REFERENCES
Azizian, M., Boano, F., Cook, P. L., Detwiler, R. L., Rippy, M. A., &
Grant, S. B. (2017). Ambient groundwater flow diminishes nitrate
processing in the hyporheic zone of streams. Water Resources
Research , 53 (5), 3941–3967.
Azizian, M., Grant, S. B., Kessler, A. J., Cook, P. L., Rippy, M. A., &
Stewardson, M. J. (2015). Bedforms as biocatalytic filters: A pumping
and streamline segregation model for nitrate removal in permeable
sediments. Environmental Science & Technology , 49 (18),
10993–11002.
Baxter, C. V., & Hauer, F. R. (2000). Geomorphology, hyporheic
exchange, and selection of spawning habitat by bull trout (Salvelinus
confluentus). Canadian Journal of Fisheries and Aquatic Sciences ,57 (7), 1470–1481.
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R.
O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W.,
Dahm, C. N., & others. (2011). Nitrous oxide emission from
denitrification in stream and river networks. Proceedings of the
National Academy of Sciences , 108 (1), 214–219.
Bencala, K. E. (1983). Simulation of solute transport in a mountain
pool-and-riffle stream with a kinetic mass transfer model for sorption.Water Resources Research , 19 (3), 732–738.
Boano, F., Packman, A., Cortis, A., Revelli, R., & Ridolfi, L. (2007).
A continuous time random walk approach to the stream transport of
solutes. Water Resources Research , 43 (10).
Bottacin-Busolin, A., & Marion, A. (2010). Combined role of advective
pumping and mechanical dispersion on time scales of bed form–induced
hyporheic exchange. Water Resources Research , 46 (8).
Cardenas, M. B., Wilson, J. L., & Haggerty, R. (2008). Residence time
of bedform-driven hyporheic exchange. Advances in Water
Resources , 31 (10), 1382–1386.
Elliott, A. H., & Brooks, N. H. (1997). Transfer of nonsorbing solutes
to a streambed with bed forms: Laboratory experiments. Water
Resources Research , 33 (1), 137–151.
Feminella, J. W., & Walsh, C. J. (2005). Urbanization and stream
ecology: An introduction to the series. Journal of the North
American Benthological Society , 24 (3), 585–587.
Fox, A., Boano, F., & Arnon, S. (2014). Impact of losing and gaining
streamflow conditions on hyporheic exchange fluxes induced by
dune-shaped bed forms. Water Resources Research , 50 (3),
1895–1907.
Frei, S., Azizian, M., Grant, S. B., Zlotnik, V. A., & Toundykov, D.
(2019). Analytical modeling of hyporheic flow for in-stream bedforms:
Perturbation method and implementation. Environmental Modelling &
Software , 111 , 375–385.
Galloway, J., Fox, A., Lewandowski, J., & Arnon, S. (2019). The effect
of unsteady streamflow and stream-groundwater interactions on oxygen
consumption in a sandy streambed. Scientific Reports ,9 (1), 1–11.
Gomez, J. D., Wilson, J. L., & Cardenas, M. B. (2012). Residence time
distributions in sinuosity-driven hyporheic zones and their
biogeochemical effects. Water Resources Research , 48 (9).
Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B., & Kiel, B. (2015).
Denitrification in the Mississippi River network controlled by flow
through river bedforms. Nature Geoscience , 8 (12),
941–945.
Gomez-Velez, J. D., Krause, S., & Wilson, J. L. (2014). Effect of
low-permeability layers on spatial patterns of hyporheic exchange and
groundwater upwelling. Water Resources Research , 50 (6),
5196–5215.
Grant, S. B., Gomez-Velez, J. D., & Ghisalberti, M. (2018). Modeling
the effects of turbulence on hyporheic exchange and local-to-global
nutrient processing in streams. Water Resources Research ,54 (9), 5883–5889.
Grant, S. B., Litton-Mueller, R. M., & Ahn, J. H. (2011). Measuring and
modeling the flux of fecal bacteria across the sediment-water interface
in a turbulent stream. Water Resources Research , 47 (5).
Grant, S. B., Monofy, A., Boano, F., Gomez-Velez, J. D., Guymer, I.,
Harvey, J., & Ghisalberti, M. (2020). Unifying advective and diffusive
descriptions of bedform pumping in the benthic biolayer of streams.Water Resources Research , 56 (11), e2020WR027967.
Grant, S. B., Stolzenbach, K., Azizian, M., Stewardson, M. J., Boano,
F., & Bardini, L. (2014). First-order contaminant removal in the
hyporheic zone of streams: Physical insights from a simple analytical
model. Environmental Science & Technology , 48 (19),
11369–11378.
Harvey, J., & Gooseff, M. (2015). River corridor science: Hydrologic
exchange and ecological consequences from bedforms to basins.Water Resources Research , 51 (9), 6893–6922.
Harvey, J. W., Böhlke, J. K., Voytek, M. A., Scott, D., & Tobias, C. R.
(2013). Hyporheic zone denitrification: Controls on effective reaction
depth and contribution to whole-stream mass balance. Water
Resources Research , 49 (10), 6298–6316.
Kirchner, J. W., Feng, X., & Neal, C. (2000). Fractal stream chemistry
and its implications for contaminant transport in catchments.Nature , 403 (6769), 524–527.
Knapp, J. L., & Kelleher, C. (2020). A perspective on the future of
transient storage modeling: Let’s stop chasing our tails. Water
Resources Research , 56 (3), e2019WR026257.
Marion, A., Bellinello, M., Guymer, I., & Packman, A. (2002). Effect of
bed form geometry on the penetration of nonreactive solutes into a
streambed. Water Resources Research , 38 (10), 27–1.
Marzadri, A., Dee, M. M., Tonina, D., Bellin, A., & Tank, J. L. (2017).
Role of surface and subsurface processes in scaling N2O emissions along
riverine networks. Proceedings of the National Academy of
Sciences , 114 (17), 4330–4335.
Marzadri, A., Tonina, D., Bellin, A., & Tank, J. (2014). A hydrologic
model demonstrates nitrous oxide emissions depend on streambed
morphology. Geophysical Research Letters , 41 (15),
5484–5491.
Marzadri, A., Tonina, D., Bellin, A., & Valli, A. (2016). Mixing
interfaces, fluxes, residence times and redox conditions of the
hyporheic zones induced by dune-like bedforms and ambient groundwater
flow. Advances in Water Resources , 88 , 139–151.
Morén, I., Wörman, A., & Riml, J. (2017). Design of remediation actions
for nutrient mitigation in the hyporheic zone. Water Resources
Research , 53 (11), 8872–8899.
Mulholland, P. J., Hall, R. O., Sobota, D. J., Dodds, W. K., Findlay, S.
E. G., Grimm, N. B., Hamilton, S. K., McDowell, W. H., O’Brien, J. M.,
Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Gregory, S.
V., Johnson, S. L., Meyer, J. L., Peterson, B. J., Poole, G. C., Valett,
H. M., … Thomasn, S. M. (2009). Nitrate removal in stream
ecosystems measured by 15N addition experiments: Denitrification.Limnology and Oceanography , 54 (3), 666–680.
https://doi.org/10.4319/lo.2009.54.3.0666
Packman, A. I., Brooks, N. H., & Morgan, J. J. (2000a). A
physicochemical model for colloid exchange between a stream and a sand
streambed with bed forms. Water Resources Research , 36 (8),
2351–2361.
Packman, A. I., Brooks, N. H., & Morgan, J. J. (2000b). Kaolinite
exchange between a stream and streambed: Laboratory experiments and
validation of a colloid transport model. Water Resources
Research , 36 (8), 2363–2372.
Packman, A. I., & MacKay, J. S. (2003). Interplay of stream-subsurface
exchange, clay particle deposition, and streambed evolution. Water
Resources Research , 39 (4).
Packman, A. I., Salehin, M., & Zaramella, M. (2004). Hyporheic exchange
with gravel beds: Basic hydrodynamic interactions and bedform-induced
advective flows. Journal of Hydraulic Engineering , 130 (7),
647–656.
Rehg, K. J., Packman, A. I., & Ren, J. (2005). Effects of suspended
sediment characteristics and bed sediment transport on streambed
clogging. Hydrological Processes: An International Journal ,19 (2), 413–427.
Ren, J., & Packman, A. I. (2004). Stream-subsurface exchange of zinc in
the presence of silica and kaolinite colloids. Environmental
Science & Technology , 38 (24), 6571–6581.
Runkel, R. L. (1998). One-dimensional transport with inflow and
storage (OTIS): A solute transport model for streams and rivers (Vol.
98). US Department of the Interior, US Geological Survey.
Sawyer, A. H., Bayani Cardenas, M., & Buttles, J. (2012). Hyporheic
temperature dynamics and heat exchange near channel-spanning logs.Water Resources Research , 48 (1).
Stewardson, M., Datry, T., Lamouroux, N., Pella, H., Thommeret, N.,
Valette, L., & Grant, S. (2016). Variation in reach-scale hydraulic
conductivity of streambeds. Geomorphology , 259 , 70–80.
Sukhodolov, A. N., Fedele, J. J., & Rhoads, B. L. (2006). Structure of
flow over alluvial bedforms: An experiment on linking field and
laboratory methods. Earth Surface Processes and Landforms: The
Journal of the British Geomorphological Research Group , 31 (10),
1292–1310.
Tonina, D., de Barros, F. P., Marzadri, A., & Bellin, A. (2016). Does
streambed heterogeneity matter for hyporheic residence time distribution
in sand-bedded streams? Advances in Water Resources , 96 ,
120–126.
Tonina, D., Marzadri, A., & Bellin, A. (2015). Benthic uptake rate due
to hyporheic exchange: The effects of streambed morphology for constant
and sinusoidally varying nutrient loads. Water , 7 (2),
398–419.
Tóth, J. (1962). A theory of groundwater motion in small drainage basins
in central Alberta, Canada. Journal of Geophysical Research ,67 (11), 4375–4388.
Urumović, K., & Urumović Sr, K. (2014). The effective porosity and
grain size relations in permeability functions. Hydrology and
Earth System Sciences Discussions , 11 (6), 6675–6714.
Vaux, W. G. (1968). Intragravel flow and interchange of water in a
streambed. Fishery Bulletin of the Fish and Wildlife Service ,66 (3), 479–489.
White, D. S., Elzinga, C. H., & Hendricks, S. P. (1987). Temperature
patterns within the hyporheic zone of a northern Michigan river.Journal of the North American Benthological Society , 6 (2),
85–91.
Wörman, A., Packman, A. I., Johansson, H., & Jonsson, K. (2002). Effect
of flow-induced exchange in hyporheic zones on longitudinal transport of
solutes in streams and rivers. Water Resources Research ,38 (1), 2–1.
Wu, F.-C. (2000). Modeling embryo survival affected by sediment
deposition into salmonid spawning gravels: Application to flushing flow
prescriptions. Water Resources Research , 36 (6),
1595–1603.
Zaramella, M., Packman, A. I., & Marion, A. (2003). Application of the
transient storage model to analyze advective hyporheic exchange with
deep and shallow sediment beds. Water Resources Research ,39 (7).
Zarnetske, J. P., Haggerty, R., & Wondzell, S. M. (2015). Coupling
multiscale observations to evaluate hyporheic nitrate removal at the
reach scale. Freshwater Science , 34 (1), 172–186.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. A. (2011).
Dynamics of nitrate production and removal as a function of residence
time in the hyporheic zone. Journal of Geophysical Research:
Biogeosciences , 116 (G1).
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., &
González-Pinzón, R. (2012). Coupled transport and reaction kinetics
control the nitrate source-sink function of hyporheic zones. Water
Resources Research , 48 (11).