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Abstract15

A proper extraction of internal tidal signals is central to the interpretation of Sea Sur-16

face Height (SSH) data, yet challenging in upcoming satellite missions, where traditional17

harmonic analysis may break down at finer observed spatial scales known to contain sig-18

nificant wave-mean interactions. However, the wide swaths featured in such satellite mis-19

sions render SSH snapshots that are spatially two-dimensional, which allows us to treat20

the tidal extraction as an image translation problem. We design and train a conditional21

Generative Adversarial Network, which, given a snapshot of raw SSH from an idealized22

numerical eddying simulation, generates a snapshot of the embedded tidal component.23

We test it on synthetic data whose dynamical regimes are different from the data pro-24

vided during training. Despite the diversity and complexity of data, it accurately extracts25

tidal components in most individual snapshots considered and reproduces physically mean-26

ingful statistical properties.27

Plain Language Summary28

Wide-swath satellite observations of Sea Surface Height (SSH) data at high spa-29

tial resolutions will be available in abundance thanks to advances of instrumental tech-30

nologies. Embedded in the observed SSH are internal tides, a dynamical component that31

plays a crucial role in ocean circulation. As they are entangled with background currents32

and eddies, such tidal signals are challenging to extract. Methods that worked with previous-33

generation altimeters will break down at the resolutions that the new generation promises.34

On the other hand, the wide satellite swaths provide new opportunities as they allow us35

to regard the observations as spatially two-dimensional. Here we treat the tidal extrac-36

tion solely as an image translation problem. We train a deep neural net so that given37

a snapshot of a raw SSH signal, it produces a “fake” snapshot of the tidal SSH signal38

that is meant to reproduce the original. The data we use in this article is generated by39

idealized numerical simulations. Once adapted to realistic data, the network has the po-40

tential to become a new tidal extraction tool for satellite observations. More broadly,41

successes in our experiments can inspire other applications of generative networks to dis-42

entangle dynamical components in data where classical analysis may fail.43

1 Introduction44

Since the launch of TOPEX/Poseidon, oceanographers have used the geostrophic45

assumption to infer sea surface velocity from SSH. However, while an estimated 90% of46

the ocean’s kinetic energy exists in the form of currents in quasigeostrophic balance (Fer-47

rari & Wunsch, 2009) (hereafter qualified as “balanced”), one still must account for “un-48

balanced” flows, such as barotropic and baroclinic tides (also called internal tides, here-49

after “ITs”), for a refined inference of balanced currents (Fu & Ferrari, 2008). Further-50

more, baroclinic tides play a crucial role in ocean mixing (Lien & Gregg, 2001; Whalen51

et al., 2020), which impacts ocean circulations, and hence the ocean’s role in climate change52

(Jithin & Francis, 2020). Therefore, whether ITs are considered “noise” (e.g., for infer-53

ring balanced flows) or “signal” (e.g., for tidally induced mixing), their proper extrac-54

tion from altimetry data is essential.55

For decades, the IT extraction has been conducted via harmonic analysis (Zaron56

& Rocha, 2018), a method that relies on a close phase relationship (or coherence) be-57

tween ITs and astronomical forcings (departures from this condition is referred to as “in-58

coherence” (Ponte & Klein, 2015)). Current altimetry has a typical spatial resolution59

of O(100) km (Ballarotta et al., 2019), which is sufficient to retrieve mode-1 and some60

of the mode-2 IT wavelengths of semidiurnal tides, along with the dominant turbulent61

balanced motions (hereafter “TBMs”) (Ray & Zaron, 2011). At these scales, the cou-62

pling between ITs and TBMs is usually weak and therefore substantial portions of the63

–2–



manuscript submitted to Geophysical Research Letters

ITs are coherent (Egbert & Ray, 2000). Hence, harmonic analysis is in principle suffi-64

cient to retrieve the corresponding IT signal.65

The next generation of satellite altimetry, in particular the Surface Water Ocean66

Topography (SWOT) satellite mission, aims to improve the spatial resolutions of the mea-67

sured data to at least a few tens of km in wavelength (Morrow et al., 2019). A funda-68

mental challenge arises at these smaller scales, namely, the potential inapplicability of69

traditional harmonic analysis. Indeed, ITs become incoherent (Dunphy et al., 2017; Ponte70

& Klein, 2015; Dunphy & Lamb, 2014) due to stronger couplings with the TBMs linked71

to the increased vorticity magnitude (Bühler, 2014). Given the relatively long tempo-72

ral gap between consecutive measurements of SWOT at the same location, the incoher-73

ent signal would be hard to identify using traditional harmonic analysis.74

Future altimeters will gather data along wide swaths (two 50 km-wide swaths, 2075

km apart in the case of SWOT) as opposed to current linear tracks and as a result they76

will produce spatially two-dimensional(2D) images. This has motivated the community77

to regard the extraction of IT signals as an operation on high-resolution 2D snapshots.78

Current methods rely on exploiting distinct spectral signatures of TBMs and internal79

waves (H. Torres et al., 2019), or on data assimilation techniques (Metref et al., 2020;80

Le Guillou et al., 2021).81

In this work, we propose instead to regard the IT extraction solely as an image-82

to-image translation problem, conceiving and tackling the following challenge: can we83

discover an algorithm that extracts the SSH signature induced by IT from a raw, instan-84

taneous SSH map? To answer this challenge, we develop what we call the “Toronto In-85

ternal Tide Emulator” (TITE), a deep convolutional neural network that extracts IT sig-86

nals from individual SSH snapshots. No physical knowledge, statistical properties, or tem-87

poral evolution are imparted prior to the training. In general, we find TITE to perform88

well in most SSH snapshots generated from a set of idealized simulations. We present89

details about the dataset we use and the development of TITE in section 2, our exper-90

iments in section 3, and offer conclusions and discussions in section 4.91

2 Methods92

2.1 Idealized data supporting TITE’s development93

Data to support TITE’s development are snapshots from a set of idealized numer-94

ical simulations, where mode-1 ITs are forced at a fixed tidal period T (12 hours) to prop-95

agate through TBMs created by a baroclinically unstable jet (Ponte & Klein, 2015; Ponte96

et al., 2020). The SSH signatures of TBMs in these simulations are generally larger than97

those induced by ITs, and exhibit a significant overlap in spatial scales at O(100) km98

with ITs. Spatial filtering is thus difficult, an issue that is also faced by satellite altime-99

try in oceanic regions such as the Gulf Stream or Drake Passage, where powerful TBMs100

exist (Rocha et al., 2016; Richman et al., 2012).101

We run the model under five different initial meridional density contrasts. With102

increasing contrast, the baroclinic jet becomes more unstable and creates a more vig-103

orous baroclinic eddy field. The spectra induced by these eddies follow a geostrophic tur-104

bulence law (Ponte & Klein, 2015; Charney, 1971), and are thus identified as TBMs. In105

ascending order of stationary surface kinetic energy levels of TBM (hereafter referred to106

as “turbulence levels”), we label the five simulations as T1 to T5. See Text S1 in Sup-107

porting Information for more details on the numerical setup. IT snapshots are computed108

online via harmonic fits over time series that are 2T long and sampled every 300 seconds,109

or T/144. For simplicity, we only study η
(sim)
cos , the cosine component of ITs from the110
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simulations, defined as111

η(sim)
cos (x, y, t) =

1

T

∫ t

t−2T

η (x, y, t′) cos

(
2π

T
t′
)
dt′, (1)

where x, y are the zonal and meridional coordinates, respectively, and η denotes raw SSH.112

For each snapshot, we cut out three square panels covering three fixed latitudinal bands,113

labeled as “down-jet”, “mid-jet” and “up-jet” bands, as illustrated in Fig. 1. One hun-114

dred snapshots are captured every 4T for each simulation in T1-5, resulting in 1500 pairs115

of
{
η, η

(sim)
cos

}
panels (5 runs, 3 latitudinal bands, and 100 snapshots) altogether.116

0 500 1000
x [km]

0

500

1000

1500

2000

2500

y 
[k

m
]

upjet

upjet

midjet

midjet

downjet

downjet

0 500 1000
x [km]

100 0 100

 [cm]

2.50.0 2.5

(sim)
cos  [cm]

Figure 1. The “down-jet”, “mid-jet” and “up-jet” bands plotted over a snapshot of η (left)

and η
(sim)
cos (right), sampled from T3 at day 2120. The “mid-jet” band is centred around the baro-

clinic jet. ITs are forced to the south of “up-jet” bands, and as the ITs propagates northward

and loses coherence due to interactions with the TBM, the η
(sim)
cos patterns are less reminiscent of

plane waves in the “down-jet” band than in the “up-jet” band.

2.2 Deep-learning algorithm designed to extract tidal signals117

During the design of the TITE runs, we implicitly apply four assumptions: (1) there118

is abundant spatial information, (2) all snapshots are statistically independent from each119

other, (3) a raw SSH functionally determines its IT component, but properties of the func-120

tional dependence are unknown, and (4) there exists abundant data where ITs are al-121

ready extracted from the raw SSH. Discussions about these assumptions are included122

at the end of article.123

TITE is based on a popular conditional Generative Adversarial Network (hereafter124

referred to as “cGAN”) (Isola et al., 2017). As the name implies, a cGAN consists of two125

parts, namely, a conditional generator (hereafter “generator”) that learns how to man-126

ufacture a “fake” image that’s conditioned on an “input image”, and a discriminator that127
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tries to determine if an image is “genuine” (i.e., paired to the input image in the train-128

ing data), or fake (i.e., created by the generator). Either part is on its own a convolu-129

tional neural network, and during training, the two parts compete against each other to130

co-evolve (Mirza & Osindero, 2014; Goodfellow et al., 2014). We denote the cosine IT131

panels generated from TITE as η
(gen)
cos ; following our notations, the input image would132

be η, the genuine image would be η
(sim)
cos , and the fake image would be η

(gen)
cos . As reflected133

in this general workflow, during training, other than the paired panels, no further infor-134

mation is given to TITE.135

The particular cGAN we adapt to TITE is called “pix2pix” (Isola et al., 2017), ap-136

plications of which range from artistic creations (ml4a, 2017) to scientific problems such137

as remote sensing image classifications (Lebedev et al., 2018). Our codes are adapted138

from the code downloaded from TensorFlow Tutorials (Tensorflow, n.d.). We refer to the139

original publication for details of pix2pix (Isola et al., 2017), and to Text S7 in Support-140

ing Information for details on the changes we made to the original codes. Here, we men-141

tion a few relevant traits.142

The generator and the discriminator have around 104 and 2000 convolutional lay-143

ers respectively, each layer containing a 2-by-2 kernel to be learned during training. The144

considerable number of model parameters makes TITE a black box, as in the case of many145

deep learning algorithms.146

Prior to each epoch, training images are randomly reshuffled in time, cropped, flipped,147

and rotated. Here, an epoch means the duration it takes for the cGAN to iterate over148

all data in the training set once. The random cropping, rotation and flipping are intended149

to roughly mimic realistic situations where we don’t have a priori knowledge of the ob-150

server’s orientation/location about IT generation sites and direction of propagation. By151

randomly reshuffling in time, we enforce that every panel pair at every snapshot in the152

simulation be sequentially independent from the others. This means that any temporal153

information in the simulations is unknown to the pix2pix kernel, in line with our assump-154

tion (2) made previously in this section.155

As the fully convolutional U-Net structure inherited from pix2pix (Isola et al., 2017)156

in the generator can be applied to images of arbitrary sizes in principle, when produc-157

ing Movies S1 and S2 in Supporting Information , we directly apply the trained TITE158

onto rectangular input images, even though TITE is trained on square images illustrated159

in Fig. 1. This versatility on the shapes of input images would be useful for along-swath160

satellite products.161

We systematically run our code with TensorFlow 2.3.0 under Python 3.7. One hun-162

dred training epochs with 960 pairs of
{
η, η

(sim)
cos

}
in the training set take about 1.5 hours163

with a NVIDIA GP100 GPU. For all the TITE runs in the article, we choose to present164

the results after 600 training epochs. Details on how we decide on the cut-off epoch are165

provided in Text S4 in Supporting Information.166

2.3 Division of data to training, testing and validation sets167

As a first check on whether TITE could achieve any success at all, we randomly168

select 20% of all 1500 pairs of
{
η, η

(sim)
cos

}
panels from T1-5 to form a so-called valida-169

tion set, and use the rest as the training set. During training, TITE has access to all pairs170

of
{
η, η

(sim)
cos

}
in the training set, but none from the validation set. After 600 epochs, the171

training phase is over, and we apply the trained TITE into snapshots in the validation172

set. The mean correlation between η
(sim)
cos and η

(gen)
cos in the validation set turns out to be173

0.85, which suggests that the generated η
(gen)
cos reasonably resemble the ground truths η

(sim)
cos174

. However, under this division, the training set contains turbulence levels that are sta-175

tistically similar to the validation set on which the trained TITE is applied, and the good176
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Table 1. Mean correlation factors of validation and test sets in the ET1-5 runs†.

TITE
run

Validation
set, all

Test set,
all

Test set,
down-jet

Test set,
mid-jet

Test set,
up-jet

ET1 0.86 0.91 0.92 0.90 0.92
ET2 0.85 0.89 0.90 0.87 0.90
ET3 0.84 0.83 0.82 0.79 0.88
ET4 0.85 0.80 0.77 0.75 0.87
ET5 0.87 0.70 0.62 0.63 0.84

†The second and third columns present mean correlation factors averaged
over all panels in the validation sets and test sets respectively. The last three
columns present mean correlation factors averaged over down-jet, mid-jet,
and up-jet bands in the test sets respectively.

correlation factors could be caused by overfitting. To address this possibility, we chal-177

lenge TITE to extract η
(sim)
cos signals linked to a different turbulence level as those em-178

ployed for its training.179

Specifically, in what we refer to as the “ET1 run”, we reserve a test set, which con-180

tains all 300 pairs of panels from the simulation T1 and none from T2, T3, T4 or T5.181

Among the remaining panels from T2-5, we randomly select 80% pairs for the training182

set, and reserve the other 20% for the validation set. The validation and test sets are183

both inaccessible to TITE during training, but crucially, in terms of average turbulence184

levels, the training set is similar to the validation set, yet different from the test set. Sim-185

ilarly, we carry out ET2-5 runs, following the same logic, where the test sets are pan-186

els from the simulations T2-5 respectively.187

3 Performance of TITE188

In this section, we evaluate the performance of TITE from several statistical met-189

rics and we discuss the causes of relatively decreased performance when they arise. All190

metrics are computed using standard methods and detailed in Text S6 in Supporting In-191

formation .192

We first investigate how close η
(gen)
cos is to the ground truth η

(sim)
cos by measuring the193

correlation between the two. The mean correlation factors in the test and validation sets194

of the ET1-5 runs are listed in Table 1 (first three columns). The highly correlated pre-195

dictions of TITE in the test set in ET1-4 are especially interesting, as turbulence lev-196

els of the test set are different from that of the training set. There is however a relatively197

sharper drop in the mean correlation from ET4 to ET5.198

The test instances associated with the highest and lowest correlations among ET1-199

5 are presented in Fig. 2. In the test instance with the highest (lowest) correlation that200

belongs to ET1 (ET5), the ratio between the root mean square of
(
η
(sim)
cos − η

(gen)
cos

)
and201

the root mean square of η
(sim)
cos is 0.12 (4.77). In Movie S1 in Supporting Information,202

we re-order all the shuffled test instances of ET1 in time. Considering that the snapshots203

are randomly shuffled and hence the temporal evolution of these images is unknown to204

TITE, this reconstructed temporal continuity is remarkable. Nevertheless, for the strongly205

turbulent flows of T5 that ET5 tests, the evolution of η
(gen)
cos bears little semblance to η

(sim)
cos206

(Movie S2 in Supporting Information). This observation, together with the lower cor-207

relation factors of ET5 (Table 1), suggest a categoric difference between ET5 and ET1-208

ET4.209

–6–



manuscript submitted to Geophysical Research Letters

(sim)
cos

(gen)
cos ( (sim)

cos
(gen)
cos )

< -100

-50

0

50

> 100

[cm][cm]
6

4

2

0

2

4

6

[cm][cm]

Figure 2. Individual tests with the highest and lowest correlations. For legibility reasons, we

omit spatial axis labels, see fig. 1 for their definitions. The upper row corresponds to the test in-

stance that has the highest correlation among the ET1–ET5 runs. It belongs to the ET1 run and

has a correlation factor of 0.95. The lower row corresponds to the test instance with the lowest

correlation. It belongs to the ET5 run and has a correlation factor of 0.4.

To gain more insight about the relative failures in ET5, we conduct a spectral anal-210

ysis that focuses on comparing ET4 and ET5. The wavenumber spectra for the down-211

jet and up-jet bands are computed separately for η
(sim)
cos and η

(gen)
cos in the test set of ET4212

and ET5, and presented in Fig. 3. The spectra for mid-jet bands are omitted for read-213

ability here and attached in Text S2 in Supporting Information .214

Prominent bumps appear near the wavenumbers corresponding to mode-1 tidal wave-215

lengths (See Text S1 in Supporting Information) in all the spectra of η
(sim)
cos (Solid lines216

in Fig. 3). These bumps are somewhat broad, and their locations are noticeably differ-217

ent between the down-jet and up-jet bands. This is expected, as the density profiles and218

the Coriolis parameter both vary with latitude, which modulates the mode-1 tidal wave-219

length (See Text S1 and Fig. S1 in Supporting Information ). Such variations can be found220

in satellite observations too (Ray & Zaron, 2011). Interestingly, in ET4, the locations221

of spectral bumps in the η
(gen)
cos spectra also vary between the down-jet and up-jet bands,222

in a manner such that they closely overlap with bumps of the η
(sim)
cos spectra at both bands.223

This implies that in the ET4 run, the trained TITE identifies the dominant wavelength224

even as it varies. In other words, TITE can identify patterns at varying spatial scales.225

In the ET5 run, the η
(gen)
cos spectra fail to trace the location of the bumps in the down-226

jet bands, which is qualitatively different from ET4. The performance in up-jet bands227

appears as good as ET4, which may be attributed to the fact that the mode-1 tidal wave-228

lengths to the south of the jets are the same in all five simulations.229
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Figure 3. Spectra for the down-jet and up-jet bands in ET4 and ET5 test set. In the legends

“Up”, “Dn” denote the down-jet and up-jet bands respectively. “raw”, “sim”, and “gen” denote

spectra computed from panels of η, η
(sim)
cos , and η

(gen)
cos , respectively. “K” denotes the horizontal

wavenumber magnitude. The vertical dashed lines mark the largest and smallest mode-1 tidal

wavenumbers over the simulation domain at initial time, following Figure S1 in Supporting Infor-

mation. Raw spectra higher than 2 × 108m2 at large scales are omitted. Higher wavenumbers are

omitted.

One might be tempted to think that overfitting is the cause of the good performance230

in ET1-4, and vice-versa when the performance decreases in ET5. Indeed, as listed in231

Table S1 in Supporting Information, the kinetic energy and normalized vorticity (abso-232

lute values of surface vorticities normalized by the local Coriolis frequency) for the TBM233

and IT all increase from T1 to T5, and in terms of these dynamical metrics, the train-234

ing set of ET5 is less diverse compared to, say, the training set of ET4 that spans a wider235

range of these metrics. This explanation based on overfitting is also consistent with the236

fact that the ET5 run has the highest mean correlation in the validation set (second col-237

umn in Table 1).238

However, if overfitting was the only factor, then TITE should perform poorly in239

the ET1 test set too, which is not the case. In fact, the ET1 run produces the best mean240

correlation in the test set among ET1-5; in Text S2 in Supporting Information, we show241

that the ET1 test set also demonstrates excellent spectral behaviours. Moreover, the mean242

correlations in the test sets are higher than in the validation sets in ET1 and ET2 (Ta-243

ble 1). Therefore, we postulate that a more crucial factor at play is the turbulence lev-244

els of the data themselves: higher turbulence levels appear to decrease TITE’s predic-245

tion accuracies. In the ET1 test set, the turbulence levels are lower, and TITE performs246

well despite the possible impacts from overfitting. In the ET1 and ET2 runs, the test247

data are at a lower turbulence level than the validation data, and TITE generates bet-248

ter predictions in the test sets than in the validation sets, even though the training set249
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includes the turbulence levels in the validation set and excludes the turbulence levels in250

the test set.251

It is not too surprising that higher turbulence levels make the IT extraction more252

challenging. As explained in Text S1 in Supporting Information , stronger scatterings253

of ITs from TBMs induce more longitudinal variations as well as small-scale features in254

the IT components. In addition, the tidal wavelengths vary more latitudinally due to in-255

creased density gradients, which increases the diversity of dominant spatial scales of IT256

signals across the domain and time. Both factors add complexities to the η and η
(sim)
cos257

patterns. In Text S5 in Supporting Information, we show that a generically defined met-258

ric of pattern complexities introduced by Bagrov et al. (2020) generally increases under259

stronger TBMs as we expected.260

The difficulty associated with vigorous turbulence levels is also reflected in the rel-261

atively worse performance of TITE in the mid-jet bands centered around the turbulence.262

In the last three columns of Table 1, the correlations for the down-jet, mid-jet and up-263

jet bands are presented separately for the test sets in ET1-5. Within each of ET1-5, the264

up-jet bands have a higher mean correlation than the mid-jet bands. As the turbulence265

level increases, this difference gets more pronounced. The degraded performance at mid-266

jet bands is also reflected from the “square coherences” in Text S2 in Supporting Infor-267

mation.268

We note that despite the relative lack of prediction accuracy under higher turbu-269

lence levels, in our data, TITE would still outperform simple spatial filtering methods270

that would break down due to the strong TBMs superimposing the ITs around tidal wave-271

lengths (Text S2 in Supporting Information), or harmonic analysis that would not work272

due to the strong incoherence and the temporal interval of 4T .273

4 Conclusions and Discussions274

We designed a novel technique based on a deep neural network algorithm to ex-275

tract internal tides that are entangled with geostrophic turbulence. We trained and val-276

idated TITE using randomly shuffled simulation snapshots that were categorically dif-277

ferent from the dynamic regime of the testing data. The testing data sets are designed278

in a way that classical methods such as harmonic fits or spectral filtering could not ex-279

tract tidal signals accurately, and yet in most test cases, TITE can still 1) extract IT sig-280

nals that agree well with ground truths in a deterministic sense, and 2) capture the dom-281

inant tidal energy in the wavenumber spectra, even when it varies temporally and lat-282

itudinally. When TITE does not perform as well, the main cause seems to be the high283

complexities of the patterns linked to stronger turbulent motions. Overall, we believe284

that this work provides a fresh angle on how to disentangle dynamical components from285

two-dimensional data via a deep learning approach. Some discussions are offered below.286

Although we make no claim about TITE or cGANs in general as being the best287

possible algorithms to specifically achieve our goal, we found it superior to other deep288

learning methods we investigated, which include several types of decision trees regres-289

sors, long short-term memory networks, and U-Net structures without a discriminator.290

We did not attempt to optimize model parameters such as numbers of layers or learn-291

ing rates, among others. More recent variations of pix2pix such as pix2pixHD (Park et292

al., 2019) could also outperform our current implementation. Moreover, as mentioned293

in section 3, the generated images always contain spurious signals outside the dominant294

tidal bump, which remains to be resolved. We leave these as thoughts for future work.295

In this work, TITE only extracts the cosine IT signals. The generalization to the296

sinusoidal IT signals, which are defined by replacing cos (2πt′/T ) in equation (1) with297

sin (2πt′/T ), should be straightforward. With both cosine and sinusoidal IT signals, phase298

information can be retrieved. One may also study the performance of TITE for extrac-299
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tions of signals at higher tidal frequencies that correspond to smaller spatial scales. Pix2pix300

has been observed to be capable of capturing fine features in images (Isola et al., 2017),301

and smaller scales don’t necessarily make the problem more challenging to TITE.302

So far, TITE has only been developed by the idealized simulations T1-T5 with a303

single baroclinic jet and single tidal frequency, simplistic boundary conditions, flat to-304

pography, an absence of air. As an ongoing work, we are investigating the effects of in-305

cluding snapshots from a global ocean GCM.306

With SWOT in mind, we may reassess the four assumptions stated in section 2.2.307

All images used in this work have a 4 km horizontal resolution that resolves the tides308

adequately, addressing assumption (1). In preparation for satellite data that suffer from309

measurement noises and more limited resolutions, we may coarse-grain and augment the310

training data with the type of noises expected in SWOT (Gaultier et al., 2016) and in-311

vestigate the impacts. Assumption (2), motivated by the incoherence of ITs and the rel-312

atively long sampling intervals of SWOT, is satisfied by the design of the TITE archi-313

tecture, and by the frequent random shuffling of snapshots during training. However, com-314

plete statistical independence between ITs and TBMs can be overly strict for several rea-315

sons, ranging from a higher temporal sampling at high latitude, to the possibility of “fill-316

ing in the time gaps” with other sources of data such as those from assimilated models317

or in-situ instruments (d’Ovidio et al., 2019). From the overall satisfactory performance318

of TITE, the assumption (3) appears to be satisfied in our simulation outputs, perhaps319

due to simplistic simulation settings, such as a perfectly harmonic incoming IT signal,320

or simple boundary conditions. Under more realistic configurations, a functional depen-321

dence might not be guaranteed. On the other hand, the assumption (3) can also be overly322

strict, considering recent progress in the theory of IT/TBM interactions (H. S. Torres323

et al., 2018; Savva & Vanneste, 2018; Savva et al., 2021). The assumption (4) relies on324

the premise that there will be pre-processed training data (presumably from highly skilled325

model outputs) that mimic the dynamics to be sampled by SWOT. Productions of such326

data are receiving significant attention within the modelling communities (Zaron & Rocha,327

2018; Rocha et al., 2016; Arbic et al., 2010; Shchepetkin & McWilliams, 2005; Savage328

et al., 2017). Overall, to make TITE eventually applicable to SWOT and other satel-329

lite missions in the future, more work is required, especially in coordination with differ-330

ent communities.331
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