REFERENCES
Azizian, M., Boano, F., Cook, P. L., Detwiler, R. L., Rippy, M. A., & Grant, S. B. (2017). Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams. Water Resources Research , 53 (5), 3941–3967.
Azizian, M., Grant, S. B., Kessler, A. J., Cook, P. L., Rippy, M. A., & Stewardson, M. J. (2015). Bedforms as biocatalytic filters: A pumping and streamline segregation model for nitrate removal in permeable sediments. Environmental Science & Technology , 49 (18), 10993–11002.
Baxter, C. V., & Hauer, F. R. (2000). Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences ,57 (7), 1470–1481.
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., & others. (2011). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences , 108 (1), 214–219.
Bencala, K. E. (1983). Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption.Water Resources Research , 19 (3), 732–738.
Boano, F., Packman, A., Cortis, A., Revelli, R., & Ridolfi, L. (2007). A continuous time random walk approach to the stream transport of solutes. Water Resources Research , 43 (10).
Bottacin-Busolin, A., & Marion, A. (2010). Combined role of advective pumping and mechanical dispersion on time scales of bed form–induced hyporheic exchange. Water Resources Research , 46 (8).
Cardenas, M. B., Wilson, J. L., & Haggerty, R. (2008). Residence time of bedform-driven hyporheic exchange. Advances in Water Resources , 31 (10), 1382–1386.
Elliott, A. H., & Brooks, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research , 33 (1), 137–151.
Feminella, J. W., & Walsh, C. J. (2005). Urbanization and stream ecology: An introduction to the series. Journal of the North American Benthological Society , 24 (3), 585–587.
Fox, A., Boano, F., & Arnon, S. (2014). Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resources Research , 50 (3), 1895–1907.
Frei, S., Azizian, M., Grant, S. B., Zlotnik, V. A., & Toundykov, D. (2019). Analytical modeling of hyporheic flow for in-stream bedforms: Perturbation method and implementation. Environmental Modelling & Software , 111 , 375–385.
Galloway, J., Fox, A., Lewandowski, J., & Arnon, S. (2019). The effect of unsteady streamflow and stream-groundwater interactions on oxygen consumption in a sandy streambed. Scientific Reports ,9 (1), 1–11.
Gomez, J. D., Wilson, J. L., & Cardenas, M. B. (2012). Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects. Water Resources Research , 48 (9).
Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B., & Kiel, B. (2015). Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience , 8 (12), 941–945.
Gomez-Velez, J. D., Krause, S., & Wilson, J. L. (2014). Effect of low-permeability layers on spatial patterns of hyporheic exchange and groundwater upwelling. Water Resources Research , 50 (6), 5196–5215.
Grant, S. B., Gomez-Velez, J. D., & Ghisalberti, M. (2018). Modeling the effects of turbulence on hyporheic exchange and local-to-global nutrient processing in streams. Water Resources Research ,54 (9), 5883–5889.
Grant, S. B., Litton-Mueller, R. M., & Ahn, J. H. (2011). Measuring and modeling the flux of fecal bacteria across the sediment-water interface in a turbulent stream. Water Resources Research , 47 (5).
Grant, S. B., Monofy, A., Boano, F., Gomez-Velez, J. D., Guymer, I., Harvey, J., & Ghisalberti, M. (2020). Unifying advective and diffusive descriptions of bedform pumping in the benthic biolayer of streams.Water Resources Research , 56 (11), e2020WR027967.
Grant, S. B., Stolzenbach, K., Azizian, M., Stewardson, M. J., Boano, F., & Bardini, L. (2014). First-order contaminant removal in the hyporheic zone of streams: Physical insights from a simple analytical model. Environmental Science & Technology , 48 (19), 11369–11378.
Harvey, J., & Gooseff, M. (2015). River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins.Water Resources Research , 51 (9), 6893–6922.
Harvey, J. W., Böhlke, J. K., Voytek, M. A., Scott, D., & Tobias, C. R. (2013). Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance. Water Resources Research , 49 (10), 6298–6316.
Kirchner, J. W., Feng, X., & Neal, C. (2000). Fractal stream chemistry and its implications for contaminant transport in catchments.Nature , 403 (6769), 524–527.
Knapp, J. L., & Kelleher, C. (2020). A perspective on the future of transient storage modeling: Let’s stop chasing our tails. Water Resources Research , 56 (3), e2019WR026257.
Marion, A., Bellinello, M., Guymer, I., & Packman, A. (2002). Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resources Research , 38 (10), 27–1.
Marzadri, A., Dee, M. M., Tonina, D., Bellin, A., & Tank, J. L. (2017). Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proceedings of the National Academy of Sciences , 114 (17), 4330–4335.
Marzadri, A., Tonina, D., Bellin, A., & Tank, J. (2014). A hydrologic model demonstrates nitrous oxide emissions depend on streambed morphology. Geophysical Research Letters , 41 (15), 5484–5491.
Marzadri, A., Tonina, D., Bellin, A., & Valli, A. (2016). Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources , 88 , 139–151.
Morén, I., Wörman, A., & Riml, J. (2017). Design of remediation actions for nutrient mitigation in the hyporheic zone. Water Resources Research , 53 (11), 8872–8899.
Mulholland, P. J., Hall, R. O., Sobota, D. J., Dodds, W. K., Findlay, S. E. G., Grimm, N. B., Hamilton, S. K., McDowell, W. H., O’Brien, J. M., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Gregory, S. V., Johnson, S. L., Meyer, J. L., Peterson, B. J., Poole, G. C., Valett, H. M., … Thomasn, S. M. (2009). Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification.Limnology and Oceanography , 54 (3), 666–680. https://doi.org/10.4319/lo.2009.54.3.0666
Packman, A. I., Brooks, N. H., & Morgan, J. J. (2000a). A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms. Water Resources Research , 36 (8), 2351–2361.
Packman, A. I., Brooks, N. H., & Morgan, J. J. (2000b). Kaolinite exchange between a stream and streambed: Laboratory experiments and validation of a colloid transport model. Water Resources Research , 36 (8), 2363–2372.
Packman, A. I., & MacKay, J. S. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research , 39 (4).
Packman, A. I., Salehin, M., & Zaramella, M. (2004). Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering , 130 (7), 647–656.
Rehg, K. J., Packman, A. I., & Ren, J. (2005). Effects of suspended sediment characteristics and bed sediment transport on streambed clogging. Hydrological Processes: An International Journal ,19 (2), 413–427.
Ren, J., & Packman, A. I. (2004). Stream-subsurface exchange of zinc in the presence of silica and kaolinite colloids. Environmental Science & Technology , 38 (24), 6571–6581.
Runkel, R. L. (1998). One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers (Vol. 98). US Department of the Interior, US Geological Survey.
Sawyer, A. H., Bayani Cardenas, M., & Buttles, J. (2012). Hyporheic temperature dynamics and heat exchange near channel-spanning logs.Water Resources Research , 48 (1).
Stewardson, M., Datry, T., Lamouroux, N., Pella, H., Thommeret, N., Valette, L., & Grant, S. (2016). Variation in reach-scale hydraulic conductivity of streambeds. Geomorphology , 259 , 70–80.
Sukhodolov, A. N., Fedele, J. J., & Rhoads, B. L. (2006). Structure of flow over alluvial bedforms: An experiment on linking field and laboratory methods. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group , 31 (10), 1292–1310.
Tonina, D., de Barros, F. P., Marzadri, A., & Bellin, A. (2016). Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams? Advances in Water Resources , 96 , 120–126.
Tonina, D., Marzadri, A., & Bellin, A. (2015). Benthic uptake rate due to hyporheic exchange: The effects of streambed morphology for constant and sinusoidally varying nutrient loads. Water , 7 (2), 398–419.
Tóth, J. (1962). A theory of groundwater motion in small drainage basins in central Alberta, Canada. Journal of Geophysical Research ,67 (11), 4375–4388.
Urumović, K., & Urumović Sr, K. (2014). The effective porosity and grain size relations in permeability functions. Hydrology and Earth System Sciences Discussions , 11 (6), 6675–6714.
Vaux, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin of the Fish and Wildlife Service ,66 (3), 479–489.
White, D. S., Elzinga, C. H., & Hendricks, S. P. (1987). Temperature patterns within the hyporheic zone of a northern Michigan river.Journal of the North American Benthological Society , 6 (2), 85–91.
Wörman, A., Packman, A. I., Johansson, H., & Jonsson, K. (2002). Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research ,38 (1), 2–1.
Wu, F.-C. (2000). Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions. Water Resources Research , 36 (6), 1595–1603.
Zaramella, M., Packman, A. I., & Marion, A. (2003). Application of the transient storage model to analyze advective hyporheic exchange with deep and shallow sediment beds. Water Resources Research ,39 (7).
Zarnetske, J. P., Haggerty, R., & Wondzell, S. M. (2015). Coupling multiscale observations to evaluate hyporheic nitrate removal at the reach scale. Freshwater Science , 34 (1), 172–186.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. A. (2011). Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research: Biogeosciences , 116 (G1).
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., & González-Pinzón, R. (2012). Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resources Research , 48 (11).