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Table 1. List of different studies using ETRS for streamflow estimation and their findings. 

References ETRS products Stuy area/Model/Calibration technique Key findings 

Kunnath-
Poovakka 
et al. 
(2016) 

• CMRSET 
(ET) 

• AMSR-E 
(Soil 
moisture) 

• Study area: 11 catchments in eastern 
Australia 

• Model: Simplified Australian Water 
Resource Assessment – Landscape model 
(AWRA-L) 

• Calibration technique: Shuffled Complex 
Evolution Uncertainty Algorithm with 15 
different objective functions by combining 
the Root Mean Square Error and the 
correlation coefficient for ET and soil 
moisture 

• Streamflow prediction in 
catchments with low average 
runoff can be improved using 
reliable ET products. 

 

Demirel et 
al. (2018) 

• Actual 
evapotranspir
ation (AET) 
based on 
MODIS data 
under cloud-
free 
conditions 

• Study area: The Skjern river basin in 
Denmark. 

• Model: mesoscale Hydrologic Model 
• Calibration technique: 7 behavioral 

simulations from the Shuffled complex 
evolution approach with the model 
performance criteria is the KGE for 
streamflow and SPAEF for AET. Three 
calibration scenarios: streamflow only, 
AET only, and both streamflow and AET 

 

• Comparable model performance 
for streamflow in the case of 
streamflow calibration only and in 
the case of using both streamflow 
and AET for model calibration. 

• Much poorer model performance 
for streamflow for the case of 
AET-calibration only compare to 
the case of streamflow-calibration 
only. 

Parajuli et 
al. (2018) 

• SEBAL 
• Study area: Big Sunflower River Watershed 

in Northwestern, Mississippi. 
• Model: SWAT 
• Calibration technique: Best parameter from 

SUFI-2 approach, three calibration 
scenarios: streamflow only, ET only, and 
both streamflow and ET 

 

The streamflow-only and ET-only 
modeling scenarios showed equally 
good model performances for 
streamflow, followed by the flow-
ET calibration scenario. 

Rajib et al. 
(2018) 

• MOD16A2 • Study area: Pipestem Creek watershed in 
North Dakota, United States 

• Model: modified SWAT 
• Calibration technique: SUFI-2 approach, 4 

calibration scenarios: (M1) streamflow only, 
(M2) streamflow with biophysical 
parameters, (M3) streamflow and ET 
(lumped approach), (M4) streamflow and 
ET (distributed approach). KGE was used as 
the performance index for both streamflow 
and ET 

• Including biophysical parameters 
(calibration scenario M2) slightly 
improve the model performance 
for ET and streamflow compared 
to that of M1 

• Model performance for ET and 
streamflow in case of calibration 
scenario M3 increases compared to 
that of M1 and M2 for the 
validation increases 

• Model performance for ET and 
streamflow during the calibration 
period in the case of calibration 
scenario M3 is comparable with 
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References ETRS products Stuy area/Model/Calibration technique Key findings 

that of calibration scenarios M1 
and M2. Model performance (M3) 
is the best for the validation period 
(among 4 calibrations scenarios) 

Gui et al. 
(2019) 

• NDVI-based 
ET algorithm 

• Study area: 208 watersheds in the U.S. 
• Model: Xinanjiang model 
• Calibration technique: Three calibration 

scenarios: (1) streamflow only, (2) both 
streamflow and using both streamflow and 
ETRS for the entire period of record, (3) 
same as (2) but using ETRS only during 
rainless periods. The optimal parameter set 
was determined by combining different 
optimization approaches. 

• Lower model performance (mean 
NSE across 208 watershed) for 
streamflow was observed in 
calibration scenarios 2 and 3 
compared to that of scenario 1. 

Dembele 
et al. 
(2020) 

• Twelve 
different 
ETRS 
products 

• Study area: Volta River basin, West Africa 
• Model: mesoscale Hydrologic Model 

(mHM)  
• Calibration technique: (1) Streamflow only 

and (2) 48 calibration scenarios as a 
combination of four distinct multivariate 
calibration strategies (the basin-average, 
pixel-wise, spatial bias accounting, and 
spatial bias-insensitive) using streamflow 
and ET. 

• Adding ETRS into the calibration 
scheme slightly tradeoff model 
performance for streamflow to 
improve the performance of the 
terrestrial water storage, temporal 
dynamics of soil moisture and 
spatila patterns of soil moisture.  

Jiang et al. 
(2020) 

• MOD16 ET • Study area: 28 basins in the U.S. 
• Model: VIC 
• Calibration technique: Shuffled Complex 

Evolution, two calibration scenarios: (1) 
streamflow only, (2) spatial distributed ET 
calibration 

• ET calibration yields better or 
similar streamflow performance in 
29% of the basins compared to 
that from streamflow-based 
calibration, 

Zhang et 
al. (2020) • PLM-ET 

• Study area: 222 basins in Australia 
• Model: Xinanjang and SIMHYD 
• Calibration technique: Genetic algorithm, 

four calibration scenarios: (1) streamflow-
only, (2) ET only, (3) and (4) both ET and 
streamflow but with different objective 
functions. 

• Model performance for 
streamflow in case of including 
ETRS in the calibration (scenarios 
2-4) calibration only is not as good 
as calibration against Q, especially 
in drier regions 

Sirisena et 
al. (2020) GLEAM ET • Study area: four basins in the Chindwin 

River basin, Myanmar 

• Model: SWAT model 

• Calibration technique: three calibration 
scenarios: streamflow only,  (2) ET only, 
and (3) both streamflow and ET 

•  In the single variable calibration 
scenarios (1 and 2), model 
performance for the targeted 
variable increases but for the other 
variable decreases. 

• Calibration that targets both ET 
and streamflow, acceptable model 
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References ETRS products Stuy area/Model/Calibration technique Key findings 

performance was achieved with 
both variables 

Willem 
Vervoort 
et al. 
(2014) 

 

• MOD16A3 • Study area: four catchments in New South 
Wales, Australia 

• Model: IHACRES 

• Calibration technique: shuffled complex 
evolution, three calibration scenarios: (1) 
streamflow only, (2) ET only, and (3) both 
streamflow and ET, results were compared 
with the case of using parameter 
regionalization and using ETRS as direct 
model input. 

 

• Calibration with ET and 
streamflow does not improve 
streamflow skills. Calibration 
against only ET is the worst, even 
worse than the parameter 
regionalization approach. 
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Figure S1. Distribution of KGE scores for ET (KGEET) versus KGE scores for streamflow 
(KGEQ) for each catchment and ETRS product. Panel a shows the scores of all 10,000 models and 
panel b shows the scores of models that are in either the top 100 for KGEQ or the top 100 for 
KGEET. Note the large differences in x- and y-axis scales among the catchments. 
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Figure S2. Total sensitivity (S) of streamflow and ET with respect to each model parameter in 
each catchment and variable (ETRS product and observed streamflow Q).  The objective function 
used in this analysis is the KGEET + KGEQ. 
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Figure S3. a) Conditional probability of having a good streamflow score (KGEQ > 0.6) given a 
range of values of KGEET. b) Conditional probability of having a good ET score (KGEET > 0.6) 
given a range of values of KGEQ. 

 

 

 


