REFERENCE
Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K.
(2008). The anode potential regulates bacterial activity in microbial
fuel cells. Appl Microbiol Biotechnol, 78 (3), 409-418.
doi:10.1007/s00253-007-1327-8
Borole, A. P., Reguera, G., Ringeisen, B., Wang, Z.-W., Feng, Y., &
Kim, B. H. (2011). Electroactive biofilms: Current status and future
research needs. Energy & Environmental Science, 4 (12),
4813-4834. doi:10.1039/c1ee02511b
Chen, S., Brown, R. K., Patil, S. A., Huber, K. J., Overmann, J., &
Schröder, U. (2019). Aerobic microbial electrochemical technology based
on the coexistence and interactions of aerobes and exoelectrogens for
synergistic pollutant removal from wastewater. Environmental
Science: Water Research & Technology, 5 (1), 60-69.
doi:10.1039/c8ew00530c
Cheng, K. Y., Ginige, M. P., & Kaksonen, A. H. (2012).
Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and
cathodic denitrification. Environ Sci Technol, 46 (18),
10372-10378. doi:10.1021/es3025066
Cheng, K. Y., Ho, G., & Cord-Ruwisch, R. (2010). Anodophilic Biofilm
Catalyzes Cathodic Oxygen Reduction. Environmental Science &
Technology, 44 (1), 518-525. doi:10.1021/es9023833
Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Pham, T.
H., Boeckx, P., . . . Verstraete, W. (2007). Biological Denitrification
in Microbial Fuel Cells. Environmental Science & Technology,
41 (9), 3354-3360. doi:10.1021/es062580r
Dhamole, P. B., Nair, R. R., D’Souza, S. F., Pandit, A. B., & Lele, S.
S. (2015). Denitrification of high strength nitrate waste from a nuclear
industry using acclimatized biomass in a pilot scale reactor. Appl
Biochem Biotechnol, 175 (2), 748-756. doi:10.1007/s12010-014-1317-0
Fricke, K., Harnisch, F., & Schroder, U. (2008). On the use of cyclic
voltammetry for the study of anodic electron transfer in microbial fuel
cells. Energy & Environmental Science, 1 (1), 144-147.
Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite
electrodes as electron donors for anaerobic respiration. Environ
Microbiol, 6 (6), 596-604. doi:10.1111/j.1462-2920.2004.00593.x
Harnisch, F., & Freguia, S. (2012). A basic tutorial on cyclic
voltammetry for the investigation of electroactive microbial biofilms.Chem Asian J, 7 (3), 466-475. doi:10.1002/asia.201100740
Harnisch, F., & Schroder, U. (2010). From MFC to MXC: chemical and
biological cathodes and their potential for microbial bioelectrochemical
systems. Chemical Society Reviews, 39 (11), 4433-4448.
Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation
to high current using low external resistances eliminates power
overshoot in microbial fuel cells. Biosens Bioelectron, 28 (1),
71-76. doi:10.1016/j.bios.2011.06.045
Huang, H., Cheng, S., Li, F., Mao, Z., Lin, Z., & Cen, K. (2019).
Enhancement of the denitrification activity by exoelectrogens in
single-chamber air cathode microbial fuel cells. Chemosphere,
225 , 548-556. doi:10.1016/j.chemosphere.2019.03.052
Huang, H., Cheng, S., Yang, J., Li, C., Sun, Y., & Cen, K. (2018).
Effect of nitrate on electricity generation in single-chamber air
cathode microbial fuel cells. Chemical Engineering Journal, 337 ,
661-670. doi:10.1016/j.cej.2017.12.150
Jiang, X., Ying, D., Ye, D., Zhang, R., Guo, Q., Wang, Y., & Jia, J.
(2018). Electrochemical study of enhanced nitrate removal in wastewater
treatment using biofilm electrode. Bioresour Technol, 252 ,
134-142. doi:10.1016/j.biortech.2017.12.078
Li, W.-W., Yu, H.-Q., & He, Z. (2014). Towards sustainable wastewater
treatment by using microbial fuel cells-centered technologies.Energy & Environmental Science, 7 (3), 911-924.
Liang, D., He, W., Li, C., Yu, Y., Zhang, Z., Ren, N., & Feng, Y.
(2019). Bidirectional electron transfer biofilm assisted complete
bioelectrochemical denitrification process. Chemical Engineering
Journal, 375 , 121960. doi:10.1016/j.cej.2019.121960
Liu, Q., Chen, S., Zhou, Y., Zheng, S., Hou, H., & Zhao, F. (2014).
Phosphorus-doped carbon derived from cellulose phosphate as efficient
catalyst for air-cathode in microbial fuel cells. Journal of Power
Sources, 261 , 245-248. doi:10.1016/j.jpowsour.2014.03.060
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel
cells. Nature Reviews Microbiology, 7 (5), 375-381. doi:Doi
10.1038/Nrmicro2113
Lovley, D. R. (2012). Electromicrobiology. Annual Review of
Microbiology, 66 (1), null. doi:doi:10.1146/annurev-micro-092611-150104
Patureau, D., Zumstein, E., Delgenes, J. P., & Moletta, R. (2000).
Aerobic Denitrifiers Isolated from Diverse Natural and Managed
Ecosystems. Microb Ecol, 39 (2), 145-152.
Pous, N., Carmona-Martinez, A. A., Vilajeliu-Pons, A., Fiset, E.,
Baneras, L., Trably, E., . . . Puig, S. (2016). Bidirectional microbial
electron transfer: Switching an acetate oxidizing biofilm to nitrate
reducing conditions. Biosens Bioelectron, 75 , 352-358.
doi:10.1016/j.bios.2015.08.035
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel
biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291-298.
Ren, L., Zhang, X., He, W., & Logan, B. (2014). High Current Densities
Enable Exoelectrogens to Outcompete Aerobic Heterotrophs for Substrate.Biotechnology and Bioengineering, 111 . doi:10.1002/bit.25290
Sukkasem, C., Xu, S., Park, S., Boonsawang, P., & Liu, H. (2008).
Effect of nitrate on the performance of single chamber air cathode
microbial fuel cells. Water Res, 42 (19), 4743-4750.
doi:10.1016/j.watres.2008.08.029
Yu, Y., Wu, Y., Cao, B., Gao, Y.-G., & Yan, X. (2015). Adjustable
bidirectional extracellular electron transfer between Comamonas
testosteroni biofilms and electrode via distinct electron mediators.Electrochemistry Communications, 59 , 43-47.
doi:10.1016/j.elecom.2015.07.007
Zhang, J., Zheng, P., Zhang, M., Chen, H., Chen, T., Xie, Z., . . .
Abbas, G. (2013). Kinetics of substrate degradation and electricity
generation in anodic denitrification microbial fuel cell (AD-MFC).Bioresour Technol, 149 , 44-50. doi:10.1016/j.biortech.2013.09.043
Zhao, W., & Chen, S. (2018). Critical parameters selection in
polarization behavior analysis of microbial fuel cells.Bioresource Technology Reports, 3 , 185-190.
doi:10.1016/j.biteb.2018.07.010
Zhu, X., Tokash, J. C., Hong, Y., & Logan, B. E. (2013). Controlling
the occurrence of power overshoot by adapting microbial fuel cells to
high anode potentials. Bioelectrochemistry, 90 , 30-35.
doi:10.1016/j.bioelechem.2012.10.004