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Text S1. Numerical simulations to produce snapshots in T1-5 
The T1-5 simulations are based on a beta-plane centred around 45ºN. The mode-1 IT is 

forced to the south of a baroclinically unstable jet centred in the middle section of the 
computational domain, and propagates northwards1,2.  All snapshots used in the development 



  
 

  
 

of TITE are publicly available, per the Data Availability Statement. Here, we summarize the 
relevant features of the simulations.  

The baroclinically unstable jet is simulated in a zonal beta-plane channel centred at 45°N 
based on the primitive equation code CROCO (https://www.croco-ocean.org, v1628). Initial 
density profiles are different at the northern and southern ends of the domain. During a spin-up 
phase, the associated initial meridional density gradient undergoes geostrophic adjustment, 
eventually creating a zonal jet in thermal wind balance. This jet is baroclinically unstable and a 
zonal perturbation triggers this destabilization, resulting in low-frequency TBMs that we can 
reasonably describe as quasi-geostrophic1. Subsequently, relaxation towards unperturbed initial 
conditions maintains the TBMs. Statistical equilibrium is reached after O(100 days). 

Starting at day 2000, a zonally uniform mode-1 internal tide of 12-hour period is forced 
within a narrow area south of the jet.  Outgoing internal tides are damped in regions extending 
by 300 km from the southern and northern boundaries to prevent reflections back into the 
domain. Zonally, periodic conditions are enforced. All snapshots included in T1-5 are captured 
starting at day 2100. The latitudes covered by the three panels shown in Figure 1 in the main 
text are sufficiently away from the IT-radiating and damping regions at the southern and 
northern ends of the domain. 

To create different levels of turbulent energy in T1 to T5, the meridional initial density 
gradient is modulated by changing the northern profile2. The TBM components are extracted 
online via a sliding average, replacing cos ቀ

ଶగ

்
𝑡ᇱቁ in equation (1) in the main text with a constant 

factor of  ଵ
ଶ
.  

We compute the normalized vorticity and horizontal surface kinetic energy for the TBM 
components, as presented in the first three columns in Supporting Information(SI) Table S1. The 
TBM normalized vorticity and kinetic energy increase significantly from T1 to T5, with the 
normalized vorticity well bounded by 0.2. 

Even though the wave amplitudes forced to the south of the turbulent jet are the same in 
T1-5, the IT energetics are different between simulations, due to different strengths of scattering 
from interactions with the TBMs. We extract the cosine IT components of surface velocities by 
replacing 𝜂 with surface velocity components in equation (1) and compute the corresponding 
normalized vorticity and horizontal kinetic energy, as listed in the last two columns in SI Table 
S1. From T1 to T4, the kinetic energy increases. However, the kinetic energy stays about the 
same from T4 to T5 while getting more concentrated at smaller scales, as suggested by the 
increase in their respective normalized vorticities. 

Moreover, the scattering from jets also makes the signals less coherent, as inspected closely 
by Ponte and Klein3. In SI Movie S3, we present snapshots of normalized vorticities of the TBMs 
along with the 𝜂ୡ୭ୱ

(ୱ୧୫)components in T1-5. There, we can see that as the TBMs become 
increasingly energetic from T1 to T5, the IT signals are scattered more around or to the north of 
the jet. As a result, the 𝜂ୡ୭ୱ

(ୱ୧୫) patterns are less like plane waves and contain more small-scale 
features. This factor adds to the complexity of the patterns of 𝜂 and 𝜂ୡ୭ୱ

(ୱ୧୫).  
In T1-5, the ITs are much weaker than the TBM in kinetic energy or normalized vorticity, 

which enables the linearized analysis conducted in past publications2.  As a result, the internal 
tides are dominated by tidal wavelengths consistent with the dispersion relationship of the 
modal equations and the eigenvalue corresponding to the first vertical mode in the Sturm-



  
 

  
 

Liouville problem for surface fields1,4. The variations of density profiles in T1-5 result in variations 
of the tidal wavelength profiles. In the northern half of the domain, the wavelengths at higher-
turbulence simulations are generally smaller than lower-turbulence simulations, as reflected in SI 
Fig.S1. The meridional and temporal variations of density profiles also lead to variations of the 
tidal wavelengths in latitude (SI Fig.S1) and time within each simulation.  As density gradients 
are stronger in simulations at higher turbulence levels, the variation of tidal wavelengths, and 
hence the dominant length scales of tidal patterns, are also larger, which is another cause of the 
higher complexity of  𝜂 and 𝜂ୡ୭ୱ

(ୱ୧୫) patterns. 
As mid-jet panels are centered around the baroclinic jet, the density gradients and TBMs 

there are on average stronger than those in the up-jet and down-jet panels. Hence, within each 
simulation, in the mid-jet panels, the two effects described above (scatterings of ITs and 
variations of tidal wavelengths) are stronger.  

To sum up, the simulations correspond to a regime where TBMs, whose relative vorticities 
are well bounded by 1, are stronger than the ITs. The TBMs and ITs overlap significantly in 
spatial scales. The density profile is varied between different simulations. As a result, the TBMs 
and ITs become more energetic as reflected by the dynamical metrics listed in SI Table S1, and 
the IT wavelength profiles shift towards smaller scales, as demonstrated in Extended Data Figure 
1. Enhanced scattering of ITs from TBMs causes IT incoherence, and IT patterns lose 
resemblance to plane waves. The density profile is varied within each simulation temporally and 
latitudinally, which result in corresponding variations of the IT wavelength profile. Stronger 
TBMs are accompanied by shaper density gradients, leading to more variations of the IT 
wavelengths.  
 



  
 

  
 

 

Supporting Information Fig.S1. Mode-1 wavelengths at day 1 as a function of meridional 
profiles. As the TBM develops, the wavelength jumps observed in the central part of the domain 
become smoother. 

 
 
 
 
 
 
 
 
 



  
 

  
 

Supporting Information Table S1. Dynamical metrics of T1-T5. KE denotes “kinetic energy”. 
The TBM normalized vorticity and KE are averaged over time, longitude, and jet width, which we 
define as 800 km around 45ºN. The Cosine IT Normalized vorticity and KE are averaged over 
time and the entire simulation domain.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Text S2. Detailed spectral behaviors in ET1-5 test sets 
We attach in SI Fig.S2-6 the spectra and squared coherence of up-jet, mid-jet and down-jet 

bands in ET1-5 test sets. The squared coherence (i.e., normalized cross spectra) reflects how 
linearly related  𝜂ୡ୭ୱ

(ୱ୧୫) and 𝜂ୡ୭ୱ
(୥ୣ୬) are at different scales. It is computed based on the  𝜂ୡ୭ୱ

(ୱ୧୫) and 
𝜂ୡ୭ୱ

(୥ୣ୬)spectra following its definition listed in previous works2. Like the spectra, the squared 
coherences are computed for the up-jet, mid-jet, and down-jet bands separately in this section.  

The ET1 run displays excellent spectral behaviors. In SI Fig.S2, the  𝜂ୡ୭ୱ
(୥ୣ୬)

 spectra capture the 
magnitude and locations of spectral bumps of the 𝜂ୡ୭ୱ

(ୱ୧୫) well, and the peaks of the squared 
coherence are no less than 0.8 in the up-jet, mid-jet, and down-jet bands.  

In a relatively worse run (ET5) at a worse band (mid-jet band), the TITE would still 
outperform a simple spatial filter. This can be seen by comparing the dotted and solid yellow 
lines in SI Fig.S6, which correspond to the spectra of 𝜂 and 𝜂ୡ୭ୱ

(ୱ୧୫) signals respectively. In the 𝜂 
spectra, due to the strong TBMs that co-exist with ITs around the tidal wavenumbers, there is no 
noticeable tidal bump around the tidal wavenumber. Thus, unless one makes strong 
assumptions or utilizes a-priori physical knowledge, no information about the tidal wavenumber 
or the magnitude of tidal motions could be gained from any spatial filters applied onto 𝜂. 
However, TITE is still able to capture the magnitude of the spectral bumps of ITs, and the 
shifting between the tidal bumps of  𝜂ୡ୭ୱ

(ୱ୧୫) and 𝜂ୡ୭ୱ
(୥ୣ୬)spectra is well less than a decade.  

 TBM 

normalized 

vorticity 

TBM KE 

(mଶ/sଶ) 

Cosine IT 

normalized 

vorticity) 

Cosine IT KE  

(mଶ/sଶ) 

Simulation      

T1 0.06 0.04 2.3 × 10ିଷ 2.0 × 10ିଷ 

T2 0.09 0.08 2.8 × 10ିଷ 2.3 × 10ିଷ 

T3 0.12 0.12 1.6 × 10ିଶ 2.5 × 10ିଷ 

T4 0.13 0.15 2.0 × 10ିଶ 2.6 × 10ିଷ 

T5 0.14 0.20 2.2 × 10ିଶ 2.6 × 10ିଷ 



  
 

  
 

In all the three latitudinal bands, the squared coherences in ET1-4 decay quickly outside the 
tidal bumps. This is consistent with the fact that outside of the bumps, the 𝜂ୡ୭ୱ

(୥ୣ୬)spectra 
significantly mismatch the 𝜂ୡ୭ୱ

(ୱ୧୫) spectra. Spurious signals in 𝜂ୡ୭ୱ
(୥ୣ୬)

 drown out the mode-2 tidal 
bumps present in  𝜂ୡ୭ୱ

(ୱ୧୫)
  and are especially prominent at large scales, sometimes causing 

differences between 𝜂ୡ୭ୱ
(୥ୣ୬) and 𝜂ୡ୭ୱ

(ୱ୧୫)
 by a factor of 10. As the ground truth spectra 𝜂ୡ୭ୱ

(ୱ୧୫)  are 
orders of magnitudes lower outside the tidal bumps, this decreased performance outside the 
bumps is not our major concern in this project. To alleviate it, we could incorporate spectral 
forcing in the architecture design of TITE, which is left for future work.  

The squared coherences for the mid-jet band at ET5 are lower than 0.5 at all wavenumbers, 
suggesting the relatively poor performance of TITE in ET5 amidst the jet. Similarly, in ET2-4, the 
squared coherences for the mid-jet bands also peak lower than the down-jet or up-jets. An 
explanation of such decreased behavior around mid-jet bands is described in the main text. 

The tidal bumps in the up-jet and down-jet bands are farther apart in higher turbulence 
runs. In ET1, the tidal bumps in the up-jet and down-jet bands almost completely overlap, while 
in ET5 the two bumps are shifted apart quite conspicuously. This is consistent with SI Fig.S1, 
which shows that the tidal wavenumbers vary more in higher turbulence runs. As discussed in 
the main text, the stronger variations of tidal wavelengths may be part of why the higher 
turbulence runs are intrinsically more challenging to TITE. 

 
 
 
 
 
 



  
 

  
 

 

Supporting Information Fig.S2. Spectra and Coherence for the up-jet, mid-jet and 
down-jet bands in ET1 test set.  Compared to Fig.3 in the main article, this figure 
presents the ET1 test set only, but adds the spectra computed for mid-jet bands 
(denoted by legend “Md” and coloured yellow) and the squared coherence for the three 
bands (lower row).    

 

 

 



  
 

  
 

 

Supporting Information Fig.S3. Similar to SI Fig.S2, but for the ET2 test set. 



  
 

  
 

 

Supporting Information Fig.S4. Similar to SI Fig.S2, but for the ET3 test set. 



  
 

  
 

 

Supporting Information Fig.S5. Similar to SI Fig.S2, but for the ET4 test set. 

 



  
 

  
 

 

Supporting Information Fig.S6. Similar to SI Fig.S2, but for the ET5 test set. 

 

 

 

 

 

 

 

 



  
 

  
 

Text S3. Statistics of correlation factors 

The mean correlation values averaged over different subsets of test/validation instances are 

listed in SI Table S2. The histograms of the correlations in the test sets are presented in SI Fig.S7. 

From either the table or the histogram, the general trend of correlation to deteriorate as 

turbulence level gets higher, and the sharper drop from ET4 to ET5 can be observed, which are 

mentioned in the main text.  Computations of the correlation factors are detailed in SI Text S6.  

Supporting Information Table S2.   Mean correlation factors of validation and test sets in 

the ES1-5 runs. The second and third columns present mean correlation factors averaged over 

all panels in the validation sets and test sets respectively. The last three columns present mean 

correlation factors averaged over down-jet, mid-jet, and up-jet bands in the test sets 

respectively. 

 

 Validation set, 

all 

Test set, 

all 

Test set, 

down-jet 

Test set, 

mid-jet 

Test set, 

up-jet 

TITE run      

ET1 0.86 0.91 0.92 0.90 0.92 

ET2 0.85 0.89 0.90 0.87 0.90 

ET3 0.84 0.83 0.82 0.79 0.88 

ET4 0.85 0.80 0.77 0.75 0.87 

ET5 0.87 0.70 0.62 0.63 0.84 



  
 

  
 

 

 

Supporting Information Fig.S7. Histogram and mean (denoted by the vertical dashed lines) 
of correlation factors in the test cases of ET1-5, presented for down-jet, up-jet, and mid-jet 
panels separately. The three panels are denoted by the colors marked in the legends, where 
“Dn”,”Up” and “Md” denote the down-jet, up-jet and mid-jet panels respectively.  The mean 
correlations of the validation sets (averaged over all available panels) are presented in the 
dashed gray vertical lines for reference. When histogram is plotted, each group is divided into 
10 bins. Vertical axis group denote number counts in each bin, with axis limits fixed at 0 and 30. 

 

Text S4. Monitoring the training and deciding the stopping epoch 
The stopping criteria during a GAN training is a delicate issue, as the convergence of GAN 

is hard to identify due to its fleeting nature5. In this work, the analysis of ET1-5 in the main 
article are all conducted right after 600 epochs. We do not claim that it is the optimal stopping 
epoch for these runs but observe that there is no definite sign of model collapse around the 
600th epoch. 

We monitor the training behaviors from two kinds of metrics. First, we monitor the 
discriminator, the generator, the L1, and the total loss functions respectively as defined in the 
original publication6. Second, we monitor metrics such as correlation factor and relative error 



  
 

  
 

between 𝜂ୡ୭ୱ
(ୱ୧୫) and 𝜂ୡ୭ୱ

(୥ୣ୬)  in the validation set. In SI Fig.S8, we present the evolution of 
discriminator loss and the correlation factor in the validation set up to the 700th epoch for the 
ET1-5 runs.  

From the definition of discriminator loss in pix2pix6, when the discriminator is effectively 
tossing coins at every judgement, it would have a discriminator loss of 2log(2), which is marked 
by the horizontal dashed line in SI Fig.S8.  Observing the discriminator loss, we find that in the 
ET1-4 runs, the race between the discriminator and the generator appears healthily close, as the 
discriminator loss frequently surges above the coin-tossing line, which are then recovered back 
below the line in a few dozen epochs. This suggests that the discriminator and the generator are 
likely indeed co-evolving. Observing the correlation in the validation set of ET1-4, we see that 
the correlation generally stabilizes after 300th epoch with a slight tendency to increase 
afterwards.  

The evolution of discriminator loss of the ET5 run appears less ideal. Up to the 500th epoch, 
the discriminator loss is always well below the coin-tossing line. In principle, this indicates a 
potential GAN collapse: the generator can almost never cheat the discriminator and may not be 
able to learn due to vanishing gradients. Between the 500th and the 700th epoch, the 
discriminator loss starts to surge occasionally above the coin-tossing line, which indicates that 
the generator may have somehow still evolved well enough to cheat the discriminator. Hence, 
we decide to stop at the 600th epoch, by which time the generator starts to sometimes prevail, 
to stay safely away from the potential collapse in earlier epochs. We note that even though the 
discriminator evolution is less ideal in ET5, the evolution of the correlation factor in the 
validation set appears to show similar behaviors as ET1-4 (bottom row, right column of SI 
Fig.S8), in that it stabilizes after around 300 epochs.  As there are no signs of model collapsing 
from the evolution of the correlation, it is likely that the GAN did not collapse after all; perhaps 
the small bumps of the discriminator loss in the first 500 epochs in the ET5 run are sufficient to 
prevent vanishing gradients for the generator. 

Left as future work, we can try to pace the improvement of the discriminator’s performance 
by adding noise5, or to use a different architecture such as the Wasserstein GAN7 to address 
potentially vanishing gradients.    



  
 

  
 

 

Supporting Information Fig.S8. Evolution of discriminator loss and correlation 
factor in validation set during the training of ET1-5.  The loss and the correlation are 
recorded every 10 epochs, starting at the 10th epoch, and ending at the 700th epoch. 
Gray vertical lines mark the 600th epoch, which is the stopping epoch for the analysis in 
the main article. The dashed horizontal line in the left columns denote the level at which 
the discriminator is tossing coins. Correlation factors shown in the right columns are 
computed between 𝜂ୡ୭ୱ

(ୱ୧୫) and 𝜂ୡ୭ୱ
(୥ୣ୬)  in the validation set. The line plots present the 

mean correlation factor of all validation instances, with error bars marking one standard 
deviation. 



  
 

  
 

Text S5. Multi-scale structural complexity of simulation snapshots  
Recently, a generic metric for complexity of image patterns called “multi-scale structural 

complexity” is proposed in Bagrov et al8. Briefly speaking, this metric measures on how much 
variation is induced every time one coarse-grains the image at interest. Here, we present that 
this metric computed over the 𝜂 or 𝜂ୡ୭ୱ

(ୱ୧୫) panels captured from simulations T1-5 agrees with our 
physical understandings about the impacts of stronger TBMs.  

We follow the notations in Bagrov et al.8 throughout this section. After an image is coarse-
grained by 𝑘 times, the quantity 𝒞௞ is intended to measure how much variation is induced if one 
further coarse grain the image by one step. We coarse-grain the images under the same discrete 
decimation scheme as in Bagrov et al.8 At each coarse-graining step, we set the filter parameter  
Λ=2. We refer to Bagrov et al.8 for details on the related definitions.  

Each square panel of  𝜂 or 𝜂ୡ୭ୱ
(ୱ୧୫) used by TITE is originally 258-by-258 pixels. For simplicity, 

we delete the first and last rows and columns of each panel, resulting in panels at 256-by-256 
pixels. The new width(length) of the panels (i.e., 256) is a power of 2, which makes the 
computations quicker without significantly sacrificing original information.  

The images are then coarse-grained by 6 times, and 𝒞௞ at each step are recorded. For our 
purpose, the complexity 𝒞௞ at each 𝑘 individually is more informative than the summation of 𝒞௞ 
over 𝑘, denoted in Bagrov et al. as 𝒞. One can prove that the equ ation 4 in Bagrov et al. can be 
simplified as 𝒞 = 0.5(𝑂଴,଴ − 𝑂௞,௞)9, which smudges out contributions from the intermediate 
coarse-graining steps, while here we are more interested in the complexities related to different 
individual spatial scales.  

We divide all the panels of 𝜂 or 𝜂ୡ୭ୱ
(ୱ୧୫) into 15 groups (5 turbulence levels and 3 latitudinal 

bands). Each group contains 100 pairs of ቄ𝜂, 𝜂ୡ୭ୱ
(ୱ୧୫)

ቅ panels. The computations of 𝒞௞ for 𝜂 and 

𝜂ୡ୭ୱ
(ୱ୧୫) are conducted separately. For presentation purpose, we average and normalize 𝒞௞. 

Specifically, in each group and at each 𝑘, we compute the mean of 𝒞௞ over all the 100 panels of 
𝜂 or 𝜂ୡ୭ୱ

(ୱ୧୫), resulting in 30 different values of averaged 𝒞௞ (15 groups each for 𝜂 and 𝜂ୡ୭ୱ
(ୱ୧୫)) at 

each 𝑘. Then, we divide 𝒞௞ by the maximum value of 𝒞௞ among the 15 groups of 𝜂 or 𝜂ୡ୭ୱ
(ୱ୧୫) 

separately. The averaged and normalized 𝒞௞ is denoted as 𝒞௞
തതത, which ranges from 0 to 1.  

In the upper row of SI Fig.S9, 𝒞௞
തതത increases consistently from T1 to T5, and the mid-jet bands 

always contain higher 𝒞௞
തതത within each simulation. This agrees with our expectation: vigorous 

TBMs would make the TBM components in the raw 𝜂 patterns more complicated.  
Moreover, stronger TBMs are linked to increased complexities of IT patterns due to two 

mechanisms explained in SI Text S1: 1. increased scatterings, which lead to more longitudinal 
variations as well as small-scale features, and 2. increased density gradients, which lead to more 
variations of dominant tidal wavelengths. In the lower row of SI Fig.S9, we see that at 𝑘 = 1,2,3,4 
(first four vertical lines plotted in each group), 𝒞௞

തതത increase from T1 to T5 and are highest at mid-
jet panels within each simulation, in agreement with the stronger TBMs. At 𝑘 = 5,6 (last two 
vertical lines in each group), the tendency of 𝒞௞

തതത appears quite random. Noting that the 
resolution of the 𝜂ୡ୭ୱ

(ୱ୧୫) panels are 4 km, the metric 𝒞ଵ
തതത for 𝜂ୡ୭ୱ

(ୱ୧୫)
 reflects how much the 𝜂ୡ୭ୱ

(ୱ୧୫) 
panels change when coarse-grained from a 4 km resolution to an 8 km resolution. Similarly, 
𝒞଺
തതത reflects how much change occurs when coarse graining is done from a 128 km resolution to a 
256 km resolution. As the dominant tidal wavelengths are between 135 km and 230 km (see SI 
Fig.S1), at 𝑘 = 6, the images are coarse-grained across the dominant spatial scale of the 



  
 

  
 

patterns, and large-scale (>256 km) features left afterwards are not affected by the two 
mechanisms mentioned before. Therefore, 𝒞଺

തതത is expected to be insensitive to the strength of 
TBMs. As for the erratic tendency of 𝒞ହ

തതത , we cannot find a physical explanation, but note that this 
does not contradict with our conjecture that the 𝜂ୡ୭ୱ

(ୱ୧୫) patterns are more complex under higher 
TBMs in general, given the consistent tendencies at 𝑘 = 1,2,3,4.  

We don’t claim that 𝒞௞ from Bagrov et al. is the most reflective metric on image complexity 
in our case. A metric defined on a more refined coarse-graining process could be more 
meaningful for the 𝜂ୡ୭ୱ

(ୱ୧୫) panels. For example, one could modify how the coarse-graining is 
conducted, so that a new metric captures how much the image changes from resolutions at 128 
km to 256 km more incrementally (say, coarse-graining by 4km at each step). Such a more 
refined metric may be able to detect the impacts of the variations of tidal wavelengths. This is 
left for future explorations.  
 

 

Supporting Information Fig.S9. Multi-scale structural complexity of panels used in 
T1-5. The up-jet, mid-jet, and down-jet bands (denoted as “Up”, “Md” and “Dn” in 
legends) for 𝜂 (upper row) and  𝜂ୡ୭ୱ

(ୱ୧୫)(lower row) are presented for simulations T1-5 
(horizontal axis) separately. For each latitudinal band at each simulation, six vertical line 
markers are presented, which sequentially correspond to 𝒞௞

തതത at 𝑘=1,2,3,4,5,6. For 
example, in the group of six yellow vertical markers at the upper right corner in the 
upper row, the first vertical marker denotes the mean of 𝒞ଵ

തതത  computed from mid-jet 
bands of 𝜂 in T5.  
 



  
 

  
 

Text S6. Statistical metrics 
The correlation factors and 1D spectra are computed from standard approaches. 

Specifically, for one panel of 𝜂ୡ୭ୱ
(୥ୣ୬) and the corresponding 𝜂ୡ୭ୱ

(ୱ୧୫)
, similar to other studies10, we 

compute the correlation factor between the two arrays flattened from the two images. The mean 
correlation factors are averaged over all correlation factors in the data sets at interest. Take the 
fourth column (titled as “test set, down-jet”) in Table 2 as an example. In each of the ET1-5 runs, 
we single out the 100 test instances belonging to down-jet panels, compute the Pearson 
correlation between 𝜂ୡ୭ୱ

(୥ୣ୬) and 𝜂ୡ୭ୱ
(ୱ୧୫)  in each instance, and then average the 100 correlation 

factors to get the mean correlation.  The maximum, minimum and standard deviation of 
correlation factors are computed similarly and recorded in SI 2.  

Our 1D spectra are computed from 2D spectra via a numerical azimuthal averaging used in 
other studies 11,12. The 2D spectra are computed over collective statistics of the down-jet, mid-
jet, or up-jet panels in the test set separately. For example, in the ET5 run, the 2D spectra for the 
generated down-jet panels are computed from the 100 𝜂ୡ୭ୱ

(୥ୣ୬) instances from the down-jet 
panels in the test set. A Hanning window in the latitudinal direction is applied at each panel 
prior to conducting the 2D fast Fourier transforms.  

In addition, we have also computed relative error of 𝜂ୡ୭ୱ
(୥ୣ୬) against 𝜂ୡ୭ୱ

(ୱ୧୫)
 for each test 

instance.  The relative error turns out to be larger than 0.3 for each test instance in the five runs. 
This non-negligible relative error is consistent with the spurious large-scale signals discussed in 
the main article.  
 

Text S7. Changes to the Tensorflow Tutorial code 

TITE is modified from the Tensorflow Tutorial codes13 (hereafter “tutorial codes”). Here, we 
detail the changes made to the tutorial codes for reproducibility. Some familiarity with the 
original pix2pix paper6 from readers is assumed in the narrations to follow.  

 
First, the 𝜂ୡ୭ୱ

(ୱ୧୫) fields (ground truth) are weaker in amplitude than 𝜂 (inputs) due to our 
simulation configurations. By trial and error, we find that this imbalance of magnitudes between 
inputs and outputs often destabilizes the training. To alleviate this issue, we multiply the 𝜂ୡ୭ୱ

(ୱ୧୫) 
signals by a uniform factor of 20, after which the max value of |𝜂ୡ୭ୱ

(ୱ୧୫)
| is around 78% of the max 

value of |𝜂| among all simulation snapshots we use. The other modifications we make are not 
essential for the training to succeed, and are rather finer improvements of training behaviours, 
to simplify the algorithm, or are inspired by challenges to be faced in future satellite altimetric 
data.  

As explained in Isola et al.6, the objective function during the training can be expressed as: 
arg  min

ீ
max

஽
ℒ௖ீ஺ே(𝐺, 𝐷) + λ ℒ௅ଵ(𝐺), 

where ℒ௖ீ஺ே(𝐺, 𝐷) is the classic minmax cGAN loss, and ℒ௅ଵ(𝐺) is the L1 loss, which 
controls the impact of overall L1 error of generated images6. We change the parameter λ  from 
102 to 103, which improves the mean correlation in the validation set by around 0.09 in all the 
ES1-5 runs and appears to stabilize the training. Increasing λ to 104 or 105 does not significantly 
change the outcomes. 



  
 

  
 

As the inputs and outputs in our application are both scalar fields, we store all the panels as 
single-precision 2D numerical arrays rather than image-formatted files. We modified the input 
pipeline in the tutorial code accordingly, and the number of input and output channels is 
reduced from 3 (for RGB) to 1. Hence, we save some computational costs.  This scalar approach 
is equivalent to using int32 grayscale images, and for convenience we still refer to the scalar 
arrays as “images” in the article.  All image panels plotted in this paper are contours of the scalar 
fields, and the colormaps in plots are picked only for readability or aesthetic purposes. 
Occasionally, colours saturate in plots as an artifact from the way we define the colormaps (e.g., 
input fields in Fig.2), though not in our data.  For normalization, we find the maximum value 
among all pixels in the 𝜂 snapshots and divide {𝜂, 20 𝜂ୡ୭ୱ

(ୱ୧୫)
} by this maximum value, so that all 

data is bounded by 1.  
Prior to each epoch, training images are randomly reshuffled in time, cropped, flipped, and 

rotated. The random reshuffles, crops and horizontal flips are inherited from the tutorial code, 
whereas the random rotations and vertical flips are added by us. For random rotation, we 
randomly rotate each panel by 90º in either clockwise or counterclockwise directions. “Random 
cropping” means that we interpolate the images from a 258-by-258 to a 286-by-286 pixels grid, 
and within it, randomly crop a square panel of 256-by-256 pixels. All these manipulations are 
synchronized between the inputs 𝜂 and outputs 𝜂ୡ୭ୱ

(୥ୣ୬).  
During random cropping, the pixel number choices of 286-by-286 and 256-by-256 are 

inherited from Isola et al.6 We keep these choices for the following reasons. First, having the 
pixel number to be powers of 2 after cropping simplifies the downsampling steps in the 
generators’ architecture as it helps avoid zero-paddings.    Second, cropping from a 286-by-286 
image to a 256-by-256 image deletes about 20% of all pixels, which is an appropriate cropping 
rate.  The cropped images would still span over a few tidal wavelengths and thus retain the IT 
patterns, and yet, as the cropping causes the images to lose about 10% of the pixels in the 
longitudinal direction, the exact zonal periodic condition would be excluded during TITE’s 
training, which corresponds to challenges in realistic situations  

Other data augmentations (random rotations and flipping) of the training images also 
introduce to TITE challenges motivated by realistic situations. For example, in the simulations, ITs 
are forced at the southern boundary of the domain, and propagate northward. If all snapshots 
are upright, then during training, TITE might learn that the ITs always propagate northward, and 
use that knowledge during testing. But after random rotations and flipping are introduced, such 
information would be unavailable to TITE, which corresponds to realistic situations where one 
doesn't necessarily know the IT generation sites a-priori when extracting IT signals.  We also 
experimented on TITE runs where random rotations and flipping are suppressed, and did not see 
any qualitative changes in TITE's performance. 

Following the original nomenclature6, our discriminator architecture can be expressed as 
C64-C128-C256-C512-C512-C512. The main difference between this and the architecture 
recommended in the original paper6 is that at one step, our discriminator treats a whole image 
at once, while the original code applies a “patchGAN”, which divides the image into different 
patches regarded independent from each other and treats each patch separately.  While the 
patchGAN contains less convolutional layers and are less costly, one must decide on the size of 
the individual patches prior to the training. We haven’t investigated how to pick the patch size in 
our problem yet. Thus, for design simplicity, we make the patch size equal to the image size of 



  
 

  
 

 𝜂ୡ୭ୱ
(ୱ୧୫)

. To investigate the impacts of this change, we have also tried using the patchGAN with 
the 70-by-70 patch size adopted in the tutorial code, and the mean correlation and spectral 
properties of 𝜂ୡ୭ୱ

(୥ୣ୬) stay similar.  
 
Additional Supporting Information 
 
Caption for Movie S1: Performance of TITE on T1 data after trained on data from T2, T3, T4 and 
T5.  All snapshots are re-arranged in order of time. “Input” column plots 𝜂, “Truth” column plots 
 𝜂ୡ୭ୱ

(ୱ୧୫), “Generated” column plots 𝜂ୡ୭ୱ
(୥ୣ୬), and “Difference” column plots ( 𝜂ୡ୭ୱ

(ୱ୧୫)
−  𝜂ୡ୭ୱ

(୥ୣ୬)
). 

 
Caption for Movie S2: Similar to Movie S1, but for the performance of TITE on T2 data after 
trained on data from T2,T3, T4 and T5. 
 
Caption for Movie S3: Similar to Movie S1, but for the performance of TITE on T3 data after 
trained on data from T1,T2, T4 and T5. 
 
Caption for Movie S4: Similar to Movie S1, but for the performance of TITE on T4 data after 
trained on data from T1,T2, T3 and T5. 
 
Caption for Movie S5: Similar to Movie S1, but for the performance of TITE on T5 data after 
trained on data from T1,T2, T3 and T4. 
 
Caption for Movie S6: Illustration of simulations T1-5. Five columns correspond to five 
simulations respectively. The upper row plots local Rossby number, defined as relative vorticities 
divided by Coriolis parameter. Lower row plots  𝜂ୡ୭ୱ

(ୱ୧୫). The entire simulation domain is included. 
Snapshots are ordered by time and separated by 4T. 
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