References
1. Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and
Parkinson’s disease - lessons and emerging principles. Mol Neurodegener.
2019 Jul 22;14(1):29.
2. Cremades N, Cohen SI, Deas E, et al. Direct observation of the
interconversion of normal and toxic forms of alpha-synuclein. Cell. 2012
May 25;149(5):1048-59.
3. Zhou L, Kurouski D. Structural Characterization of Individual
alpha-Synuclein Oligomers Formed at Different Stages of Protein
Aggregation by Atomic Force Microscopy-Infrared Spectroscopy. Anal Chem.
2020 May 19;92(10):6806-6810.
4. Lashuel HA, Petre BM, Wall J, et al. Alpha-synuclein, especially the
Parkinson’s disease-associated mutants, forms pore-like annular and
tubular protofibrils. J Mol Biol. 2002 Oct 4;322(5):1089-102.
5. Chen SW, Drakulic S, Deas E, et al. Structural characterization of
toxic oligomers that are kinetically trapped during alpha-synuclein
fibril formation. Proceedings of the National Academy of Sciences of the
United States of America. 2015 Apr 21;112(16):E1994-E2003.
6. Tuttle MD, Comellas G, Nieuwkoop AJ, et al. Solid-state NMR structure
of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct
Mol Biol. 2016 May;23(5):409-15.
7. Guerrero-Ferreira R, Taylor NM, Arteni AA, et al. Two new polymorphic
structures of human full-length alpha-synuclein fibrils solved by
cryo-electron microscopy. Elife. 2019 Dec 9;8.
8. Li B, Ge P, Murray KA, et al. Cryo-EM of full-length alpha-synuclein
reveals fibril polymorphs with a common structural kernel. Nat Commun.
2018 Sep 6;9(1):3609.
9. Schweighauser M, Shi Y, Tarutani A, et al. Structures of
alpha-synuclein filaments from multiple system atrophy. Nature. 2020
Sep;585(7825):464-469.
10. Sun Y, Hou S, Zhao K, et al. Cryo-EM structure of full-length
alpha-synuclein amyloid fibril with Parkinson’s disease familial A53T
mutation. Cell Res. 2020 Apr;30(4):360-362.
11. Boyer DR, Li B, Sun C, et al. Structures of fibrils formed by
alpha-synuclein hereditary disease mutant H50Q reveal new polymorphs.
Nat Struct Mol Biol. 2019 Nov;26(11):1044-1052.
12. Strohaker T, Jung BC, Liou SH, et al. Structural heterogeneity of
alpha-synuclein fibrils amplified from patient brain extracts. Nat
Commun. 2019 Dec 4;10(1):5535.
13. Bousset L, Pieri L, Ruiz-Arlandis G, et al. Structural and
functional characterization of two alpha-synuclein strains. Nat Commun.
2013;4:2575.
14. Gath J, Bousset L, Habenstein B, et al. Unlike twins: an NMR
comparison of two alpha-synuclein polymorphs featuring different
toxicity. PLoS One. 2014;9(3):e90659.
15. Mori A, Imai Y, Hattori N. Lipids: Key Players That Modulate
alpha-Synuclein Toxicity and Neurodegeneration in Parkinson’s Disease.
Int J Mol Sci. 2020 May 7;21(9).
16. Ulmer TS, Bax A, Cole NB, et al. Structure and dynamics of
micelle-bound human alpha-synuclein. J Biol Chem. 2005 Mar
11;280(10):9595-603.
17. De Franceschi G, Frare E, Pivato M, et al. Structural and
morphological characterization of aggregated species of alpha-synuclein
induced by docosahexaenoic acid. J Biol Chem. 2011 Jun
24;286(25):22262-74.
18. van Diggelen F, Hrle D, Apetri M, et al. Two conformationally
distinct alpha-synuclein oligomers share common epitopes and the ability
to impair long-term potentiation. PLoS One. 2019;14(3):e0213663.
19. Eichmann C, Kumari P, Riek R.
High-density lipoprotein-like particle formation of Synuclein variants.
FEBS Lett. 2017 Jan;591(2):304-311.
20. Danzer KM, Haasen D, Karow AR, et al. Different species of
alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci.
2007 Aug 22;27(34):9220-32.
21. Quist A, Doudevski I, Lin H, et al. Amyloid ion channels: a common
structural link for protein-misfolding disease. Proc Natl Acad Sci U S
A. 2005 Jul 26;102(30):10427-32.
22. Kim HY, Cho MK, Kumar A, et al. Structural properties of
pore-forming oligomers of alpha-synuclein. J Am Chem Soc. 2009 Dec
2;131(47):17482-9.
23. Heo P, Pincet F. Freezing and piercing of in vitro asymmetric plasma
membrane by alpha-synuclein. Commun Biol. 2020 Mar 31;3(1):148.
24. Parres-Gold J, Chieng A, Wong Su S, et al. Real-Time
Characterization of Cell Membrane Disruption by alpha-Synuclein
Oligomers in Live SH-SY5Y Neuroblastoma Cells. ACS Chem Neurosci. 2020
Sep 2;11(17):2528-2534.
25. Du XY, Xie XX, Liu RT. The Role of alpha-Synuclein Oligomers in
Parkinson’s Disease. Int J Mol Sci. 2020 Nov 17;21(22).
26. Fantini J, Yahi N. The driving force of alpha-synuclein insertion
and amyloid channel formation in the plasma membrane of neural cells:
key role of ganglioside- and cholesterol-binding domains. Adv Exp Med
Biol. 2013;991:15-26.
27. Favretto F, Baker JD, Strohaker T, et al. The Molecular Basis of the
Interaction of Cyclophilin A with alpha-Synuclein. Angew Chem Int Ed
Engl. 2020 Mar 27;59(14):5643-5646.
28. Shafrir Y, Durell SR, Anishkin A, et al. Beta-barrel models of
soluble amyloid beta oligomers and annular protofibrils. Proteins. 2010
Dec;78(16):3458-72.
29. Shafrir Y, Durell S, Arispe N, et al. Models of membrane-bound
Alzheimer’s Abeta peptide assemblies. Proteins. 2010 Dec;78(16):3473-87.
30. Durell SR, Kayed R, Guy HR. Theory of concentric β-barrel
structures: models of amyloid beta 42 oligomers, annular protofibrils,
and transmembrane channels. bioRxiv. 2018:499061.
31. Bokori-Brown M, Martin TG, Naylor CE, et al. Cryo-EM structure of
lysenin pore elucidates membrane insertion by an aerolysin family
protein. Nat Commun. 2016 Apr 6;7:11293.
32. Iacovache I, De Carlo S, Cirauqui N, et al. Cryo-EM structure of
aerolysin variants reveals a novel protein fold and the pore-formation
process. Nat Commun. 2016 Jul 13;7:12062.
33. Laganowsky A, Liu C, Sawaya MR, et al. Atomic view of a toxic
amyloid small oligomer. Science. 2012 Mar 9;335(6073):1228-31.
34. Do TD, LaPointe NE, Nelson R, et al. Amyloid β-Protein C-Terminal
Fragments: Formation of Cylindrins and β-Barrels. Journal of the
American Chemical Society. 2016 2016/01/20;138(2):549-557.
35. Serra-Batiste M, Tolchard J, Giusti F, et al. Stabilization of a
Membrane-Associated Amyloid-β Oligomer for Its Validation in Alzheimer’s
Disease [Original Research]. Frontiers in Molecular Biosciences.
2018 2018-April-19;5(38).
36. Chou PY, Fasman GD. Empirical predictions of protein conformation.
Annu Rev Biochem. 1978;47:251-76.
37. Murzin AG, Lesk AM, Chothia C. Principles determining the structure
of beta-sheet barrels in proteins. I. A theoretical analysis. J Mol
Biol. 1994 Mar 11;236(5):1369-81.
38. Hakim A, Nguyen JB, Basu K, et al. Crystal structure of an insect
antifreeze protein and its implications for ice binding. J Biol Chem.
2013 Apr 26;288(17):12295-304.
39. Brooks BR, Brooks CL, 3rd, Mackerell AD, Jr., et al. CHARMM: the
biomolecular simulation program. J Comput Chem. 2009 Jul
30;30(10):1545-614.
40. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a
visualization system for exploratory research and analysis. J Comput
Chem. 2004 Oct;25(13):1605-12.
41. Wang W, Perovic I, Chittuluru J, et al. A soluble alpha-synuclein
construct forms a dynamic tetramer. Proc Natl Acad Sci U S A. 2011 Oct
25;108(43):17797-802.
42. Bartels T, Choi JG, Selkoe DJ. alpha-Synuclein occurs
physiologically as a helically folded tetramer that resists aggregation.
Nature. 2011 Aug 14;477(7362):107-10.
43. Lucas HR, Fernandez RD. Navigating the dynamic landscape of
alpha-synuclein morphology: a review of the physiologically relevant
tetrameric conformation. Neural Regen Res. 2020 Mar;15(3):407-415.
44. Ghosh D, Singh PK, Sahay S, et al. Structure based aggregation
studies reveal the presence of helix-rich intermediate during
alpha-Synuclein aggregation. Sci Rep. 2015 Mar 18;5:9228.
45. Fauvet B, Mbefo MK, Fares MB, et al. alpha-Synuclein in central
nervous system and from erythrocytes, mammalian cells, and Escherichia
coli exists predominantly as disordered monomer. J Biol Chem. 2012 May
4;287(19):15345-64.
46. Lührs T, Ritter C, Adrian M, et al. 3D structure of Alzheimer’s
amyloid-β(1–42) fibrils. Proceedings of the National Academy of
Sciences of the United States of America. 2005;102(48):17342-17347.
47. Petkova AT, Yau WM, Tycko R. Experimental constraints on quaternary
structure in Alzheimer’s beta-amyloid fibrils. Biochemistry. 2006 Jan
17;45(2):498-512.
48. Lu JX, Qiang W, Yau WM, et al. Molecular structure of beta-amyloid
fibrils in Alzheimer’s disease brain tissue. Cell. 2013 Sep
12;154(6):1257-68.
49. Gremer L, Schölzel D, Schenk C, et al. Fibril structure of
amyloid-β(1–42) by cryo–electron microscopy. Science.
2017;358(6359):116-119.
50. Soldner CA, Sticht H, Horn AHC. Role of the N-terminus for the
stability of an amyloid-beta fibril with three-fold symmetry. PLoS One.
2017;12(10):e0186347.
51. Ruesink H, Reimer L, Gregersen
E, et al. Stabilization of alpha-synuclein oligomers using formaldehyde.
PLoS One. 2019;14(10):e0216764.
52. Paslawski W, Andreasen M, Nielsen SB, et al. High stability and
cooperative unfolding of alpha-synuclein oligomers. Biochemistry. 2014
Oct 7;53(39):6252-63.
53. Lorenzen N, Nielsen SB, Buell AK, et al. The role of stable
alpha-synuclein oligomers in the molecular events underlying amyloid
formation. J Am Chem Soc. 2014 Mar 12;136(10):3859-68.
54. Nagano N, Orengo CA, Thornton JM. One fold with many functions: the
evolutionary relationships between TIM barrel families based on their
sequences, structures and functions. J Mol Biol. 2002 Aug
30;321(5):741-65.
55. Yuan J, Zhao Y. Evolutionary aspects of the synuclein super-family
and sub-families based on large-scale phylogenetic and
group-discrimination analysis. Biochem Biophys Res Commun. 2013 Nov
15;441(2):308-17.
56. Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of
amyloid cross-beta spines reveal varied steric zippers. Nature.
2007 May 24;447(7143):453-7.
57. Perrin RJ, Woods WS, Clayton DF, et al. Exposure to long chain
polyunsaturated fatty acids triggers rapid multimerization of
synucleins. J Biol Chem. 2001 Nov 9;276(45):41958-62.
58. Israeli E, Sharon R. Beta-synuclein occurs in vivo in
lipid-associated oligomers and forms hetero-oligomers with
alpha-synuclein. J Neurochem. 2009 Jan;108(2):465-74.
59. Abeyawardhane DL, Fernandez RD, Murgas CJ, et al. Iron Redox
Chemistry Promotes Antiparallel Oligomerization of alpha-Synuclein. J Am
Chem Soc. 2018 Apr 18;140(15):5028-5032.
60. Uversky VN, Li J, Souillac P, et al. Biophysical properties of the
synucleins and their propensities to fibrillate: inhibition of
alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem.
2002 Apr 5;277(14):11970-8.
61. Kaur U, Lee JC. Unroofing site-specific alpha-synuclein-lipid
interactions at the plasma membrane. Proc Natl Acad Sci U S A. 2020 Aug
11;117(32):18977-18983.
62. Ross A, Xing V, Wang TT, et al. Alleviating toxic alpha-Synuclein
accumulation by membrane depolarization: evidence from an in vitro model
of Parkinson’s disease. Mol Brain. 2020 Jul 31;13(1):108.
63. Man WK, De Simone A, Barritt JD, et al. A Role of Cholesterol in
Modulating the Binding of alpha-Synuclein to Synaptic-Like Vesicles.
Front Neurosci. 2020;14:18.
64. Jakubec M, Barias E, Furse S, et al. Cholesterol-containing lipid
nanodiscs promote an alpha-synuclein binding mode that accelerates
oligomerization. FEBS J. 2020 Sep 5.
65. Fusco G, Chen SW, Williamson PTF, et al. Structural basis of
membrane disruption and cellular toxicity by alpha-synuclein oligomers.
Science. 2017 Dec 15;358(6369):1440-1443.
66. Podobnik M, Savory P, Rojko N, et al. Crystal structure of an
invertebrate cytolysin pore reveals unique properties and mechanism of
assembly. Nat Commun. 2016 May 12;7:11598.
67. He J, Wang J, Hu J, et al. Single molecule atomic force microscopy
of aerolysin pore complexes reveals unexpected star-shaped topography. J
Mol Recognit. 2016 Apr;29(4):174-81.
68. Eichmann C, Campioni S, Kowal
J, et al. Preparation and Characterization of Stable alpha-Synuclein
Lipoprotein Particles. J Biol Chem. 2016 Apr 15;291(16):8516-27.
69. Mirecka EA, Shaykhalishahi H, Gauhar A, et al. Sequestration of a
beta-hairpin for control of alpha-synuclein aggregation. Angew Chem Int
Ed Engl. 2014 Apr 14;53(16):4227-30.
70. Kreutzer AG, Nowick JS. Elucidating the Structures of Amyloid
Oligomers with Macrocyclic beta-Hairpin Peptides: Insights into
Alzheimer’s Disease and Other Amyloid Diseases. Acc Chem Res. 2018 Mar
20;51(3):706-718.
71. Safari F, Hatam G, Behbahani AB, et al. CRISPR System: A
High-throughput Toolbox for Research and Treatment of Parkinson’s
Disease. Cell Mol Neurobiol. 2020 May;40(4):477-493.