapiro M, Tardif J. 1981. Mass rearing and virus production.
The gypsy moth: Research toward integrated pest management. Washington, DC, USA: US Department of Agriculture
https://ageconsearch.umn.edu/record/158053Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A. 2013. Modelling C3 photosynthesis from the chloroplast to the ecosystem.
Plant, Cell & Environment, 36: 1641-1657.
https://doi.org/10.1111/pce.12118Bishop M, Furniss TJ, Mock KE, Lutz JA. 2019. Genetic and spatial structuring of
Populus tremuloides in a mixed-species forest of southwestern Utah, USA.
Western North American Naturalist, 79: 63-71.
https://doi.org/10.3398/064.079.0107Blonder B, Brodrick PG, Walton JA, Chadwick KD, Breckheimer IK, Marchetti S, Ray CA, Mock K. 2022. Remote sensing of cytotype and its consequences for canopy damage in quaking aspen.
Global change biology, In press: .
https://doi.org/10.1111/gcb.16064Blonder B, Ray CA, Walton JA, Castaneda M, Chadwick KD, Clyne MO, Gaüzère P, Iversen LL, Lusk M, Strimbeck GR. 2021. Cytotype and genotype predict mortality and recruitment in Colorado quaking aspen (
Populus tremuloides).
Ecological Applications: e02438.
https://doi.org/10.1002/bes2.1930 Callahan CM, Rowe CA, Ryel RJ, Shaw JD, Madritch MD, Mock KE. 2013. Continental‐scale assessment of genetic diversity and population structure in quaking aspen (
Populus tremuloides).
Journal of Biogeography, 40: 1780-1791.
https://doi.org/10.1111/jbi.12115Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, Whitehouse C. 2018. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada.
Global Change Biology, 24: 655-667.
https://doi.org/10.1111/gcb.13855Cole CT, Morrow CJ, Barker HL, Rubert-Nason KF, Riehl JF, Köllner TG, Lackus ND, Lindroth RL. 2021. Growing up aspen: ontogeny and trade-offs shape growth, defence and reproduction in a foundation species. Annals of botany, 127: 505-517
Cooper HF, Grady KC, Cowan JA, Best RJ, Allan GJ, Whitham TG. 2019. Genotypic variation in phenological plasticity: reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost.
Global Change Biology, 25: 187-200.
https://doi.org/10.1111/gcb.14494DeRose RJ, Gardner R, L, Lindroth RL, Mock K, E. 2022. Polyploidy and growth-defense tradeoffs in natrual populations of western quaking aspen. Journal of Chemical Ecology, In press
DeRose RJ, Mock KE, Long JN. 2015. Cytotype differences in radial increment provide novel insight into aspen reproductive ecology and stand dynamics.
Canadian Journal of Forest Research, 45: 1-8.
https://doi.org/10.1139/cjfr-2014-0382Diallo AM, Nielsen LR, Kjær ED, Petersen KK, Ræbild A. 2016. Polyploidy can confer superiority to West African
Acacia senegal (L.) Willd. trees.
Frontiers in Plant Science, 7: 821.
https://doi.org/10.3389/fpls.2016.00821Diatta O, Diallo AM, Sanogo D, Nielsen LR, Ræbild A, Kjær ED, Hansen JK. 2022. Variation in phenology of
Acacia senegal (L.) Wild. in relation to origin and ploidy level: Implications for climatic adaptation.
Global Ecology and Conservation, 33: e01957.
https://doi.org/10.1016/j.gecco.2021.e01957Donaldson JR, Lindroth RL. 2004. Cottonwood leaf beetle (Coleoptera: Chrysomelidae) performance in relation to variable phytochemistry in juvenile aspen (
Populus tremuloides Michx.).
Environmental Entomology, 33: 1505-1511.
https://doi.org/10.1603/0046-225x-33.5.1505 Elias T, Little E. 1980.
Checklist of United States trees (native and naturalized). Washington D. C.: US Department of Agriculture.
https://doi.org/10.2307/2806152 Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV. 2020. Molecular bases of responses to abiotic stress in trees.
Journal of Experimental Botany, 71: 3765-3779.
https://doi.org/10.1093/jxb/erz532Every AD, Wiens D. 1971. Triploidy in Utah aspen. Madroño, 21: 138-147
Gaynor ML, Lim-Hing S, Mason CM. 2020. Impact of genome duplication on secondary metabolite composition in non-cultivated species: a systematic meta-analysis.
Annals of Botany, 126: 363-376.
https://doi.org/10.1093/aob/mcaa107Gazol A, Camarero J, Anderegg W, Vicente‐Serrano S. 2017. Impacts of droughts on the growth resilience of Northern Hemisphere forests.
Global Ecology and Biogeography, 26: 166-176.
https://doi.org/10.1111/geb.12526Greer BT, Still C, Cullinan GL, Brooks JR, Meinzer FC. 2018. Polyploidy influences plant–environment interactions in quaking aspen (
Populus tremuloides Michx.).
Tree Physiology, 38: 630-640.
https://doi.org/10.1093/treephys/tpx120 Huang G, Rymer PD, Duan H, Smith RA, Tissue DT. 2015. Elevated temperature is more effective than elevated [CO2] in exposing genotypic variation in T
elopea speciosissima growth plasticity: implications for woody plant populations under climate change.
Global Change Biology, 21: 3800-3813.
https://doi.org/10.1111/gcb.12990Jacquet J-S, Bosc A, O'Grady A, Jactel H. 2014. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.
Tree Physiology, 34: 367-376.
https://doi.org/10.1093/treephys/tpu018Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, Weed AS. 2016. Observed and anticipated impacts of drought on forest insects and diseases in the United States.
Forest Ecology and Management, 380: 321-334.
https://doi.org/10.1016/j.foreco.2016.04.051Kreyling J, Puechmaille SJ, Malyshev AV, Valladares F. 2019. Phenotypic plasticity closely linked to climate at origin and resulting in increased mortality under warming and frost stress in a common grass.
Ecology and Evolution, 9: 1344-1352.
https://doi.org/10.1002/ece3.4848 Kruger EL, Volin JC. 2006. Reexamining the empirical relation between plant growth and leaf photosynthesis.
Functional Plant Biology, 33: 421-429.
https://doi.org/10.1071/FP05310Kuznetsova A, Brockhoff PB, Christensen RH. 2017. lmerTest package: Tests in linear mixed effects models.
Journal of Statistical Software, 82: 1-26.
https://doi.org/10.18637/jss.v082.i13 Latutrie M, Tóth EG, Bergeron Y, Tremblay F. 2019. Novel insights into the genetic diversity and clonal structure of natural trembling aspen (
Populus tremuloides Michx.) populations: A transcontinental study.
Journal of Biogeography, 46: 1124-1137.
https://doi.org/10.1111/jbi.13574Lecina‐Diaz J, Martínez‐Vilalta J, Alvarez A, Banqué M, Birkmann J, Feldmeyer D, Vayreda J, Retana J. 2021. Characterizing forest vulnerability and risk to climate‐change hazards.
Frontiers in Ecology and the Environment, 19: 126-133.
https://doi.org/10.1002/fee.2278Li WL, Berlyn GP, Ashton PMS. 1996. Polyploids and their structural and physiological characteristics relative to water deficit in
Betula papyrifera (Betulaceae).
American Journal of Botany, 83: 15-20.
https://doi.org/10.2307/2445949 Long SP, Bernacchi C. 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error.
Journal of Experimental Botany, 54: 2393-2401.
https://doi.org/10.1093/jxb/erg262Lüdecke D, Waggoner PD, Makowski D. 2019. Insight: A unified interface to access information from model objects in R.
Journal of Open Source Software, 4: 1412.
https://doi.org/10.21105/joss.01412 Manzaneda AJ, Rey PJ, Bastida JM, Weiss‐Lehman C, Raskin E, Mitchell‐Olds T. 2012. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae).
New phytologist, 193: 797-805.
https://doi.org/10.1111/j.1469-8137.2011.03988.x McGraw JB, Gottschalk KW, Vavrek MC, Chester A. 1990. Interactive effects of resource availabilities and defoliation on photosynthesis, growth, and mortality of red oak seedlings.
Tree Physiology, 7: 247-254.
https://doi.org/10.1093/treephys/7.1-2-3-4.247Meng F, Peng M, Pang H, Huang F. 2014. Comparison of photosynthesis and leaf ultrastructure on two black locust (
Robinia pseudoacacia L.).
Biochemical Systematics and Ecology, 55: 170-175.
https://doi.org/10.1016/j.bse.2014.03.025Mock KE, Callahan CM, Islam-Faridi MN, Shaw JD, Rai HS, Sanderson SC, Rowe CA, Ryel RJ, Madritch MD, Gardner RS. 2012. Widespread triploidy in western North American aspen (
Populus tremuloides).
PLoS One, 7.
https://doi.org/10.1371/journal.pone.0048406Mtileni M, Venter N, Glennon K. 2021. Ploidy differences affect leaf functional traits, but not water stress responses in a mountain endemic plant population.
South African Journal of Botany, 138: 76-83.
https://doi.org/10.1016/j.sajb.2020.11.029 Niinemets Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation.
Forest Ecology and Management, 260: 1623-1639.
https://doi.org/10.1016/j.foreco.2010.07.054Niwa Y, Sasaki Y. 2003. Plant self-defense mechanisms against oxidative injury and protection of the forest by planting trees of triploids and tetraploids.
Ecotoxicology and Environmental Safety, 55: 70-81.
https://doi.org/10.1016/s0147-6513(02)00095-7 Park CH, Park YE, Yeo HJ, Yoon JS, Park S-Y, Kim JK, Park SU. 2021. Comparative Analysis of Secondary Metabolites and Metabolic Profiling between Diploid and Tetraploid
Morus alba L.
Journal of Agricultural and Food Chemistry, 69: 1300-1307.
https://doi.org/10.1021/acs.jafc.0c06863R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See
http://www.r-project.org/.
Ramsey J, Ramsey TS. 2014. Ecological studies of polyploidy in the 100 years following its discovery.
Philosophical Transactions of the Royal Society B: Biological Sciences, 369: 20130352.
https://doi.org/10.1098/rstb.2013.0352Rubert-Nason KF, Couture JJ, Major IT, Constabel CP, Lindroth RL. 2015. Influence of genotype, environment, and gypsy moth herbivory on local and systemic chemical defenses in trembling aspen (
Populus tremuloides).
Journal of Chemical Ecology, 41: 651-661.
https://doi.org/10.1007/s10886-015-0600-zRubert-Nason KF, Holeski LM, Couture JJ, Gusse A, Undersander DJ, Lindroth RL. 2013. Rapid phytochemical analysis of birch (
Betula) and poplar (
Populus) foliage by near-infrared reflectance spectroscopy.
Analytical and Bioanalytical Chemistry, 405: 1333-1344.
https://doi.org/10.1007/s00216-012-6513-6Rubert‐Nason KF, Couture JJ, Gryzmala EA, Townsend PA, Lindroth RL. 2017. Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions.
Plant, Cell & Environment, 40: 2743-2753.
https://doi.org/10.1111/pce.13042Samaniego L, Thober S, Kumar R, Wanders N, Rakovec O, Pan M, Zink M, Sheffield J, Wood EF, Marx A. 2018. Anthropogenic warming exacerbates European soil moisture droughts.
Nature Climate Change, 8: 421-426.
https://doi.org/10.1038/s41558-018-0138-5Schueler S, Kapeller S, Konrad H, Geburek T, Mengl M, Bozzano M, Koskela J, Lefevre F, Hubert J, Kraigher H. 2013. Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria.
Biodiversity and Conservation, 22: 1151-1166.
https://doi.org/10.1007/s10531-012-0313-3Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J. 2017. Forest disturbances under climate change.
Nature Climate Change, 7: 395-402.
https://doi.org/10.1038/nclimate3303Silfver T, Roininen H, Oksanen E, Rousi M. 2009. Genetic and environmental determinants of silver birch growth and herbivore resistance.
Forest Ecology and Management, 257: 2145-2149.
https://doi.org/10.1016/j.foreco.2009.02.020Singer JA, Turnbull R, Foster M, Bettigole C, Frey BR, Downey MC, Covey KR, Ashton MS. 2019. Sudden aspen decline: a review of pattern and process in a changing climate.
Forests, 10: 671.
https://doi.org/10.3390/f10080671Stevens MT, Waller DM, Lindroth RL. 2007. Resistance and tolerance in
Populus tremuloides: genetic variation, costs, and environmental dependency.
Evolutionary Ecology, 21: 829-847.
https://doi.org/10.1007/s10682-006-9154-4Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P. 2012. The more the better? The role of polyploidy in facilitating plant invasions.
Annals of Botany, 109: 19-45.
https://doi.org/10.1093/aob/mcr277Wei N, Du Z, Liston A, Ashman TL. 2020. Genome duplication effects on functional traits and fitness are genetic context and species dependent: studies of synthetic polyploid Fragaria.
American journal of botany, 107: 262-272.
https://doi.org/10.1002/ajb2.1377 Westerband A, Funk J, Barton K. 2021. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes.
Annals of Botany, 127: 397-410.
https://doi.org/10.1093/aob/mcab011Wolfe BT, Sperry JS, Kursar TA. 2016. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis.
New Phytologist, 212: 1007-1018.
https://doi.org/10.1111/nph.14087Worrall JJ, Rehfeldt GE, Hamann A, Hogg EH, Marchetti SB, Michaelian M, Gray LK. 2013. Recent declines of
Populus tremuloides in North America linked to climate.
Forest Ecology and Management, 299: 35-51.
https://doi.org/10.1016/j.foreco.2012.12.033Wurst S, Van Dam NM, Monroy F, Biere A, Van der Putten WH. 2008. Intraspecific variation in plant defense alters effects of root herbivores on leaf chemistry and aboveground herbivore damage.
Journal of Chemical Ecology, 34: 1360-1367.
https://doi.org/10.1007/s10886-008-9537-9 Zolkos SG, Jantz P, Cormier T, Iverson LR, McKenney DW, Goetz SJ. 2015. Projected tree species redistribution under climate change: implications for ecosystem vulnerability across protected areas in the Eastern United States.
Ecosystems, 18: 202-220.
https://doi.org/10.1007/s10021-014-9822-0