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14 Abstract 

15 The assessment of climate change impacts on water resources and flood risk is typically 

16 underpinned by hydrological models calibrated and selected based on observed streamflow 

17 records. Yet, changes in climate are rarely accounted for when selecting hydrological models, 

18 which compromises their ability to robustly represent future changes in catchment hydrology. 

19 In this paper, we test a simple framework for selecting an ensemble of calibrated hydrological 

20 model structures in catchments where changing climatic conditions have been observed. We 

21 start by considering 78 model structures produced using the FUSE modular modelling 

22 framework and rely on a Pareto scheme to select model structures maximizing model 

23 efficiency in both wet and dry periods. The application of this approach in three case study 

24 basins in Peru enables the identification of structures with good robustness, but also good 

25 performance according to hydrological signatures not used for model selection. We also 

26 highlight that some model structures that perform well according to traditional efficiency 

27 metrics have low performance in contrasting climates or suspicious internal states and fluxes. 

28 Importantly, the model selection approach followed here helps to reduce the spread in 

29 precipitation elasticities and temperature sensitivities, providing a clearer picture of future 

30 hydrological changes. Overall, this work demonstrates the potential of using contrasting 

31 climatic conditions in a multi-objective framework to produce robust and credible 

32 simulations, and to constrain structural uncertainties in hydrological projections.

33
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34 Keywords: Hydrologic change; model structure uncertainty; modular modelling framework; 

35 Pareto scheme; signatures; hydrological consistency.

36

37 1. INTRODUCTION

38

39 Climate change is greatly affecting the economy and quality of life of populations around the 

40 world, causing an increase in the frequency and intensity of extreme hydrological events such 

41 as droughts and floods (Gavrilović et al., 2012; Correa et al., 2017; Shiru et al., 2019; Haile et 

42 al., 2019; Son et al., 2020; Bhardwaj et al., 2020; Alvarez-Garreton et al., 2021), challenging 

43 thus water resources management and flood risk. The hydrological community is tackling this 

44 challenge and, in a collaborative effort, continuous improvements are being developed in the 

45 methodologies used in the assessment of climate change impacts.

46

47 The assessment of climate change impacts on water resources commonly involves several 

48 methodological choices, which include the selection of emission scenarios, global climate 

49 models (GCM), initial conditions, downscaling method, hydrologic model structure and 

50 parameter values (e.g., Wilby & Harris, 2006; Chen et al., 2011; Addor et al., 2014; 

51 Chegwidden et al., 2019). The above decisions lead to uncertainties, whose relative 

52 importance may differ depending on specific hydroclimatic conditions and basin 

53 characteristics (Clark et al., 2016). In particular, many authors have found that the choice of 

54 the hydrologic model structure (i.e., choice of processes explicitly represented, model 

55 parameterizations, architecture and connectivity) and the choice of parameters (i.e., the 

56 coefficients in model equations, either free or observable) may have large effects on the 

57 characterization of climate change impacts (e.g., Miller et al., 2012; Seiller et al., 2012; Vano 

58 et al., 2012; Brigode et al., 2013; Mendoza et al., 2015, 2016; Fowler et al., 2018a; Melsen et 

59 al., 2018).

60

61 The sole effects of hydrologic model choice – commonly based on legacy, rather than 

62 adequacy (Addor & Melsen, 2019) – have been widely explored in the context of climate 

63 change impacts. A large body of work has relied on the selection of a small ensemble of 

64 hydrological models (e.g., Jiang et al., 2007; Bae et al., 2011; Mendoza et al., 2015; 

65 Mizukami et al., 2016), while a few authors have proposed explicit changes in model 

66 structures to address this issue (Westra et al., 2014; Grigg & Hughes, 2018). The assessment 

Page 2 of 50

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3

67 of structural uncertainties is now facilitated by the emergence of modular modelling 

68 frameworks (MMFs; e.g., Pomeroy et al., 2007; Clark et al., 2008, 2015; Kavetski & Fenicia, 

69 2011; Niu et al., 2011; Coxon et al., 2019; Knoben et al., 2019; Craig et al., 2020), which 

70 allow to design controlled experiments to test hypotheses about catchment functioning (Clark 

71 et al., 2011). Of course, the large number of modelling options available in MMFs raises the 

72 challenge to sample model space in order to efficiently capture structural uncertainty 

73 (Remmers et al., 2020), especially under scenarios of changing climatic conditions.

74 During decades, the hydrology community adopted differential split-sample tests (DSST; 

75 Klemes 1986) as a standard practice to assess the temporal stability of model performance. 

76 However, many authors have reported decreased skill when a model is applied in very 

77 different climatic conditions compared to those used to infer the parameter values (e.g., Vaze 

78 et al., 2010; Merz et al., 2011; Seiller et al., 2012; Brigode et al., 2013; Motavita et al., 2019; 

79 Pan et al., 2019). For example, Coron et al. (2012) examined the extrapolation capacity of 

80 three hydrological models for different climatic conditions in 216 basins in Australia, 

81 proposing a generalized split-sample test (GSST) based on the DSST methodology. Their 

82 results demonstrated that the transfer of model parameters in time can introduce errors in 

83 simulations, and therefore lack of robustness when the models are used in a changing climate. 

84 Stephens et al. (2019) developed three experiments to test the potential of (1) transferring 

85 model parameters in time, (2) improve simulations under future climate scenarios, and (3) 

86 varying model parameters according to climate conditions for improved simulations. 

87 Stephens et al. (2019) used the GR4J (Perrin et al., 2003) conceptual model to conduct three 

88 experiments over 164 Australian basins, obtaining mixed results in their experiments to 

89 improve model performance under contrasting climatic conditions. More recently, 

90 Duethmann et al. (2020) analysed the causes of the low performance of a semi-distributed 

91 hydrological model under changing climate conditions over a large number of basins in 

92 Australia, where they mainly focused on: (1) data problems, (2) problems related to the 

93 model calibration and (3) model structure deficiencies. Duethmann et al. (2020) found that 

94 poor model performance is mainly because most model structures ignore changes in 

95 vegetation dynamics, and due to temporal inhomogeneities in precipitation data.

96

97 Fowler et al. (2016) revisited the problem of temporal instability in model performance 

98 through the application of a Pareto framework – aimed to find parameter sets that 

99 simultaneously maximize model efficiency in a wet and a dry period – in 85 catchments 

100 located in Australia, using five conceptual hydrological models. They found that temporal 
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101 instabilities reported in previous studies may be attributed to poor parameter estimation 

102 strategies, rather than model structural inadequacies. Fowler et al. (2018a) assessed 

103 hydrological model performance in historical multi-year droughts, finding that they often 

104 have poor performance that could be attributed to errors in the data, model structure or 

105 parameter values. It should be noted that their Pareto scheme was used to discriminate 

106 parameter sets given a fixed model structure, rather than screening competing models with 

107 the same application purpose.

108

109 Hydrologic sensitivities to climate perturbations are attractive due to their simple 

110 formulation, and because they allow quick estimates of runoff production under different 

111 climate scenarios (Vano & Lettenmaier, 2014; Vano et al., 2015; Milly et al., 2018; Lehner et 

112 al., 2019). Vano et al. (2012) examined the effects of hydrologic model choice on the 

113 estimation of precipitation elasticities and temperature sensitivities in the Colorado River 

114 basin, finding large differences attributed to structural discrepancies and model biases, since 

115 the models were not configured to simulate streamflow. Mendoza et al. (2015) compared 

116 inter-model differences in projected hydrologic changes before and after conducting 

117 parameter estimation, concluding that large differences remain between calibrated models. 

118 Nevertheless, the subjective choice of models in these studies, the lack of further model 

119 evaluation in contrasting climatic periods, and the body of work previously referred to 

120 reinforces the urgency to (1) improve parameter estimation and model selection strategies, 

121 and (2) conduct plausibility checks in model structures to obtain coherent results under 

122 changing climatic conditions. In this paper, we combine elements from recent studies to 

123 address the following questions:

124

125  Can the hydrological consistency of simulations in contrasting climatic periods be 

126 improved by sampling the model space with a simple Pareto framework?

127  Can links be drawn between the components of the models selected by this 

128 procedure?

129  Can this model selection procedure reduce uncertainties in precipitation elasticities 

130 and temperature sensitivities?

131

132 Hence, we propose an approach based on (1) selecting dry and wet sub-periods, (2) 

133 calibrating hydrological models in each sub-period, (3) choosing the combinations of 

134 hydrological model and parameter set that maximize performance in wet and dry years, (4) 
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135 assessing hydrological consistency and screening models, and (5) quantifying the ensemble 

136 spread in hydrologic sensitivities resulting from the model subset. We apply this framework 

137 in three basins located in Peru and rely on model structures produced using the Framework 

138 for Understanding Structural Errors (FUSE; Clark et al., 2008).

139

140 2. STUDY DOMAIN AND DATA

141 The National Water Authority (ANA, by its acronym in Spanish) of Peru has identified three 

142 main hydrographic regions (ANA 2009) – the Pacific region, the Atlantic or Amazon region 

143 and Lake Titicaca region – with different geomorphological, climatic and hydrological 

144 characteristics (see Lavado Casimiro et al., 2012; Heidinger et al., 2018; Rau et al., 2018). To 

145 represent such diversity, we select three case study basins (Figure 1): two of these are located 

146 in Peru (Vilcanota and Huancane), and the other is a transboundary catchment located 

147 between Peru and Ecuador (Puyango-Tumbes). The Vilcanota River basin belongs to the 

148 Atlantic region, the Huancane River basin belongs to the Lake Titicaca region, and the 

149 Puyango-Tumbes River basin belongs to the Pacific region. During recent years, these basins 

150 have seen an increase in flooding during the rainy season, and water shortages during the dry 

151 season (Sanabria et al. 2009; Lavado Casimiro et al. 2011; Rivas & Rivas, 2013; Andres et al. 

152 2014; Zulkafli, 2014; Takahashi & Martínez Grimaldo, 2015; Martínez & Céspedes, 2017).

153

154 [Insert Figure 1]

155

156 Table 1 summarizes the main physiographic and hydroclimatic characteristics of the three 

157 basins over the period Sep/1986 – Aug/2016 (note that the water year in Peru starts in 

158 September and ends in August). Annual runoff ratios (RR) and the mean annual runoff in the 

159 Puyango-Tumbes and Huancane basins were estimated over shorter periods, due to the lack 

160 of streamflow records in some years. The Vilcanota and Huancane River basins (located in 

161 the southeast) have similar mean elevations, while the Puyango-Tumbes River basin (located 

162 in the northwest, close to the equatorial line) has the lowest mean elevation (Figure 1), and 

163 higher values of mean annual precipitation, aridity index and runoff ratio (0.98), which 

164 implies that a large fraction of precipitation contributes to runoff. On the other hand, the 

165 Huancane River basin has the lowest runoff ratio (0.25), which implies a high evaporative 

166 fraction. The Puyango-Tumbes River basin has a high aridity index in comparison with the 

167 other catchments, since the basin has a great potential to evaporate.

168
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169 [Insert Table 1]

170

171 Many authors have argued that the lack of meteorological observations in the Peruvian Andes 

172 and the Amazonia is the main limitation for climate change impact studies (Lavado Casimiro 

173 et al., 2011; Andres et al., 2014; Zulkafli, 2014; Vegas Galdos et al., 2015; Aybar et al., 2019; 

174 Rau et al., 2018; Llauca et al., 2021). To address this issue, Aybar et al. (2019) and Huerta et 

175 al. (2018) developed the Peruvian Interpolated data of SENAMHI's Climatological and 

176 hydrological Observations (PISCO) database, which provides daily time series of 

177 precipitation, minimum and maximum temperature for the period 1981-2016, with a 0.1° 

178 horizontal resolution. Precipitation time series in PISCOp (Aybar et al., 2019) were obtained 

179 using geostatistical and deterministic interpolation methods that include three precipitation 

180 sources: (1) the quality-controlled and infilled national rain gauge dataset, (2) radar-gauge 

181 merged precipitation climatologies, and (3) the Climate Hazards Group Infrared Precipitation 

182 (CHIRP) estimates. Daily time series of maximum and minimum temperature in PISCOt 

183 (Huerta et al., 2018) were obtained from: (1) observed maximum and minimum temperature 

184 data, (2) soil temperature product from the MODIS sensor (Moderate Resolution Imaging 

185 Spectroradiometer), and (3) geographic predictors (e.g., elevation, longitude, latitude and 

186 Topographic Dissection Index). The reader is referred to Huerta et al. (2018) for full 

187 descriptions on the development of temperature products. The PISCO product is freely 

188 available through the IRI Data Library website 

189 (http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/).

190

191 Daily streamflow time series were obtained from the Peruvian National Meteorological and 

192 Hydrological Service (Servicio Nacional de Meteorología e Hidrología, SENAMHI). For the 

193 Vilcanota River basin, the Intihuatana Km-105 station provides streamflow data for the 

194 period 1985 – 2016; for the Puyango-Tumbes River basin, we collect data from the El Tigre 

195 station for the period 1981 - 2016, and the Huancane bridge station provides streamflow 

196 records for the period 1988 - 2016.

197

198 3. APROACH 

199 The proposed method to select model structures under changing climatic conditions is 

200 outlined in Figure 2, and includes the following steps: (1) selection of wet and dry periods, 

201 (2) calibration of all model structures in each basin, (3) sampling the model space based on 

202 temporally consistent performance skill, (4) assessment of hydrological consistency and 
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203 model screening, and (5) quantifying the effects of model sampling on the spread in 

204 precipitation elasticities and temperature sensitivities. The step (3) builds upon the approach 

205 proposed by Fowler et al. (2018a), which aims to maximize model performance in both wet 

206 and dry periods using a Pareto analysis scheme. Hence, the framework involves the selection 

207 of two 5-year periods with contrasting climates (section 3.1.1), and a one-year period for 

208 model spin-up. Once these subperiods are defined, we set up a multi-model (MM) ensemble 

209 that we sequentially refine and transform into a smaller ensemble that provides 

210 hydrologically consistent simulations through the following steps:

211

212 i. MM0-dry and MM0-wet: full FUSE model ensemble (i.e., 78 model structures) 

213 calibrated in dry and wet periods by minimizing RMSE (section 3.1.2).

214 ii. MMP-dry and MMP-wet: a small 5-member ensemble obtained after applying the 

215 Pareto scheme framework with the evaluation metrics listed in Table 4 (section 

216 3.1.3).

217 iii.MMPS-dry and MMPS-wet: Same as 2, but after screening MMP-dry and MMP-wet 

218 based on the seasonal behaviour of internal states and fluxes (section 3.1.4).

219 The details of each step are described in the following sub-sections.

220

221 3.1 Selection of analysis periods

222 Based on the differential split-sample test (DSST) procedure formulated by Klemes (1986), 

223 we select wet and dry analysis periods that include five consecutive years, using runoff and 

224 mean annual precipitation time series (see Figure 2, box 1). To verify the contrast between 

225 these periods, we examine annual hydroclimatic characteristics (e.g., mean annual runoff, 

226 mean annual precipitation, mean annual PET, runoff ratio and aridity index), seasonal 

227 variations in some fluxes, and the daily flow duration curve. The selected periods are 

228 displayed in Figure 3. For the Vilcanota River basin (Figure 3, left panels), we consider 

229 Sep/1988-Aug/1993 as dry period, and Sep/1999 - Aug/2004 as wet period; for the Puyango-

230 Tumbes River basin (Figure 3, centre panels), the selected periods are Sep/2002-Aug/2007 as 

231 dry period, and Sep/2007-Aug/2012 as wet period; and for the Huancane River basin (Figure 

232 3, right panels), we consider Sep/2006-Aug/2011 as dry period, and Sep/1999-Aug/2004 as 

233 wet period. The main hydroclimatic characteristics of each period are summarized in Table 2, 

234 and the contrasting hydroclimates between the selected periods are reflected in mean monthly 

235 runoff, mean monthly precipitation, average monthly temperature (Figure 3, top panels), and 

236 the flow duration curves (Figure 3, bottom panels). For example, in the Vilcanota River basin 
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237 the wet (dry) period has aridity index (AI) and runoff ratio (RR) values of 1.00 (1.18) and 

238 0.58 (0.49) respectively. Interestingly, AI values in the Puyango-Tumbes River basin are 

239 higher to those for the other catchments (Table 2), possibly because – along the Pacific coast 

240 – rainfall is higher in the north and decreases towards the south (Lavado Casimiro et al., 

241 2012); additionally, temperature values are higher since the basin is close to the equatorial 

242 line, and hence there is high potential for evapotranspiration. Moreover, in the Puyango-

243 Tumbes River basin, there is more runoff than precipitation between May and September (see 

244 Figure 3, upper panel), which suggests that the basin also receives groundwater contributions. 

245 Indeed, Núñez Juárez & Zegarra Loo (2006) identified aquifers located in the alluvial 

246 deposits of the Tumbes River and in the areas of the main streams, which are constantly 

247 recharged by the seasonal rains that occur in the upper part of the basin.

248

249 [Insert Figure 2]

250

251 [Insert Table 2]

252

253 [Insert Figure 3]

254

255 3.2 Hydrological modelling

256 In this study, we use the Framework for Understanding Structural Error (FUSE; Clark et al., 

257 2008), which allows the implementation of an ensemble of hydrologic model structures that 

258 can be used to characterize structural uncertainty (e.g., Clark et al., 2011). Further, its 

259 modular functionality allows to diagnose inter-model differences in simulated states and 

260 fluxes through controlled experiments. FUSE discretizes the soil column along the vertical 

261 axis into an unsaturated zone (above the water table) and a saturated zone (below the water 

262 table). The major model-building decisions can be defined by the user, including the 

263 architecture of the upper and lower soil layers, and the parameterizations for simulating 

264 evaporation, surface runoff, percolation of water fluxes between soil layers, interflow, and 

265 baseflow. The multiple options available for each model building decision (Table 3) are 

266 drawn from four conceptual parent models: PRMS (Leavesley et al., 1984), Sacramento 

267 (Burnash, 1995), TOMODEL (Beven & Kirkby, 1979), and ARNO/VIC (Zhao, 1977). 

268

269 It is important to note that FUSE does not perform any surface energy balance calculations, 

270 and neither does represent the canopy interception or the transpiration and evaporation from 
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271 intercepted water (Clark et al., 2008). Snow is modelled using a Snow-17-based temperature 

272 index model (Anderson, 2006), which tracks snow water equivalent (SWE) based on 

273 precipitation and melt (see Henn et al., 2015 for further details). Despite all these 

274 simplifications, the models are designed to provide a robust representation of the major 

275 hydrological fluxes in the subsurface (Clark et al., 2008), and their low data requirements 

276 makes them well suited for hydrological simulations in data-scarce regions.

277

278 [Insert Table 3]

279

280 In this work, we configure 78 model structures for each basin, using 100-m elevation bands 

281 in the snow model to account for topographic effects. Model simulations are conducted at a 

282 daily time step, requiring precipitation, temperature and potential evapotranspiration (PET) –

283 computed with the formulation proposed by Oudin et al. (2005) – as meteorological forcings. 

284 All model structures are calibrated with the Shuffled Complex Evolution (SCE-UA; Duan et 

285 al. 1992) optimization algorithm, with a maximum of 10,000 iterations, to minimize the root 

286 mean squared error (RMSE) of simulated daily streamflow:

287 RMSE =
1
N

N

∑
i = 1

(𝑄𝑖
𝑠 ― 𝑄𝑖

𝑜)2           (1)

288

289 where  and  correspond to simulated and observed runoff, respectively, and N is the 𝑄𝑖
𝑠 𝑄𝑖

𝑜

290 number of days in the calibration period. It should be noted that the choice of objective 

291 function is justified by the particular interest to configure models that are capable to simulate 

292 floods (i.e., peak flows) under contrasting climate scenarios. For each hydrologic model 

293 structure and each basin, two separate calibrations are conducted (i.e., one for the dry and one 

294 for the wet period). The resulting combinations of model structures and parameters – 

295 obtained for dry (MM0-dry) and wet (MM0-wet) periods – serve as the basis for the model 

296 sampling framework described below.

297

298 3.3 Selection of calibrated model structures

299 To sample the model space, we adopt the Pareto approach proposed by Fowler et al. (2018a) 

300 to obtain temporally stable parameter sets for a given model structure, using performance 

301 acceptance thresholds in wet and dry hydroclimatic periods. Our study differs in that we 

302 focus on the temporal transferability of model structures under a common calibration 
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303 framework, rather than model parameter sets for a fixed model structure. Therefore, we apply 

304 the Pareto framework on MM0-dry and MM0-wet using five commonly used objective 

305 functions (Table 4), and considering 0.7 as the performance acceptance threshold. A small 

306 ensemble of six models is subsequently selected from the original 78-member ensembles 

307 (MM0-dry and MM0-wet) based on the following criteria:

308

309 1. Model structure and parameter set with the best performance in terms of RMSE in 

310 the calibration period (lowest RMSE Cal).

311 2. Model structure and parameter set with the highest NSE (or, equivalently, smallest 

312 RMSE) in both calibration and evaluation periods (highest NSE Cal-Eval).

313 3. Model structure and parameter set with the highest KGE in both calibration and 

314 evaluation period (highest KGE Cal-Eval).

315 4. Model structure and parameter set with the highest split-KGE in both calibration and 

316 evaluation periods (highest splitKGE Cal-Eval).

317 5. Model structure and parameter set with the highest NSE-log in both calibration and 

318 evaluation periods (highest NSElog Cal-Eval).

319 6. Model structure and parameter set with the highest Aggregate Objective Function 

320 (AOF; Fowler et al. 2016) in both calibration and evaluation periods (highest AOF 

321 Cal-Eval).

322

323 For criteria 2-6, we select the model structure and parameter set that meet the following 

324 requirements:

325 i. Efficiency indices equal or higher than 0.7 in both calibration and evaluation 

326 periods (light blue region in Figure 2).

327 ii. Yield the shortest Euclidean Distance (ED) with respect to the yellow point in 

328 Figure 2 (panel 3), defined as:

329 ED = (1 ― Ecal)2 +(1 ― Eeval)2           (2)
330
331 where  and  are the performance metrics in calibration and evaluation periods, Ecal Eeval
332 respectively.
333
334 In cases where condition (i) is not met by any combination of model and parameter set, 
335 we select the model structure that satisfies requirement (ii). 
336

337 It should be noted that, when starting with MM0-dry (MM0-wet), the calibration period is the 

338 selected dry (wet) period. Additionally, alternative 1 does not rely on a split sample 
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339 evaluation and is still common practice in hydrology. Conversely, alternatives 2-6 consider 

340 performance during both calibration and evaluation periods, and do not involve any re-

341 calibration of model structures, but a model sampling based on evaluations with parameter 

342 values obtained from the calibration process (section 3.1.2). For example, the dry period 

343 calibration KGE (alternative 3) is the Kling-Gupta efficiency obtained with the parameters 

344 that result from model calibration conducted in the dry period, minimizing RMSE; similarly, 

345 the wet period evaluation KGE is the Kling-Gupta efficiency obtained with the same 

346 parameter set, applied in the wet period. The result of this process (i.e., application of criteria 

347 2-6) are small (5-member) multi-model ensembles for a dry (MMP-dry) and a wet (MMP-

348 wet) period, which provide combinations of flood-oriented models/parameters for (1) 

349 hydrologically consistent simulations, regardless of the climatic conditions, and (2) reducing 

350 the structural uncertainty in hydrologic sensitivities to climate change.

351

352 [Insert Table 4]

353

354 3.4 Hydrological consistency and inter-model agreement

355 We use six signature measures of hydrologic behaviour (Yilmaz et al. 2008; Pokhrel et al. 

356 2012; Mendoza et al. 2015) to assess the model capability to reproduce the water balance, 

357 runoff seasonality and hydrological signatures from the daily flow duration curve (FDC) (see 

358 details in Appendix A). Further, we evaluate the capability of the model sampling approach 

359 to select model structures that produce hydrologically coherent simulations through the 

360 examination of monthly states and fluxes (i.e. streamflow, ET, soil moisture, snow water 

361 equivalent – SWE –, baseflow and surface runoff). Inter-model agreement in the simulation 

362 of seasonal cycles is quantified with the average standard deviation of simulated monthly 

363 variables:

364

365 Sd =
1

12∑12
m = 1

1
n ― 1∑n

i = 1(xm,i ― xm)2           (3)
366

367 Where n is the number of sample elements (i.e., number of model structures),  is the mean xm,i

368 monthly value of variable x obtained from model i and month m, and   is the result of xm

369 averaging  across all models. xm,i

370
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371 Once the behaviour of internal model states and fluxes in MMP-dry and MMP-wet is 

372 analysed, we conduct a final screening procedure to discard potentially problematic model 

373 structures, obtaining final multi-model ensembles MMPS-dry and MMPS-wet from dry and 

374 wet calibration periods, respectively.

375

376 3.5 Hydrologic sensitivities of runoff

377 We compute hydrologic sensitivities for the period Sep/1986 – Aug/2016 to include both dry 

378 and wet periods. Following Vano et al. (2012), we create modified climates by using 

379 multiplicative perturbations in precipitation (70%, 80%, 90%, 100% and 110%), which are 

380 used to compute precipitation elasticities (ɛ), and additive perturbations in temperature (0°, 

381 1°, 2°, 3°C) that are used for temperature sensitivities (S). Hydrologic sensitivities are 

382 estimated using 1% and 0.1°C incremental changes in precipitation and temperature, 

383 respectively, relative to each reference climate. We select these increments to be as small as 

384 possible to approximate the tangent (versus the secant), and reduce computational artifacts. 

385 We estimate ɛ as the fractional change in average annual runoff (Q) divided by the fractional 

386 change imposed on precipitation:

387

388 ε =

Qref + ∆% ― Qref

Qref

∆%            (4)

389

390 where ∆=1%. Temperature sensitivities are estimated by perturbing air temperature instead of 

391 PET, since the former variable is the most widely used in climate change impact assessments. 

392 We estimate S as the percent change in average annual runoff due to temperature changes as:

393

394 S =

Qref + ∆ ― Qref

Qref

∆            (5)

395

396 where ∆=1°C.

397

398 4. RESULTS AND DISCUSSION 

399

400 4.1 Choice of hydrological model structure
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401 Figure 4 shows the coverage results from all calibrated hydrological models. In general, we 

402 observe that the Vilcanota River basin yields the best performance in contrasting climates, 

403 compared to the Huancane and Puyango-Tumbes River basins, where only a few model 

404 structures meet the acceptable performance limits. Indeed, most model structures in the 

405 Vilcanota River basin (Figure 4, left panels) are in the blue-shaded area, except when the 

406 Pareto scheme is applied with the NSE-log. For this criterion, only a few models meet the 

407 acceptance thresholds in both dry and wet periods, since the calibration objective function 

408 (RMSE) is focused on high flows; notably, all the model structures selected in the two 

409 calibration periods (coloured dots) are in the shaded area, except one structure in the NSE-log 

410 diagram for the wet calibration period (orange dot, split-KGE). In the Puyango-Tumbes River 

411 basin (Figure 4, centre panels) only a few model structures fall within the shaded area, with 

412 the lowest performances obtained when the Pareto scheme is applied with the NSE-log and 

413 AOF. However, most of the selected models (coloured dots) are in the shaded area.  

414

415 Interestingly, the Huancane River basin (Figure 4, right panels) emerges as a challenging case 

416 study, since very few model structures fall within the shaded area, with the lowest 

417 performances obtained for NSE-log. In the diagrams for the dry calibration period, the model 

418 selected with NSE provides the most consistent results in contrasting climates. However, 

419 when the calibration is conducted during a wet period, few models fall within the shaded 

420 area, with evaluation metrics for which no model structures meet the acceptance thresholds 

421 (i.e., NSE, KGE). Overall, the temporal transferability of model performance in the Huancane 

422 River basin is quite poor, regardless of the evaluation criteria, since most model structures 

423 have good performance in the calibration period, but behave poorly in the evaluation period. 

424 In other words, the parameter sets found from the optimization of RMSE provide acceptable 

425 performance in terms of other evaluation metrics within the calibration period (especially if 

426 this is wet), but not necessarily for the evaluation period. This can be explained by the 

427 simplifications adopted for some process representations (e.g., canopy interception, 

428 transpiration and others), and possibly by the level of spatial disaggregation of the model 

429 structures considered here.

430

431 [Insert Figure 4]

432

433 4.2 Hydrological consistency and inter-model differences
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434 Figures 5 and 6 illustrate the performance of all model structures, for each basin and 

435 calibration period, in terms of signature measures of hydrologic behaviour and flow duration 

436 curve, respectively. In general, the model sampling approach provides an ensemble of 

437 structures with good performance, improving inter-model agreement in comparison to the 

438 original ensemble (grey symbols in Figure 5, and gray lines in Figure 6). Further, it is 

439 observed that model performance depends considerably on the calibration period (i.e., dry or 

440 wet).

441

442 Figure 5 shows that high performance in RR, CTR y FHV signatures and low performance in 

443 FMS, FLV, and FMM signatures is obtained in all basins, suggesting that many of the 

444 structures are unable to represent low and medium flows, which is also reflected in the flow 

445 duration curve (Figure 6). It should be noted that, according to the flow duration curve graphs 

446 (Figure 6), there is an underestimation of observed low flows while, according to the 

447 hydrological signatures (Figure 5), there is an overestimation. Such discrepancy can be 

448 explained by the logarithmic transformation performed on flow values to compute some 

449 metrics (FMS, FLV and FMM; see Appendix A). Further, the poor performance of FMS, 

450 FLV and FMM signatures can be explained by the choice of RMSE as the objective 

451 calibration function and to the selected calibration period (i.e., dry or wet period). For 

452 example, in the Vilcanota River basin (Figure 5, left column) there is more bias in FLV with 

453 EVAL W-> D than in EVAL D-> W (Figure 6). This relative performance in wet and dry 

454 periods is also observed in the Huancane River basin (Figure 5, right column). However, in 

455 the Puyango-Tumbes River basin (Figure 5, center panels), there is more bias with EVAL D-

456 > W, in comparison with EVAL W-> D (Figure 6).

457

458 [Insert Figure 5]

459

460 [Insert Figure 6]

461

462 Figure 7 displays climatological averages (Sep/1986-Aug/2016) of monthly state variables 

463 and fluxes for each basin and calibration period. One can note that the largest inter-model 

464 differences are obtained for soil moisture, SWE, baseflow and surface runoff, even if there is 

465 good agreement in streamflow seasonality among the model structures of the full ensemble 

466 (e.g., Vilcanota and Puyango-Tumbes River basins). The largest dispersion of simulated 

467 states and fluxes is obtained during spring and summer – where most precipitation events 
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468 occur –, and the smallest dispersion occurs during fall and winter, except for ET in the 

469 Huancane River basin. Further, inter-model agreement improves among the selected model 

470 structures in comparison to the full 78-member ensemble provided by FUSE. For example, 

471 the multi-model selection scheme in the Vilcanota River basin for the dry period enables a 

472 considerable reduction in the standard deviation of soil moisture from 291 mm to 187 mm 

473 (35.7%) with respect to the full model ensemble (gray lines); yet, such reduction is not 

474 achieved when the model structures are calibrated in a wet period, since here the selected 

475 model structures show an increase in the standard deviation of soil moisture from 200 mm to 

476 298 mm (49%), with respect to all model structures. In the Huancane River basin, the 

477 opposite behaviour is observed: the small multi-model reduces the original spread in 

478 simulated soil moisture when the calibration period is dry, but slightly increases the standard 

479 deviation if the models are calibrated in a wet period.

480

481 [Insert Figure 7]

482

483 The above analyses not only illustrate the potential of the model selection framework to 

484 reduce structural uncertainty in internal fluxes and states, but also highlight the need to 

485 examine simulated internal fluxes and states to discard problematic model structures. Hence, 

486 we screen the selected models based on acceptance performance thresholds, and poor or 

487 abnormal behaviour of internal states and fluxes (Figure 7). The results obtained after this 

488 model screening procedure are shown in Tables 5, 6 and 7. Note that the model structures are 

489 named differently than in other papers (i.e., FUSE 1,2,3,..,78).

490

491 In the Vilcanota River basin, we dismiss FUSE 25 and FUSE 17 from the dry calibration 

492 period (MMP-dry) and FUSE 44, FUSE 21, FUSE 01 y FUSE 61 from the wet calibration 

493 period (MMP-wet), both due to an increasing trend in the SWE daily time series (not shown 

494 here) that produced the abnormal behaviour of monthly SWE (Figure 7, left panels). In the 

495 Puyango-Tumbes River basin, we dismiss FUSE 44, FUSE 56, FUSE 59 and FUSE 62 from 

496 MMP-wet, because they do not meet the minimum performance threshold (Figure 4, center 

497 panels). For the Huancane River basin, we dismiss FUSE 03, FUSE 23, FUSE 16, FUSE 45 

498 and FUSE 23 from MMP-dry because they do not meet the minimum performance threshold 

499 criteria. For the same basin, we discard FUSE 43, FUSE 69, FUSE 44 and FUSE 23 from 

500 MMP-wet, because they do not meet the minimum performance threshold. In the three 

501 basins, we found that none model structures from MMP-wet have been able to meet the 
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502 requirements of the screening procedure to discard models (MMPS-wet). In contrast, in the 

503 model structures from MMP-dry, we found that at least one model structure has passed the 

504 screening procedure (MMPS-dry, Vilcanota and Huancane River basins). This result shows 

505 that it is possible to obtain consistent simulations of states and fluxes when the model 

506 structures are calibrated in dry periods. For example, in the Huancane River basin, only the 

507 model structure (FUSE 77) from the dry calibration period was able to pass the screening 

508 procedure. In the same basin, we discard the model structure selected with the criterion of 

509 minimizing RMSE in MMP-dry and MMP-wet, suggesting that RMSE would not be a good 

510 calibration function here.

511

512 Interestingly, we found that some model components selected before the discarding process 

513 depend on both calibration period and climatic characteristics (Tables 5, 6 and 7). For 

514 example, the Percolation (PE) component during the dry calibration period in the Vilcanota 

515 River basin is mainly represented by the PRMS equation, but when the calibration period is 

516 wet, the main modelling choice for PE (ARNO/VIC or PRMS) depends on the evaluation 

517 metric selected to apply the Pareto scheme. In the Puyango-Tumbes River basin (with high 

518 temperatures and low mean elevation, Table 1), we show that the upper layer (U) and 

519 percolation (PE) components are fully represented by ARNO/VIC - TOPMODEL and 

520 ARNO/VIC equations, respectively, regardless of the calibration period or the performance 

521 evaluation metric used when applying the Pareto scheme. For the remaining components, it is 

522 observed that these depend on the calibration period and the performance metric used when 

523 applying the Pareto scheme: for example, the TOPMODEL equation is preferred for the 

524 Surface Runoff components (SR) when the calibration period is dry, and the ARNO/VIC and 

525 TOPMODEL equation is preferred when the calibration period is wet. Finally, we do not find 

526 a preferred modelling choice for any component across MMP-dry and MMP-wet in this 

527 catchment, with the exception of the upper layer component, which is mostly represented by 

528 ARNO/VIC - TOPMODEL.

529

530 [Insert Table 5]

531

532 [Insert Table 6]

533

534 [Insert Table 7]

535
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536 4.3 Hydrologic sensitivities.

537 Figure 8 illustrates the effects of changing precipitation and temperature on monthly 

538 streamflow values simulated by MM0-dry (gray lines) and MMP-dry (colored lines) in the 

539 Vilcanota River basin. Precipitation increments lead to increases in Q and ET under the 

540 assumption that temperature remains unchanged, and these variations are more noticeable 

541 during spring and summer, when the highest values occur. Assuming that precipitation does 

542 not change, temperature increments lead to a slight increase in ET and decrease in Q. Similar 

543 sensitivities are observed in the other basins, regardless of the calibration period (not shown).

544

545 [Insert Figure 8]

546

547 [Insert Figure 9]

548

549 We assess the spread in precipitation elasticities (ɛ) and temperature sensitivities (S) arising 

550 from model structure in each basin, calibration period and reference climate (Figure 9). In 

551 agreement with the results reported by Vano et al. (2012), precipitation elasticities from all 

552 model structures (Figure 9, top row) are non-linear and depend on the reference climate, with 

553 higher elasticities for drier conditions (i.e., -10%, -20% and -30%). Figure 9 (middle row) 

554 shows that lower (higher) values of mean annual streamflow are related to larger (smaller) 

555 precipitation elasticities, and higher values of annual average streamflow are related to lower 

556 values of elasticity. The simulated temperature sensitivities (S, Figure 9, bottom row) are 

557 largely negative, with the exception of some model structures in the Vilcanota River basin, 

558 since as T increases, ET increases and Q decreases in agreement with the results reported by 

559 Vano et al. (2012) for the Colorado River Basin, USA. Moreover, we observe large inter-

560 model differences in temperature sensitivities, and no clear relationships (i.e., trends) 

561 between S values and temperature perturbations.

562

563 Figure 9 shows that, among the three catchments, the Huancane River basin provides the 

564 highest ɛ and S values, which in turn leads to a larger spread arising from model structures. 

565 On the other hand, the lowest ɛ and S values are obtained at the Puyango-Tumbes River 

566 basin, which can be explained by its geographic location (very close to the equatorial line), 

567 where higher temperatures (sea monthly averages in Figure 3) and mean annual precipitation 

568 (Table 1) are observed; in this area, small temperature (0.1°C) or precipitation (1%) 

569 perturbations do not have much impact on streamflow in comparison to the other basins.
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570

571 In general, we observe that the large dispersion in precipitation elasticities and temperature 

572 sensitivities arising from the original FUSE multi-model ensemble (MM0) decrease when a 

573 Pareto scheme is applied (MMP), for all basins and calibration periods. Further, a greater 

574 reduction in structural uncertainty is obtained after conducting a model screening step based 

575 on the examination of hydrological signatures and model states and fluxes (MMPS). For 

576 example, the ensemble spread in ɛ and S decreases by 100% (i.e., 0.2 to 0) and 0% (i.e., 0.3 

577 to 0.3), respectively, in the Puyango-Tumbes basin for a dry calibration period. Larger 

578 reductions are obtained in the Vilcanota and Huancane River basins in the dry calibration 

579 period (MMPS-dry), where only one model structure remains. Finally, the uncertainty in 

580 hydrologic sensitivities is greatly reduced by applying this Pareto scheme (MMP) in the three 

581 selected basins of the three hydrographic regions, highlighting the potential of the proposed 

582 approach.

583

584 5. CONCLUSIONS

585 In this paper, we tested the capability of a simple framework to sample hydrological model 

586 structures in order to (1) provide hydrologically consistent simulations under contrasting 

587 climatic conditions, and (2) reduce the uncertainty arising from hydrologic model choice in 

588 precipitation elasticities and temperature sensitivities. The analyses were conducted in three 

589 case study basins in Peru, representative of different hydroclimatic regimes and susceptible to 

590 flood occurrence. We configured and calibrated 78 FUSE models in dry and wet periods, 

591 obtained a sample of model structures using a Pareto scheme, refined the selection based on 

592 model diagnostics, assessed hydrological consistency and quantified hydrologic sensitivities. 

593 Further, we examined possible similarities between the selected model structures. The main 

594 conclusions are as follows:

595

596 - The proposed approach enables the identification of structures that robustly simulate 

597 catchment-scale hydrology under different climatic conditions. These models 

598 provide coherent characterizations of seasonal water balances, and perform well for 

599 various efficiency metrics and hydrological signatures that were not used in the 

600 model selection process.

601 - Some model components from the selected structures can be related to the climate 

602 during the calibration period and hydroclimatic characteristics of the basin. Yet, 
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603 these links are lacking for other model components, in particular in the Huancane 

604 River basin.

605 - The model selection procedure led to a significant reduction in the spread in 

606 precipitation elasticities and temperature sensitivities when compared to the full, 78-

607 member model ensemble. Further, by discarding the model structures that do not 

608 meet the minimum performance thresholds and/or lead to incoherent states and 

609 fluxes, we obtained an even larger reduction in the spread of precipitation elasticities 

610 and temperature sensitivities. 

611 - For the basins analysed here, using dry periods for model calibration and selection 

612 enhanced the robustness of simulated states and fluxes, compared to calibrations 

613 performed under wet conditions. 

614

615 The results presented here reinforce the idea that inter-model agreement in climate impact 

616 metrics does not necessarily improve if traditional objective functions are used for parameter 

617 estimation and model selection (Mendoza et al., 2015). We illustrate that model evaluation 

618 under contrasting climatic conditions, together with assessments of hydrological consistency, 

619 can inform the selection of hydrological models for climate impact studies. Further, our 

620 results highlight the challenge of designing model sampling strategies that provide a coherent 

621 model ensemble in terms of process representations, especially in catchments that are 

622 ‘problematic’ (e.g., Huancane River basin). Future studies could address this problem by 

623 using additional sources of information (Nijzink et al., 2018; Nemri & Kinnard, 2020; Sleziak 

624 et al., 2020; Széles et al., 2020) that can be incorporated in the Pareto scheme to find 

625 behavioural combinations of model structures and parameters

626
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636 the IRI Data Library website 

637 http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/.

638

639

640
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939 APPENDICES

940

941 The signature measures used here are based on formulations presented in previous climate 

942 impact studies (e.g., Mendoza et al. 2015; Yilmaz et al. 2008; Pokhrel et al. 2012). The 

943 diagnostic signature measure for water balance is the percent bias in the overall runoff ratio:

944

945 % Bias RR =
𝑅𝑅𝑠 ― 𝑅𝑅𝑜

𝑅𝑅𝑜 x100          (6)

946

947 Where  and  are observed and simulated mean annual runoff ratio, respectively.𝑅𝑅𝑜 𝑅𝑅𝑠

948

949 The ability to reproduce runoff seasonality is quantified by the percent bias in the centroid of 

950 the daily hydrograph for an average water year:

951

952 % Bias CTR =
(∑N

j = 1tj𝑄𝑠
𝑗/∑N

j = 1𝑄𝑠
𝑗) ― (∑N

j = 1tj𝑄𝑜
𝑗 /∑N

j = 1𝑄𝑜
𝑗 )

(∑N
j = 1tj𝑄𝑜

𝑗 /∑N
j = 1𝑄𝑜

𝑗 )
x100          (7)

953

954 where  and  are observed and simulated streamflow, respectively, at t = , and N is the 𝑄𝑜
𝑗 𝑄𝑠

𝑗 tj

955 total number of days in the water year. Since the water year in Peru begins on September 1, tj

956 = 1 for that day.

957

958 The diagnostic signature measures for vertical redistribution are the percent bias in FDC mis-

959 segment slope (% Bias FMS) and the percent bias in FDC high-segment volume (%Bias 

960 FHV). The first metric is computed as:

961

962 % Bias FMS =
[log (𝑄𝑠

𝑚1) ― log (𝑄𝑠
𝑚2)] ― [log (𝑄𝑜

𝑚1) ― log (𝑄𝑜
𝑚2)]

[log (𝑄𝑜
𝑚1) ― log (𝑄𝑜

𝑚2)] x100          (8)

963

964 Where m1 = 0.2 and m2 = 0.7, while Qm1 and Qm2 are flows with probability of exceedance 

965 of 0.2 and 0.7, respectively. A steep slope indicates a greater flashiness in the streamflow 

966 response, while a flatter curve indicates a relatively damped response and greater storage. 

967 The percent bias in FDC high-segment volume is computed as:

968
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969 % Bias FHV =
∑H

h = 1(𝑄𝑠
ℎ ― 𝑄𝑜

ℎ)

∑H
h = 1𝑄𝑜

ℎ
x100          (9)

970

971 Where h=1,2,...,H are the flow indices in the flow matrix with probability of exceedance less 

972 than 0.02. FHV is a measure of the basin response to high precipitation and snowmelt events.

973

974 The diagnostic signature measure for long-term baseflow is the percent bias in FDC low-

975 segment volume (%Bias FLV):

976

977 % Bias FLV =
∑L

l = 1[log (𝑄𝑠
𝑙 ) ― log (𝑄𝑠

𝐿)] ― ∑L
l = 1[log (𝑄𝑜

𝑙 ) ― log (𝑄𝑜
𝐿)]

∑L
l = 1[log (𝑄𝑜

𝑙 ) ― log (𝑄𝑜
𝐿)]

x100          (10)

978

979 Where l=1.2,....,L is the index within the set of values located in the FDC low flow segment 

980 (probability of exceedance between 0.7 and 1.0), and L is the index for the minimum flow.

981

982 The signature measure %Bias FMM was computed using the median value of the observed (

983 ) and simulated ( ) flows:𝑄𝑜
𝑚𝑒𝑑 𝑄𝑠

𝑚𝑒𝑑

984

985 % Bias FMM =
log (𝑄𝑠

𝑚𝑒𝑑) ― log (𝑄𝑜
𝑚𝑒𝑑)

log (𝑄𝑜
𝑚𝑒𝑑) x100          (11)

986

987 We select the median as a measure of midrange flows, because it is less sensitive to a biased 

988 distribution than the mean of the streamflow time series.

989

990

991

992

993

994

995

996

997

998
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1000 TABLES

1001

1002 Table 1: Characteristics of the three case study watersheds. Hydroclimatic indices were 
1003 computed with data from the period Sep/1986 – Aug/2016. For the Puyango-Tumbes and 
1004 Huancane River basins, a shorter period was used due to the lack of streamflow records in some 
1005 years.

Basin Area 
[km2]

Mean basin 
elevation and 

range [m 
a.s.l.]

Mean annual 
runoff 

[mm yr—1]

Mean annual 
precipitation 
[mm yr—1]

Mean annual 
PET 

[mm yr—1]

Mean annual 
runoff ratio 

Q/P

Mean annual 
aridity index 

PET/P

Vilcanota 9586 4279
(2291-6255) 398 742 813 0.54 1.10

Puyango-
Tumbes* 4694 1941

(39-3847) 718 732 1594 0.98 2.18

Huancane** 3545 4396
(3815-4976) 171 674 694 0.25 1.03

1006 Note: PET is potential evapotranspiration; AI is the aridity index.
1007 **Period considered: 25 years.
1008 ***Period considered: 21 years.
1009

1010
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1011 Table 2: Characteristics of the dry and wet periods for the three case study basins.

Basin Period
Mean annual 

runoff 
[mm yr—1]

Mean annual 
precipitation 
[mm yr—1]

Mean annual 
PET 

[mm yr—1]

Mean annual 
RR 

[Q/P]

Mean annual 
AI 

[PET/P]
Dry 328 666 788 0.49 1.18

Vilcanota
Wet 468 806 807 0.58 1.00
Dry 487 528 1593 0.92 3.02Puyango-

Tumbes Wet 915 992 1592 0.92 1.61
Dry 114 60 706 0.19 1.17

Huancane
Wet 227 750 690 0.30 0.92

1012
1013

1014
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1015 Table 3: FUSE model decision options (modified from Clark et al. 2008; Staudinger et al. 
1016 2011).

Model structure Model option Existing model

Upper layer 
architecture “U”

Upper layer divided into tension and free storage
Free storage plus tension storage sub-divided into recharge and excess
Upper layer defined by a single state variable

Sacramento
PRMS
ARNO/VIC -
TOPMODEL

Lower layer 
architecture and 
subsurface flow 
“L”

Tension storage combined with two parallel tanks
Storage of unlimited size combined with linear fraction rate
Storage of unlimited size combined with power recession
Storage of fixed size with non-linear storage function

Sacramento
PRMS 
TOPMODEL 
ARNO/VIC

Surface runoff 
“SR”

ARNO/Xzang/VIC parametrization
PRMS variant; fraction of upper tension storage
TOPMODEL parametrization

ARNO/VIC 
PRMS 
TOPMODEL

Percolation “PE”
Water from field capacity to saturation available for percolation
Water from wilting point to saturation available for percolation
Percolation defined by moisture content in lower layer architecture

PRMS 
ARNO/VIC 
Sacramento

1017

1018

1019
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1020 Table 4: Performance metrics used to sample the model space produced with FUSE.
Performance 

metric
Equation Range Emphasis References

Nash – Sutcliffe 
Efficiency (NSE) NSE = 1 ―

∑N
i = 1(𝑄𝑠

𝑖 ― 𝑄𝑜
𝑖 )

2

∑N
i = 1(𝑄𝑜

𝑖 ― 𝑄𝑜)
2

- – 1 High flows 
and 

dynamic 
discharge.

Nash & 
Sutcliffe 
(1970)

Kling – Gupta 
Efficiency (KGE)

KGE = 1 ― ED;
ED = (r ― 1)2 + (α ― 1)2 + (β ― 1)2;

 ;  ;α =
σS

σO
β =

μS

μO

r =
∑N

i = 1(𝑄𝑜
𝑖 ― 𝑄𝑜)(𝑄𝑠

𝑖 ― 𝑄𝑠)

∑N
i = 1(𝑄𝑜

𝑖 ― 𝑄𝑜)
2

∑N
i = 1(𝑄𝑠

𝑖 ― 𝑄𝑠)
2

- – 1 Timing, 
streamflow 
variability 
and water 

balance

Gupta et al. 
(2009)

Split KGE
Split KGE =

1
T

T

∑
t = 1

KGEt

- – 1 Same as 
KGE, but 
no year 

can have 
more 

influence 
than any 

other year

Fowler et al. 
(2018b)

Nash – Sutcliffe 
Efficiency with 

logarithmic 
transf. (NSE-

log)

NSElog = 1 ―
∑N

i = 1(log (𝑄𝑠
𝑖 ) ― log (𝑄𝑜

𝑖 ))
2

∑N
i = 1(log (𝑄𝑜

𝑖 ) ― log (𝑄𝑜))
2

- – 1 Low flows. Nash & 
Sutcliffe 
(1970)

Santos et al. 
(2018)

Aggregate 
objective 

function (AOF)

AOF =
AOFsig + AOFgof

2

AOFsig = 1 ―
8

∑
q = 1

Yq,o ― Yq,s

8 σq

AOFgof =
2B + r + 𝑟log

4

- – 1 - Beck et al. 
(2016)

1021 Note:  is the observed daily runoff;  is the simulated daily runoff;  is the mean of the 𝑄𝑜
𝑖 𝑄𝑠

𝑖 𝑄𝑜

1022 observed daily runoff values;  is the mean of the simulated daily runoff values. N and T 𝑄𝑠

1023 represent the total number of days and water years, respectively, used to compute efficiency 
1024 metrics.  and  represent the bias and Pearson correlation coefficient, respectively, computed 𝐵 𝑟
1025 between simulated and observed daily runoff; and  is the Pearson correlation coefficient 𝑟𝑙𝑜𝑔
1026 computed between natural‐log transformed simulated and observed runoff.
1027

1028

1029

1030
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1031 Table 5: Components of the hydrological model structures obtained from the application of the 
1032 Pareto scheme in the Vilcanota River basin, for both dry (MMP-dry), and wet (MMP-wet) 
1033 calibration periods. The reference model structure that provides the lowest RMSE during the 
1034 calibration period is included for comparison purposes, and the model structures discarded due 
1035 to abnormal behavior of states and/or fluxes are in italics and bold.

Model structure componentsCalibration 
Period Selection Criteria

Model 
structure 

name U L SR PE

smallest RMSE Cal FUSE 01 Sacramento Sacramento ARNO/VIC PRMS

higher NSE Cal-Eval FUSE 25 PRMS PRMS ARNO/VIC PRMS

higher KGE Cal-Eval FUSE 25 PRMS PRMS ARNO/VIC PRMS

higher splitKGE Cal-Eval FUSE 25 PRMS PRMS ARNO/VIC PRMS 

higher NSElog Cal-Eval FUSE 43 ARNO/VIC - 
TOPMODEL Sacramento ARNO/VIC PRMS

Dry period

higher AOF Cal-Eval FUSE 17 Sacramento TOPMODEL TOPMODEL PRMS

smallest RMSE Cal FUSE 44 ARNO/VIC - 
TOPMODEL Sacramento ARNO/VIC ARNO/VIC

higher NSE Cal-Eval FUSE 44 ARNO/VIC - 
TOPMODEL Sacramento ARNO/VIC ARNO/VIC

higher KGE Cal-Eval FUSE 44 ARNO/VIC - 
TOPMODEL Sacramento ARNO/VIC ARNO/VIC 

higher splitKGE Cal-Eval FUSE 21 Sacramento ARNO/VIC PRMS PRMS

higher NSElog Cal-Eval FUSE 01 Sacramento Sacramento ARNO/VIC PRMS

Wet period

higher AOF Cal-Eval FUSE 61 ARNO/VIC - 
TOPMODELTOPMODEL ARNO/VIC PRMS

1036
1037

1038
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1039 Table 6: Same as Table 5, but for the Puyango-Tumbes River basin.

Model structure componentsCalibration 
Period Selection Criteria

Model 
structure 

name U L SR PE

smallest RMSE Cal FUSE 50 ARNO/VIC - 
TOPMODEL Sacramento TOPMODEL ARNO/VIC

higher NSE Cal-Eval FUSE 59 ARNO/VIC - 
TOPMODEL PRMS TOPMODEL ARNO/VIC

higher KGE Cal-Eval FUSE 59 ARNO/VIC - 
TOPMODEL PRMS TOPMODEL ARNO/VIC

higher splitKGE Cal-Eval FUSE 59 ARNO/VIC - 
TOPMODEL PRMS TOPMODEL ARNO/VIC

higher NSElog Cal-Eval FUSE 62 ARNO/VIC - 
TOPMODEL TOPMODEL ARNO/VIC ARNO/VIC

Dry period

higher AOF Cal-Eval FUSE 65 ARNO/VIC - 
TOPMODEL TOPMODEL PRMS ARNO/VIC

smallest RMSE Cal FUSE 44 ARNO/VIC – 
TOPMODEL Sacramento ARNO/VIC ARNO/VIC

higher NSE Cal-Eval FUSE 56 ARNO/VIC – 
TOPMODEL PRMS PRMS ARNO/VIC

higher KGE Cal-Eval FUSE 59 ARNO/VIC – 
TOPMODEL PRMS TOPMODEL ARNO/VIC

higher splitKGE Cal-Eval FUSE 59 ARNO/VIC – 
TOPMODEL PRMS TOPMODEL ARNO/VIC

higher NSElog Cal-Eval FUSE 62 ARNO/VIC – 
TOPMODELTOPMODEL ARNO/VIC ARNO/VIC

Wet period

higher AOF Cal-Eval FUSE 62 ARNO/VIC - 
TOPMODELTOPMODEL ARNO/VIC ARNO/VIC

1040

1041
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1042 Table 7: Same as Table 5, but for the Huancane River basin.
Model structure componentsCalibration 

Period Selection Criteria
Model 

structure 
name U L SR PE

smallest RMSE Cal FUSE 03 Sacramento Sacramento PRMS PRMS

higher NSE Cal-Eval FUSE 77 ARNO/VIC - 
TOPMODEL ARNO/VIC TOPMODEL ARNO/VIC

higher KGE Cal-Eval FUSE 23 Sacramento ARNO/VIC TOPMODEL PRMS 

higher splitKGE Cal-Eval FUSE 16 Sacramento TOPMODEL PRMS Sacramento

higher NSElog Cal-Eval FUSE 45 ARNO/VIC – 
TOPMODEL Sacramento ARNO/VIC Sacramento 

Dry period 

higher AOF Cal-Eval FUSE 23 Sacramento ARNO/VIC TOPMODEL PRMS

smallest RMSE Cal FUSE 43 ARNO/VIC – 
TOPMODEL Sacramento ARNO/VIC PRMS

higher NSE Cal-Eval FUSE 69 ARNO/VIC – 
TOPMODEL TOPMODEL TOPMODEL Sacramento 

higher KGE Cal-Eval FUSE 69 ARNO/VIC – 
TOPMODELTOPMODEL TOPMODEL Sacramento

higher splitKGE Cal-Eval FUSE 69 ARNO/VIC – 
TOPMODELTOPMODEL TOPMODEL Sacramento

higher NSElog Cal-Eval FUSE 44 ARNO/VIC – 
TOPMODEL Sacramento ARNO/VIC ARNO/VIC 

Wet period 

higher AOF Cal-Eval FUSE 23 Sacramento ARNO/VIC TOPMODEL PRMS

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059
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1060 FIGURE LEGENDS 

1061
1062 Figure  1: Location and elevation of the three case study basins

1063 Figure  2: Flowchart illustrating the methodology. 

1064 Figure 3: Catchment-averaged mean monthly values of runoff, precipitation and air 
1065 temperature (top panels), and flow duration curves (bottom panels) for the selected dry (red 
1066 lines) and wet (blue lines) periods. The results for each basin are displayed in different 
1067 columns.

1068 Figure  4: Coverage results from all calibrated model structures, for each basin and each 
1069 calibration period (displayed along different columns). The horizontal and vertical dashed 
1070 lines indicate performance acceptance thresholds, and the light blue region represents the 
1071 region where temporally consistent performance is obtained. The red triangle represents the 
1072 combination of model structure and parameter set that minimizes RMSE during the 
1073 calibration period (i.e., the common practice); the colored dots represent the models that were 
1074 selected using the criteria defined in section 3.1.3, and the remaining models are displayed as 
1075 gray dots.
1076
1077 Figure  5: Percent biases in signature measures of hydrologic behavior (rows) for each basin 
1078 and each calibration period (columns), where EVAL W->D (D->W) indicates model 
1079 performance in a dry (wet) period with parameters calibrated in a wet (dry) period.

1080 Figure  6: Flow duration curves for each basin and each calibration period. The black line 
1081 represents observations, gray lines represent the full multi-model ensemble, and the model 
1082 structures selected with different performance evaluation criteria are displayed in colored 
1083 lines.

1084 Figure  7: Monthly average fluxes and states for each basin and each calibration period, 
1085 considering a 30-year period (September/1986 – August/2016). Inter-model agreement is 
1086 quantified with an ensemble spread metric (equation 2), displayed at the top of each panel for 
1087 the full ensemble (left) and the five model structures – represented by colored lines – selected 
1088 with the Pareto scheme (right). The reference model structure that provides the lowest RMSE 
1089 during the calibration period is displayed in dashed red, for comparison purposes. The 
1090 observed average monthly streamflow values (black line, upper panel) are only shown as a 
1091 reference and not for evaluation purposes, since there is not enough information available for 
1092 30 years in the Puyango-Tumbes and Huancané river basins.

1093 Figure  8: Climatological monthly averages (September/1986 – August/2016) of runoff and 
1094 ET obtained with model parameters calibrated in a dry period. Results are displayed for (top) 
1095 precipitation perturbations of 70%, 80%, 90% and 110%, and (bottom) temperature increases 
1096 of 1°, 2° and 3°C. The gray lines show the results with the full ensemble (MM0-dry), and the 
1097 colored lines show the results obtained with the multi-model ensemble obtained from the 
1098 application of the Pareto scheme (MMP). The model structures discarded during the 
1099 screening procedure are plotted with x, and the accepted model structures (MMS) are plotted 
1100 with circles.

1101 Figure  9: Precipitation elasticity (ɛ) and temperature sensitivities (S) for each basin and 
1102 calibration period, computed for the 30-year period (September/1986 – August/2016). In the 
1103 top panels, the x-axis represents the percent changes in precipitation from the reference 
1104 climates; in the middle panels, the x-axis represents the changes in mean annual runoff from 
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1105 the reference climates, and in the bottom panels the x-axis represents the additive temperature 
1106 changes from the reference climates. The average monthly standard deviations obtained from 
1107 the full ensemble (MM0) and the final multi-model ensemble (MMPS) are displayed at the 
1108 top of each panel. Discarded model structures are represented with x, and accepted model 
1109 structures are plotted with circles. The vertical dashed line is the observed mean annual 
1110 streamflow, which is only shown as a reference and not for evaluation purposes, since there is 
1111 not enough information available for 30 years in the Puyango-Tumbes and Huancané river 
1112 basins.
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Location and elevation of the three case study basins. 
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Flowchart illustrating the methodology. 
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Catchment-averaged mean monthly values of runoff, precipitation and air temperature (top panels), and 
flow duration curves (bottom panels) for the selected dry (red lines) and wet (blue lines) periods. The 

results for each basin are displayed in different columns. 
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Coverage results from all calibrated model structures, for each basin and each calibration period (displayed 
along different columns). The horizontal and vertical dashed lines indicate performance acceptance 

thresholds, and the light blue region represents the region where temporally consistent performance is 
obtained. The red triangle represents the combination of model structure and parameter set that minimizes 
RMSE during the calibration period (i.e., the common practice); the colored dots represent the models that 
were selected using the criteria defined in section 3.1.3, and the remaining models are displayed as gray 

dots. 
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Percent biases in signature measures of hydrologic behavior (rows) for each basin and each calibration 
period (columns), where EVAL W->D (D->W) indicates model performance in a dry (wet) period with 

parameters calibrated in a wet (dry) period. 
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Flow duration curves for each basin and each calibration period. The black line represents observations, gray 
lines represent the full multi-model ensemble, and the model structures selected with different performance 

evaluation criteria are displayed in colored lines. 
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Monthly average fluxes and states for each basin and each calibration period, considering a 30-year period 
(September/1986 – August/2016). Inter-model agreement is quantified with an ensemble spread metric 

(equation 2), displayed at the top of each panel for the full ensemble (left) and the five model structures – 
represented by colored lines – selected with the Pareto scheme (right). The reference model structure that 
provides the lowest RMSE during the calibration period is displayed in dashed red, for comparison purposes. 
The observed average monthly streamflow values (black line, upper panel) are only shown as a reference 

and not for evaluation purposes, since there is not enough information available for 30 years in the 
Puyango-Tumbes and Huancané river basins. 
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Climatological monthly averages (September/1986 – August/2016) of runoff and ET obtained with model 
parameters calibrated in a dry period. Results are displayed for (top) precipitation perturbations of 70%, 
80%, 90% and 110%, and (bottom) temperature increases of 1°, 2° and 3°C. The gray lines show the 

results with the full ensemble (MM0-dry), and the colored lines show the results obtained with the multi-
model ensemble obtained from the application of the Pareto scheme (MMP). The model structures discarded 

during the screening procedure are plotted with x, and the accepted model structures (MMS) are plotted 
with circles. 
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Precipitation elasticity (ɛ) and temperature sensitivities (S) for each basin and calibration period, computed 
for the 30-year period (September/1986 – August/2016). In the top panels, the x-axis represents the 

percent changes in precipitation from the reference climates; in the middle panels, the x-axis represents the 
changes in mean annual runoff from the reference climates, and in the bottom panels the x-axis represents 
the additive temperature changes from the reference climates. The average monthly standard deviations 

obtained from the full ensemble (MM0) and the final multi-model ensemble (MMPS) are displayed at the top 
of each panel. Discarded model structures are represented with x, and accepted model structures are 

plotted with circles. The vertical dashed line is the observed mean annual streamflow, which is only shown 
as a reference and not for evaluation purposes, since there is not enough information available for 30 years 

in the Puyango-Tumbes and Huancané river basins. 

280x138mm (300 x 300 DPI) 

Page 50 of 50

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


