AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Hai-Yang Zhang
Public Documents
2
β-diversity in temperate grasslands is driven by stronger environmental filtering of...
Hai-Yang Zhang
and 6 more
September 25, 2021
Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS, i.e. nuclear DNA content) determines species’ capacity to tolerate environmental stress and therefore potentially drives community assembly. However, its role in driving β-diversity (i.e., spatial variability in species composition) remains unclear. We measured GS for 161 plant species and investigated their occurrences within plant communities across 52 sites spanning a 3200-km transect in the temperate grasslands of China. Using species distribution modelling, we found that environmental factors showed larger effects on β-diversity of large-GS than that of small-GS species and that communities with abundant resources had a greater representation of large-GS species. The latter finding was confirmed following analysis of data from a 10-yr resource (water, nitrogen, and phosphorus) manipulation experiment in which resource addition resulted in increased community weighted GS based on plant biomass estimates, suggesting that large-GS species are more sensitive to environmental resource limitation and explaining the greater environmental selection on β-diversity of large-GS species. These findings highlight the roles of GS in driving community assembly and predicting species responses to global change.
Genome size mediates the effect of environmental filtering in determining plant β-div...
Hai-Yang Zhang
and 6 more
May 12, 2021
Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS, i.e. nuclear DNA content) determines species’ capacity to tolerate environmental stress or to exploit new environments and therefore potentially drive community assembly. However, its role in driving β-diversity (i.e., the site-to-site variability in species composition) remains unclear. We measured GS for 169 plant species and investigated their occurrences within plant communities across 52 sites spanning a 3200-km transect in the temperate grasslands of China. We found environmental factors showed larger effects on β-diversity of large-GS than that of small-GS species. Community weighted mean GS increased with mean annual precipitation, soil total nitrogen and phosphorus concentrations, but decreased with mean annual temperature, suggesting a negative selection against species with large GS in resources-limited or warmer climates. These findings highlight the roles for GS in driving community assembly and predicting species responses to climate change.