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Introduction. This Supplemental Information includes mathematical derivations (Text S1 through S3) 

related to the bedform pumping model presented in the main text.  

Text S1: Derivation of the Convolution Representation of Flux Across the SWI. In this section we 

derive from the BPM the convolution representation of advective flux across the SWI (equation (1a) in 

the main text). A striking feature of the BPM’s two-dimensional velocity field is that, along any 

streamline, the -component of the velocity is constant and equal to , where  is the 

dimensionless location along the SWI where the streamline first enters the streambed (see proof in the SI 

of Grant et al., 2014); because streamlines in a unit cell are symmetric, the same streamline exits the 

sediment bed at  (see expanded view in Figure 1c in the main text). We can utilize these two 

features of the BPM’s flow field to solve for the unsteady mass flux across the SWI, in the case where the 

water column concentration is a function of time. Letting  [L] represent the width of the stream, the 

rate at which mass flows into the streambed across a differential area, , is: 

 where  is the concentration of the solute in the overlying 

water column at time  (assumed not to vary over the length of a single unit cell) and  is 

the vertical velocity of water parcels crossing into the sediment from the stream. Likewise, if  

represents the final solute concentration at time  on the streamline that entered the streambed at , 

the rate at which mass flows out of the streambed is: . Taking 

the difference of these two mass flow rates, substituting equation (R2) in Figure 1 (main text) for the -

velocity at the SWI, integrating over all streamlines in the unit cell, and dividing by the unit cell’s 

interfacial area, we arrive at equation (S1) for the average flux of solute across the SWI at any time . 

         (S1) 

As written, equation (S1) is not particularly useful, because the integral on the right-hand side is 

expressed in terms of an unknown final concentration, . However, if the solute is conservative, 

the final concentration at time  must equal the concentration in the overlying water column at time, 

, where  is the streamline-dependent residence time; i.e., the time a solute spends traveling 

along a streamline from its starting position, , to its ending position, : . 
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The constant nature of the BPM’s -velocity along any streamline implies that the streamline’s residence 

time can be estimated from the -distance a water parcel travels along the streamline divided by the fixed 

-component of the velocity associated with that streamline where  is streambed porosity: 

         (S2) 

From these results, the flux across the SWI can be expressed solely as a function of the overlying water 

column concentration: 

       (S3) 

Following the addition of solute to the water column, streamlines in the unit cell shown in Figure 1c 

(main text) can be divided into two groups: (1) those for which solute has already transported the full 

length of the streamline (i.e. the solute has “broken through” the streamline and is returning to the 

stream); and (2) those for which solute has not yet broken through. At the boundary is a critical 

streamline, denoted by its starting -position at the SWI ( ), that separates the former ( ) 

from the latter ( ) (Elliott and Brooks, 1997a). Because the solute concentration is zero at the 

terminus of stream lines in the second group (i.e.,  for ), the upper limit of the 

integral in equation (S3) can be adjusted downward: 

       (S4) 

Performing a change integration variable from  to  (utilizing the relationship between these two 

variables, see equation (S2)) we obtain the convolution representation of the BPM’s residence time 

distribution presented in the main text (equation (1a)). 

Text S2: Coherence of Our and EB’s Definition of the BPM’s RTD. Our definition of the RTD’s CDF 

(equation (2b)) is superficially different from the one derived for the BPM by Elliott and Brooks 

(hereafter, EB) (Elliott and Brooks, 1997a). Here, we adopted the standard definition for the CDF of an 

RTD, , as the fraction of solute entering the sediment bed in a short time near  and exiting the 

bed by time  (Fogler, 2016). EB, on the other hand, defined their RTD function, , as “the fraction 

of solute which entered the bed in a short time near  and remains in the bed at time ” (Elliott and 

Brooks, 1997a). For a conservative solute that enters the sediment near , by time  the solute is 

either still in the bed or has exited the bed; i.e., there is no other place it could be. Thus, our two RTD 
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definitions must sum to unity: . Subsituting equation (2b) and rearranging, we arrive at 

EB’s solution for their RTD,  (see equation (21c) in Elliott and Brooks (1997a)), 

where our dimensionless time  is equivalent to EB’s  and . Hence, our RTD is 

mathematically coherent with EB’s RTD. 

Text S3. Derivation of the BPM’s Residence Time Function. In this section we derive equation (8a) in 

the main text, which represents the time  a water parcel requires to travel from the point where it 

enters the bed at the SWI to any location  in the sediment. We begin by defining a stream function 

 for the BPM (Sabersky and Acosta, 1989): 

         (S5a) 

         (S5b) 

In these equations  and  represent the BPM’s Darcy fluxes in the - and -directions, respectively. 

Substituting the BPM velocity components  and  (see Figure 1 in the 

main text, where  is the maximum Darcy flux across the SWI) and integrating the resulting differential 

equations we arrive at the following stream function for the BPM: 

         (S6) 

Streamlines are obtained by setting the stream function equal to a constant, . The difference 

between any two stream function constants  represents the volumetric flow rate per unit 

width of sediment bed [ ] flowing between the streamlines represented by  and 

. In the case of the BPM’s flow field, a stream function’s constant can be written in terms of 

the dimensionless horizontal position ( ) where the streamline in question first crosses the sediment-

water interface (at ) in the downwelling zone: 

,         (S7) 

Combining equations (S6) and (S7), we arrive at the following implicit equation for the streamline that 
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For the unit cell  (see Figure 1c in the main text), each streamline begins and ends at  

and , respectively. Thus, the age of a water parcel at any position  can be calculated from the ratio 

of the distance traveled, , and the constant -component of the water parcel’s velocity 

 (see discussion of the BPM’s flow field in Text S1) where  denotes sediment porosity: 

       (S9) 

The notation  denotes the age of a water parcel located at position  along the streamline that 

enters the streambed at position . We would like to eliminate the starting position of the streamline, 

, from equation (S9). To that end, an expression for  can be obtained by rearranging the equation 

for a streamline (equation (S8)): 

        (S10) 

Substituting equations (S10) and (R3) (Figure 1) into equation (S9) we obtain equation (8a) in the main 

text: 
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