References
[1] S. Chambial, S. Dwivedi, K.K. Shukla, P.J. John, P. Sharma,
Indian J Clin Biochem 2013, 28, 314.
[2] S. Mousavi, S. Bereswill, M.M. Heimesaat, Eur J Microbiol
Immunol (Bp) 2019, 9, 73.
[3] J. Teng, A. Pourmand, M.M. Amirshahi, J Crit Care 2018, 43, 230.
[4] S.C. Rumsey, M. Levine, J Nutr Biochem 1998, 9, 116.
[5] M.C.D. Tullio, Nature Education 2010, 3, 48.
[6] S.H. LEE,T.P. LABUZA, J Food Sci 1975, 40, 370.
[7] M.H.Eison-Perchonok., T.W.Downes, J Food Sci 1982, 47, 765.
[8] A.M Rojas, L.N Gerschenson, J Sci Food Agr 1997, 74, 369.
[9] A.L. Herbig, C.M.G.C, Renard, Food Chem 2017, 220, 444.
[10] C.G.Mead, F.J. Finamore, Biochemistry 1969, 8, 2652.
[11] Ascorbic acid sulfate (AAS): A metabolite of ascorbic acid with
antiscorbutic activity. Nutrition Reviews 1973, 31, 251.
[12] H.J. Hsieh, G.R. Nair, W.T. WU, J Agric Food Chem 2006, 54,
5777.
[13] M.G. Yadav, M.R. Kavadia, R.N. Vadgama, A.A. Odaneth, A.M.
Lali, Appl Biochem Biotechnol 2018, 184, 1168.
[14] N. Muto, T.Nakamura, I. Yamamoto, J Biochem 1990, 107, 222.
[15] H.K. Jun, K.M. Bae, S.K. Kim, Biotechnol Lett 2001, 23, 1793.
[16] R. Han, L. Liu, J. Li, G. Du, J. Chen, Appl Microbiol
Biotechnol 2012, 95, 313.
[17] Y. Hanada, A. Iomori, R. Ishii, E. Gohda, A. Tai, Biosci
Biotechnol Biochem 2014, 78, 301.
[18] N. Muto, S. Suga, K. Fujii, K. Goto, I. Yamamoto, Agricultural
and Biological Chemistry 1990, 54, 1697.
[19] Z. Li, H. Han, B. Wang, J. Gao, B. Zhu, R. Peng, Q. Yao, J Food
Biochem 2017, 41.
[20] Y. Jiang, J. Zhou, R. Wu, F. Xin, W. Zhang, Y. Fang, J. Ma, W.
Dong, M. Jiang, BMC Biotechnol 2018, 18, 53.
[21] X. Tao, T. Wang, L. Su, J. Wu, J Agric Food Chem 2018, 66,
9052.
[22] S.B. Lee, K.C. Nam, S.J. Lee, J.H. Lee, K. Inouye, K.H. Park,
Biosci Biotechnol Biochem 2004, 68, 36.
[23] T. Kwon, C.T. Kim, J.H. Lee, Biotechnol Lett 2007, 29, 611.
[24] Y. Li, Z. Li, X. He, L. Chen, Y. Cheng, H. Jia, M. Yan, K.
Chen, J Biotechnol 2019, 305, 27.
[25] M. Kubota, K. Tsusaki, T. Higashiyama, S. Fukuda, T. Miyake,
Patent application, 2007.
[26] I. Yamamoto, N. Muto, K. Murakami, S. Suga, H. Yamaguchi, Chem
Pharm Bull (Tokyo) 1990, 38, 3020.
[27] I. Yamamoto, N. Muto, E. Nagata, T. Nakamura, Y. Suzuki,
Biochim Biophys Acta 1990, 1035, 44.
[28] D.L. Chen, X. Tong, S.W. Chen, S. Chen, D. Wu, S.G. Fang, J.
Wu, J. Chen, J Agric Food Chem 2010, 58, 4819.
[29] M. Okuyama, W. Saburi, H. Mori, A. Kimura, Cell Mol Life Sci
2016, 73, 2727.
[30] M. Okuyama, Biosci Biotechnol Biochem 2011, 75, 2269.
[31] M. Sugimoto, S. Furui, K. Sasaki, Y. Suzuki, Biosci Biotechnol
Biochem 2003, 67, 1160.
[32] S. Malá, H. Dvoráková, R. Hrabal, B. Králová, Carbohyd Res
1999, 322, 209.
[33] K.M. Song, M. Okuyama, K. Kobayashi, H. Mori, A. Kimura, Biosci
Biotechnol Biochem 2013, 77, 2117.
[34] M. Casa-Villegas, J. Marin-Navarro, J. Polaina, ACS Omega 2017,
2, 8062.
[35] V. Looser, B. Bruhlmann, F. Bumbak, C. Stenger, M. Costa, A.
Camattari, D. Fotiadis, K. Kovar, Biotechnol Adv 2015, 33, 1177.
[36] S. Kumar, S. Mutturi, Enzyme Microb Technol 2020, 141, 109653.
[37] M. Ma, M. Okuyama, T. Tagami, A. Kikuchi, P. Klahan, A. Kimura,
J Agric Food Chem 2019, 67, 3380.
[38] J. Kaewmuangmoon, M. Kilaso, U. Leartsakulpanich, K. Kimura, A.
Kimura, C. Chanchao, BMC Biotechnol 2013, 13, 16.
[39] A. Zhang, J. Luo, T. Zhang,Y. Pan, Y. Tan, C. Fu, F. Tu, Mol
Biol Rep 2009, 36, 1611.
[40] J. Lin-Cereghino, W.W. Wong, S. Xiong, W. Giang, L.T. Luong, J.
Vu, S.D. Johnson, G.P. Lin-Cereghino, Biotechniques 2005, 38, 44.
[41] C.A. Scorer, J.J. Clare, W.R. McCombie, M.A. Romanos, K.
Sreekrishna, Biotechnology (N Y) 1994, 12, 181.
[42] M. Karaoglan, F.E. Karaoglan, M. Inan, Protein Expr Purif 2016,
121, 112.
[43] H.Schägger, G. von Jagow, Anal Biochem 1987, 166, 368.
[44] L. Chen, R. Cai, J. Weng, Y. Li, H. Jia, K. Chen, M. Yan, P.
Ouyang, Microb Biotechnol 2020, 13, 974.
[45] M.M. Bradford, Anal Biochem 1976, 72, 248.
[46] E.H. Muslin, A.M. Kanikula, S.E. Clark, C.A. Henson, Protein
Expr Purif 2000, 18, 20.
[47] T.P. Frandsen, F. Lok, E. Mirgorodskaya, P. Roepstorff, B.
Svensson, Plant Physiol 2000, 123, 275.
[48] H. Naested, B. Kramhoft, F. Lok, K. Bojsen, S. Yu, B. Svensson,
Protein Expr Purif 2006, 46, 56.
[49] J.E. Park, S.H. Park, J.Y. Woo, H.S. Hwang, J. Cha, H. Lee, J
Microbiol Biotechnol 2013, 23, 56.
[50] I. Park, H. Lee, J. Cha, Biotechnol Lett 2014, 36, 789.
[51] H. Jeon, H. Lee, D. Byun, H. Choi, J.-H. Shim, Food Sci
Biotechnol 2015, 24, 175.
[52] N.R. Kim, D.W. Jeong, D.S. Ko, J.H. Shim, Int J Biol Macromol
2017, 99, 594.
[53] H. Nakai, T. Ito, M. Hayashi, K. Kamiya, T. Yamamoto, K.
Matsubara, Y.M. Kim, W. Jintanart, M. Okuyama, H. Mori, S. Chiba, Y.
Sano, A. Kimura, Biochimie 2007, 89, 49.
[54] X. Liu, D. Wu, J. Wu, J. Chen, World J Microbiol Biotechnol
2013, 29, 533.
[55] B.K. Tibbot, C.A. Henson, R.W. Skadsen, Plant Mol Biol 1998,
38, 379.
[56] M.A. Taylor, H.A. Ross, D. McRae, F. Wright, R. Viola, H.V.
Davies, Planta 2001, 213, 258.
[57] J.L. Cereghino, J.M. Cregg, FEMS Microbiol Rev 2000, 24, 45.
[58] H. Nakai, S. Tanizawa, T. Ito, K. Kamiya, Y.M. Kim, T.
Yamamoto, K. Matsubara, M. Sakai, H. Sato, T. Imbe, M. Okuyama, H. Mori,
Y. Sano, S. Chiba, A. Kimura, J Biochem 2007, 142, 491.
[59] H. Chen, S. Yang, A. Xu, R. Jiang, Z. Tang, J. Wu, L. Zhu, S.
Liu, X. Chen, Y. Lu, Appl Microbiol Biotechnol 2019, 103, 9423.
[60] H. Chen, X. Jin, L. Zhu, Y. Lu, Z. Ma, S. Liu, X. Chen, Appl
Microbiol Biotechnol 2020, 104, 9523.
[61] M. Yang, G.J. Davies, B.G. Davis, Angew Chem Int Ed Engl 2007,
46, 3885.