We consider the nonautonomous modified Swift-Hohenberg equation $$u_t+\Delta^2u+2\Delta u+au+b|\nabla u|^2+u^3=g(t,x)$$ on a bounded smooth domain $\Omega\subset\R^n$ with $n\leqslant 3$. We show that, if $|b|<4$ and the external force $g$ satisfies some appropriate assumption, then the associated process has a unique pullback attractor in the Sobolev space $H_0^2(\Omega)$. Based on this existence, we further prove the existence of a family of invariant Borel probability measures and a statistical solution for this equation.