References
Alder, N. N., Pockman, W. T., Sperry, J. S., & Nuismer, S. (1997). Use
of centrifugal force in the study of xylem cavitation.
Journal of
Experimental Botany ,
48 (3), 665-674.
https://doi.org/10.1093/jxb/48.3.665 Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B., Devert, N.,
Wingate, L., Domec, J.-C., & Ogée, J. (2022). Evidence for distinct
isotopic compositions of sap and tissue water in tree stems:
consequences for plant water source identification.
New
Phytologist ,
233 (3), 1121-1132.
https://doi.org/10.1111/nph.17857 Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E.,
Fréjaville, B., Wohl, S., & Ogée, J. (2019). Unexplained hydrogen
isotope offsets complicate the identification and quantification of tree
water sources in a riparian forest.
Hydrology & Earth System
Sciences ,
23 (4), 2129-2146.
https://doi.org/10.5194/hess-23-2129-2019 Bowers, W. H., & Williams, D. G. (2022). Isotopic Heterogeneity of Stem
Water in Conifers Is Correlated to Xylem Hydraulic Traits and Supports
Multiple Residence Times.
Frontiers in Water ,
4 , 861590.
https://doi.org/10.3389/frwa.2022.861590 Canham, C. A., Duvert, C., Beesley, L., Douglas, M. M., Setterfield, S.
A., Freestone, F., Clohessy, S., & Loomes, R. (2021). The use of
regional and alluvial groundwater by riparian trees in the wet-dry
tropics of northern Australia.
Hydrological Processes ,
35 (5), e14180.
https://doi.org/10.1002/hyp.14180 Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., & Song, X.
(2020). Stem water cryogenic extraction biases estimation in deuterium
isotope composition of plant source water.
Proceedings of the
National Academy of Sciences , 202014422.
https://doi.org/10.1073/pnas.2014422117 Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., &
Améglio, T. (2005). Evaluation of a new centrifuge technique for rapid
generation of xylem vulnerability curves.
Physiologia Plantarum ,
124 (4), 410-418.
https://doi.org/10.1111/j.1399-3054.2005.00526.x de la Casa, J., Barbeta, A., Rodríguez-Uña, A., Wingate, L., Ogée, J.,
& Gimeno, T. E. (2022). Isotopic offsets between bulk plant water and
its sources are larger in cool and wet environments.
Hydrology &
Earth System Sciences ,
26 , 4125–4146.
https://doi.org/10.5194/hess-26-4125-2022 Diao, H., Schuler, P., Goldsmith, G. R., Siegwolf, R. T. W., Saurer, M.,
& Lehmann, M. M. (2022). Technical note: On uncertainties in plant
water isotopic composition following extraction by cryogenic vacuum
distillation.
Hydrology & Earth System Sciences ,
26 (22),
5835-5847.
https://doi.org/10.5194/hess-26-5835-2022 Duvert, C., Canham, C. A., Barbeta, A., Alvarez Cortes, D., Chandler,
L., Harford, A. J., Leggett, A., Setterfield, S. A., Humphrey, C. L., &
Hutley, L. B. (2022). Deuterium depletion in xylem water and soil
isotopic effects complicate the assessment of riparian tree water
sources in the seasonal tropics.
Ecohydrology ,
15 (6),
e2383.
https://doi.org/10.1002/eco.2383 Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., &
Otero-Casal, C. (2017). Hydrologic regulation of plant rooting depth.
Proceedings of the National Academy of Sciences ,
114 (40),
10572-10577.
https://doi.org/10.1073/pnas.1712381114Goldsmith, G. R., Muñoz-Villers, L. E., Holwerda, F., McDonnell, J. J.,
Asbjornsen, H., & Dawson, T. E. (2012). Stable isotopes reveal linkages
among ecohydrological processes in a seasonally dry tropical montane
cloud forest.
Ecohydrology ,
5 (6), 779-790.
https://doi.org/10.1002/eco.268 He, D., Wen, M., Wang, Y., Du, G., Zhang, C., He, H., Jin, J., Li, M.,
& Si, B. (2023). Xylem water cryogenic vacuum extraction: Testing
correction methods with CaviTron-based apple twig sampling.
Journal of Hydrology ,
621 , 129572.
https://doi.org/10.1016/j.jhydrol.2023.129572 Jolly, P., Knapton, A., & Tickell, S. (2004).
Water Availability
from the Aquifer in the Tindall Limestone South of the Roper River.(Report 34/2004D). Department of Infrastructure Planning and
Environment.
https://territorystories.nt.gov.au/10070/673850/0/0 Kübert, A., Dubbert, M., Bamberger, I., Kühnhammer, K., Beyer, M., van
Haren, J., Bailey, K., Hu, J., Meredith, L. K., Nemiah Ladd, S., &
Werner, C. (2023). Tracing plant source water dynamics during drought by
continuous transpiration measurements: An in-situ stable isotope
approach.
Plant, Cell & Environment ,
46 (1), 133-149.
https://doi.org/10.1111/pce.14475 Kühnhammer, K., Dahlmann, A., Iraheta, A., Gerchow, M., Birkel, C.,
Marshall, J. D., & Beyer, M. (2022). Continuous in situ measurements of
water stable isotopes in soils, tree trunk and root xylem: Field
approval.
Rapid Communications in Mass Spectrometry ,
36 (5), e9232.
https://doi.org/10.1002/rcm.9232 Lamontagne, S., Duvert, C., & Suckow, A. (in prep.). Quick groundwater
flow to tropical savanna springs (Mataranka, Northern Territory). Hydrological Processes.
Lamontagne, S., Suckow, A., Gerber, C., Deslandes, A., Wilske, C., &
Tickell, S. (2021). Groundwater sources for the Mataranka Springs
(Northern Territory, Australia).
Scientific Reports ,
11 (1), 24288.
https://doi.org/10.1038/s41598-021-03701-1 Lin, G., & Sternberg, L. d. S. L. (1993). Hydrogen isotopic
fractionation by plant roots during water uptake in coastal wetland
plants. In
Stable isotopes and plant carbon-water relations (pp.
497-510). Elsevier.
https://doi.org/10.1016/B978-0-08-091801-3.50041-6 Marshall, J. D., Cuntz, M., Beyer, M., Dubbert, M., & Kuehnhammer, K.
(2020). Borehole Equilibration: Testing a New Method to Monitor the
Isotopic Composition of Tree Xylem Water in situ.
Frontiers in
Plant Science ,
11 .
https://doi.org/10.3389/fpls.2020.00358 Millar, C., Janzen, K., Nehemy, M. F., Koehler, G., Hervé-Fernández, P.,
Wang, H., Orlowski, N., Barbeta, A., & McDonnell, J. J. (2022). On the
urgent need for standardization in isotope-based ecohydrological
investigations.
Hydrological Processes ,
36 (10), e14698.
https://doi.org/10.1002/hyp.14698 Millar, C., Pratt, D., Schneider, D. J., & McDonnell, J. J. (2018). A
comparison of extraction systems for plant water stable isotope
analysis.
Rapid Communications in Mass Spectrometry ,
32 (13), 1031-1044.
https://doi.org/10.1002/rcm.8136 Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer,
M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann,
T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M.,
Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., . . .
Kirchner, J. W. (2018). Ideas and perspectives: Tracing terrestrial
ecosystem water fluxes using hydrogen and oxygen stable isotopes –
challenges and opportunities from an interdisciplinary perspective.
Biogeosciences ,
15 (21), 6399-6415.
https://doi.org/10.5194/bg-15-6399-2018Peters, J. M. R., López, R., Nolf, M., Hutley, L. B., Wardlaw, T.,
Cernusak, L. A., & Choat, B. (2021). Living on the edge: A
continental-scale assessment of forest vulnerability to drought.
Global Change Biology ,
27 (15), 3620-3641.
https://doi.org/10.1111/gcb.15641 Poca, M., Coomans, O., Urcelay, C., Zeballos, S. R., Bodé, S., &
Boeckx, P. (2019). Isotope fractionation during root water uptake by
Acacia caven is enhanced by arbuscular mycorrhizas.
Plant and
Soil ,
441 (1), 485-497.
https://doi.org/10.1007/s11104-019-04139-1 Sánchez-Murillo, R., Todini-Zicavo, D., Poca, M., Birkel, C.,
Esquivel-Hernández, G., Chavarría, M. M., Zuecco, G., & Penna, D.
(2023). Dry season plant water sourcing in contrasting tropical
ecosystems of Costa Rica.
Ecohydrology ,
16 (5), e2541.
https://doi.org/10.1002/eco.2541 Tetzlaff, D., Buttle, J., Carey, S. K., Kohn, M. J., Laudon, H.,
McNamara, J. P., Smith, A., Sprenger, M., & Soulsby, C. (2021). Stable
isotopes of water reveal differences in plant – soil water
relationships across northern environments.
Hydrological
Processes ,
35 (1), e14023.
https://doi.org/10.1002/hyp.14023 Thorburn, P. J., Hatton, T. J., & Walker, G. R. (1993). Combining
measurements of transpiration and stable isotopes of water to determine
groundwater discharge from forests.
Journal of Hydrology ,
150 (2), 563-587.
https://doi.org/10.1016/0022-1694(93)90126-T Volkmann, T. H. M., Haberer, K., Gessler, A., & Weiler, M. (2016).
High-resolution isotope measurements resolve rapid ecohydrological
dynamics at the soil–plant interface.
New Phytologist ,
210 (3), 839-849.
https://doi.org/10.1111/nph.13868 Wen, M., He, D., Li, M., Ren, R., Jin, J., & Si, B. (2022). Causes and
Factors of Cryogenic Extraction Biases on Isotopes of Xylem Water.
Water Resources Research ,
58 (8), e2022WR032182.
https://doi.org/10.1029/2022WR032182Wen, M., Zhao, X., Si, B., He, D., Li, M., Gao, X., Cai, Y., Lu, Y., &
Wang, Y. (2023). Inter-comparison of extraction methods for plant water
isotope analysis and its indicative significance.
Journal of
Hydrology ,
625 , 130015.
https://doi.org/10.1016/j.jhydrol.2023.130015 West, A. G., Patrickson, S. J., & Ehleringer, J. R. (2006). Water
extraction times for plant and soil materials used in stable isotope
analysis.
Rapid Communications in Mass Spectrometry ,
20 (8), 1317-1321.
https://doi.org/10.1002/rcm.2456 White, J. W. C., Cook, E. R., Lawrence, J. R., & Wallace S, B. (1985).
The DH ratios of sap in trees: Implications for water sources and tree
ring DH ratios.
Geochimica et Cosmochimica Acta ,
49 (1),
237-246.
https://doi.org/10.1016/0016-7037(85)90207-8 Zencich, S. J., Froend, R. H., Turner, J. V., & Gailitis, V. (2002).
Influence of groundwater depth on the seasonal sources of water accessed
by Banksia tree species on a shallow, sandy coastal aquifer.
Oecologia ,
131 (1), 8-19.
https://doi.org/10.1007/s00442-001-0855-7 Zuecco, G., Amin, A., Frentress, J., Engel, M., Marchina, C., Anfodillo,
T., Borga, M., Carraro, V., Scandellari, F., Tagliavini, M., Zanotelli,
D., Comiti, F., & Penna, D. (2022). A comparative study of plant water
extraction methods for isotopic analyses: Scholander-type pressure
chamber vs. cryogenic vacuum distillation.
Hydrology & Earth
System Sciences ,
26 (13), 3673-3689.
https://doi.org/10.5194/hess-26-3673-2022