REFERENCE
Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol, 78 (3), 409-418. doi:10.1007/s00253-007-1327-8
Borole, A. P., Reguera, G., Ringeisen, B., Wang, Z.-W., Feng, Y., & Kim, B. H. (2011). Electroactive biofilms: Current status and future research needs. Energy & Environmental Science, 4 (12), 4813-4834. doi:10.1039/c1ee02511b
Chen, S., Brown, R. K., Patil, S. A., Huber, K. J., Overmann, J., & Schröder, U. (2019). Aerobic microbial electrochemical technology based on the coexistence and interactions of aerobes and exoelectrogens for synergistic pollutant removal from wastewater. Environmental Science: Water Research & Technology, 5 (1), 60-69. doi:10.1039/c8ew00530c
Cheng, K. Y., Ginige, M. P., & Kaksonen, A. H. (2012). Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification. Environ Sci Technol, 46 (18), 10372-10378. doi:10.1021/es3025066
Cheng, K. Y., Ho, G., & Cord-Ruwisch, R. (2010). Anodophilic Biofilm Catalyzes Cathodic Oxygen Reduction. Environmental Science & Technology, 44 (1), 518-525. doi:10.1021/es9023833
Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Pham, T. H., Boeckx, P., . . . Verstraete, W. (2007). Biological Denitrification in Microbial Fuel Cells. Environmental Science & Technology, 41 (9), 3354-3360. doi:10.1021/es062580r
Dhamole, P. B., Nair, R. R., D’Souza, S. F., Pandit, A. B., & Lele, S. S. (2015). Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor. Appl Biochem Biotechnol, 175 (2), 748-756. doi:10.1007/s12010-014-1317-0
Fricke, K., Harnisch, F., & Schroder, U. (2008). On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy & Environmental Science, 1 (1), 144-147.
Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol, 6 (6), 596-604. doi:10.1111/j.1462-2920.2004.00593.x
Harnisch, F., & Freguia, S. (2012). A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms.Chem Asian J, 7 (3), 466-475. doi:10.1002/asia.201100740
Harnisch, F., & Schroder, U. (2010). From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chemical Society Reviews, 39 (11), 4433-4448.
Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosens Bioelectron, 28 (1), 71-76. doi:10.1016/j.bios.2011.06.045
Huang, H., Cheng, S., Li, F., Mao, Z., Lin, Z., & Cen, K. (2019). Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells. Chemosphere, 225 , 548-556. doi:10.1016/j.chemosphere.2019.03.052
Huang, H., Cheng, S., Yang, J., Li, C., Sun, Y., & Cen, K. (2018). Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells. Chemical Engineering Journal, 337 , 661-670. doi:10.1016/j.cej.2017.12.150
Jiang, X., Ying, D., Ye, D., Zhang, R., Guo, Q., Wang, Y., & Jia, J. (2018). Electrochemical study of enhanced nitrate removal in wastewater treatment using biofilm electrode. Bioresour Technol, 252 , 134-142. doi:10.1016/j.biortech.2017.12.078
Li, W.-W., Yu, H.-Q., & He, Z. (2014). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies.Energy & Environmental Science, 7 (3), 911-924.
Liang, D., He, W., Li, C., Yu, Y., Zhang, Z., Ren, N., & Feng, Y. (2019). Bidirectional electron transfer biofilm assisted complete bioelectrochemical denitrification process. Chemical Engineering Journal, 375 , 121960. doi:10.1016/j.cej.2019.121960
Liu, Q., Chen, S., Zhou, Y., Zheng, S., Hou, H., & Zhao, F. (2014). Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells. Journal of Power Sources, 261 , 245-248. doi:10.1016/j.jpowsour.2014.03.060
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7 (5), 375-381. doi:Doi 10.1038/Nrmicro2113
Lovley, D. R. (2012). Electromicrobiology. Annual Review of Microbiology, 66 (1), null. doi:doi:10.1146/annurev-micro-092611-150104
Patureau, D., Zumstein, E., Delgenes, J. P., & Moletta, R. (2000). Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems. Microb Ecol, 39 (2), 145-152.
Pous, N., Carmona-Martinez, A. A., Vilajeliu-Pons, A., Fiset, E., Baneras, L., Trably, E., . . . Puig, S. (2016). Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions. Biosens Bioelectron, 75 , 352-358. doi:10.1016/j.bios.2015.08.035
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291-298.
Ren, L., Zhang, X., He, W., & Logan, B. (2014). High Current Densities Enable Exoelectrogens to Outcompete Aerobic Heterotrophs for Substrate.Biotechnology and Bioengineering, 111 . doi:10.1002/bit.25290
Sukkasem, C., Xu, S., Park, S., Boonsawang, P., & Liu, H. (2008). Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res, 42 (19), 4743-4750. doi:10.1016/j.watres.2008.08.029
Yu, Y., Wu, Y., Cao, B., Gao, Y.-G., & Yan, X. (2015). Adjustable bidirectional extracellular electron transfer between Comamonas testosteroni biofilms and electrode via distinct electron mediators.Electrochemistry Communications, 59 , 43-47. doi:10.1016/j.elecom.2015.07.007
Zhang, J., Zheng, P., Zhang, M., Chen, H., Chen, T., Xie, Z., . . . Abbas, G. (2013). Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC).Bioresour Technol, 149 , 44-50. doi:10.1016/j.biortech.2013.09.043
Zhao, W., & Chen, S. (2018). Critical parameters selection in polarization behavior analysis of microbial fuel cells.Bioresource Technology Reports, 3 , 185-190. doi:10.1016/j.biteb.2018.07.010
Zhu, X., Tokash, J. C., Hong, Y., & Logan, B. E. (2013). Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry, 90 , 30-35. doi:10.1016/j.bioelechem.2012.10.004