References
[1] Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Review on
research and development of magnesium alloys, Acta metallurgica sinica
(English letters) 21(5) (2009) 313-328.
[2] B.L. Mordike, T. Ebert, Magnesium:
properties—applications—potential, Materials Science and
Engineering: A 302(1) (2001) 37-45.
[3] V. Kumar, R. Shekhar, R. Balasubramaniam, K. Balani,
Microstructure evolution and texture development in thermomechanically
processed Mg–Li–Al based alloys, Materials Science and Engineering: A
547 (2012) 38-50.
[4] Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Mechanistic
origin and prediction of enhanced ductility in magnesium alloys, Science
359(6374) (2018) 447-452.
[5] K. Srivastava, J.A. El-Awady, Deformation of magnesium during
c-axis compression at low temperatures, Acta Materialia 133 (2017)
282-292.
[6] M.R. Barnett, M.D. Nave, C.J. Bettles, Deformation
microstructures and textures of some cold rolled Mg alloys, Materials
Science and Engineering: A 386(1-2) (2004) 205-211.
[7] R.-z. Wu, Y.-d. Yan, G.-x. Wang, L.E. Murr, W. Han, Z.-w. Zhang,
M.-l. Zhang, Recent progress in magnesium–lithium alloys, International
Materials Reviews 60(2) (2015) 65-100.
[8] Z. Trojanová, Z. Drozd, S. Kúdela, Z. Száraz, P. Lukáč,
Strengthening in Mg–Li matrix composites, Composites Science and
Technology 67(9) (2007) 1965-1973.
[9] J. Hirsch, T. Al-Samman, Superior light metals by texture
engineering: Optimized aluminum and magnesium alloys for automotive
applications, Acta Materialia 61(3) (2013) 818-843.
[10] Y. Zou, L. Zhang, Y. Li, H. Wang, J. Liu, P.K. Liaw, H. Bei, Z.
Zhang, Improvement of mechanical behaviors of a superlight Mg-Li base
alloy by duplex phases and fine precipitates, Journal of Alloys and
Compounds 735 (2018) 2625-2633.
[11] H.-Y. Wu, J.-C. Yan, H.-H. Tsai, C.-H. Chiu, G.-Z. Zhou, C.-F.
Lin, Tensile flow and strain-hardening behaviors of dual-phase
Mg–Li–Zn alloy thin sheets, Materials Science and Engineering: A
527(27-28) (2010) 7197-7203.
[12] C. Bathias, P.C. Paris, Gigacycle Fatigue in Mechanical
Practice. Dekker, (2005).
[13] Q.Y. Wang, J.Y. Berard, A. Dubarre, G. Baudry, S. Rathery, C.
Bathias, Gigacycle fatigue of ferrous alloys, Fatigue & Fracture of
Engineering Materials & Structures 22(8) (1999) 667-672.
[14] S. Stanzl-Tschegg, H. Mughrabi, B. Schoenbauer, Life time and
cyclic slip of copper in the VHCF regime, International journal of
fatigue 29(9-11) (2007) 2050-2059.
[15] M.D. Sangid, The physics of fatigue crack initiation,
International journal of fatigue 57 (2013) 58-72.
[16] K. Yang, C. He, Q. Huang, Z.Y. Huang, C. Wang, Q. Wang, Y.J.
Liu, B. Zhong, Very high cycle fatigue behaviors of a turbine engine
blade alloy at various stress ratios, International Journal of Fatigue
99 (2017) 35-43.
[17] Y. Hong, Z. Lei, C. Sun, A. Zhao, Propensities of crack
interior initiation and early growth for very-high-cycle fatigue of high
strength steels, International Journal of Fatigue 58 (2014) 144-151.
[18] Y. Murakami, Metal fatigue: effects of small defects and
nonmetallic inclusions, Academic Press2019.
[19] F. Yang, S.M. Yin, S.X. Li, Z.F. Zhang, Crack initiation
mechanism of extruded AZ31 magnesium alloy in the very high cycle
fatigue regime, Materials Science and Engineering: A 491(1-2) (2008)
131-136.
[20] K. Tokaji, M. Kamakura, Y. Ishiizumi, N. Hasegawa, Fatigue
behaviour and fracture mechanism of a rolled AZ31 magnesium alloy,
International Journal of Fatigue 26(11) (2004) 1217-1224.
[21] J. Pan, P. Fu, L. Peng, B. Hu, H. Zhang, A.A. Luo, Basal slip
dominant fatigue damage behavior in a cast Mg-8Gd-3Y-Zr alloy,
International Journal of Fatigue 118 (2019) 104-116.
[22] D. Hanwu, W. Limin, L. Ke, W. Lidong, J. Bin, P. Fusheng,
Microstructure and deformation behaviors of two Mg–Li dual-phase alloys
with an increasing tensile speed, Materials & Design 90 (2016) 157-164.
[23] F. Guo, L. Liu, Y. Ma, L. Jiang, Y. Zhang, D. Zhang, F. Pan,
Slip behavior and its effect on rolling texture development in a
dual-phase Mg–Li alloy, Journal of Alloys and Compounds 813 (2020)
152117.
[24] M. Shahzad, L. Wagner, Influence of extrusion parameters on
microstructure and texture developments, and their effects on mechanical
properties of the magnesium alloy AZ80, Materials Science and
Engineering: A 506(1-2) (2009) 141-147.
[25] J. Bohlen, S. Yi, D. Letzig, K.U. Kainer, Effect of rare earth
elements on the microstructure and texture development in
magnesium–manganese alloys during extrusion, Materials Science and
Engineering: A 527(26) (2010) 7092-7098.
[26] S.B. Yi, H.G. Brokmeier, J. Bohlen, D. Letzig, K.U. Kainer,
Neutron diffraction study on the texture development during extrusion of
magnesium alloy AZ31, Physica B: Condensed Matter 350(1-3) (2004)
E507-E509.
[27] V. Kumar, A. Gupta, D. Lahiri, K. Balani, Serrated yielding
during nanoindentation of thermomechanically processed novel
Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys, Journal of Physics
D: Applied Physics 46(14) (2013) 145304.
[28] W. Wang, C.B. Jiang, K. Lu, Deformation behavior of Ni3Al
single crystals during nanoindentation, Acta materialia 51(20) (2003)
6169-6180.
[29] V. Kumar, K. Philippe, R. Shekhar, K. Balani, Processing and
Nano-mechanical Characterization of Mg-Li-Al Based Alloys, Procedia
Materials Science 5 (2014) 585-591.
[30] T. Guo, F. Siska, J. Cheng, M. Barnett, Initiation of basal
slip and tensile twinning in magnesium alloys during nanoindentation,
Journal of Alloys and Compounds 731 (2018) 620-630.
[31] X. Peng, X. Liang, W. Liu, G. Wu, H. Ji, X. Tong, L. Zhang, W.
Ding, High-cycle fatigue behavior of Mg-8Li-3Al-2Zn-0.5 Y alloy under
different states, Journal of Magnesium and Alloys (2020).
[32] C. He, Y. Liu, J. Li, K. Yang, Q. Wang, Q. Chen,
Very-high-cycle fatigue crack initiation and propagation behaviours of
magnesium alloy ZK60, Materials Science and Technology 34(6) (2018)
639-647.
[33] H. Liu, H. Wang, Z. Huang, Q. Wang, Q. Chen, Comparative study
of very high cycle tensile and torsional fatigue in TC17 titanium alloy,
International Journal of Fatigue 139 (2020).
[34] F. Liu, C. He, Y. Chen, H. Zhang, Q. Wang, Y. Liu, Effects of
defects on tensile and fatigue behaviors of selective laser melted
titanium alloy in very high cycle regime, International Journal of
Fatigue 140 (2020).
[35] M.W. Tofique, J. Bergström, K. Svensson, S. Johansson, R.L.
Peng, ECCI/EBSD and TEM analysis of plastic fatigue damage accumulation
responsible for fatigue crack initiation and propagation in VHCF of
duplex stainless steels, International Journal of Fatigue 100 (2017)
251-262.
[36] I.H. Lo, W.-T. Tsai, Effect of selective dissolution on fatigue
crack initiation in 2205 duplex stainless steel, Corrosion Science 49(4)
(2007) 1847-1861.
[37] R. Strubbia, S. Hereñú, I. Alvarez-Armas, U. Krupp, Short
fatigue cracks nucleation and growth in lean duplex stainless steel LDX
2101, Materials Science and Engineering: A 615 (2014) 169-174.
[38] J.K. Sahu, U. Krupp, H.J. Christ, Fatigue crack initiation
behavior in embrittled austenitic–ferritic stainless steel,
International Journal of Fatigue 45 (2012) 8-14.
[39] Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of
effects of non-metallic inclusions on fatigue strength of high strength
steels. I: Basic fatigue mechanism and evaluation of correlation between
the fatigue fracture stress and the size and location of non-metallic
inclusions, International Journal of Fatigue 11(5) (1989) 291-298.
[40] C. He, Y. Liu, J. Li, K. Yang, Q. Wang, Q. Chen,
Very-high-cycle fatigue crack initiation and propagation behaviours of
magnesium alloy ZK60, Materials Science and Technology 34(6) (2017)
639-647.
[41] X.H. Shao, H.Q. Liu, H.J. Yang, C. He, N. Su, Y.J. Wu, Q. Chen,
X.L. Ma, Enhanced very high cycle fatigue resistance of solution treated
Mg–10Gd–3Y–1Zn–0.5Zr magnesium alloy containing long-period stacking
ordered phase, Materialia 11 (2020).
[42] U. Karr, B.M. Schönbauer, H. Mayer, Near‐threshold fatigue
crack growth properties of wrought magnesium alloy AZ61 in ambient air,
dry air, and vacuum, Fatigue & Fracture of Engineering Materials &
Structures 41(9) (2018) 1938-1947.
[43] X. Pan, H. Su, C. Sun, Y. Hong, The behavior of crack
initiation and early growth in high-cycle and very-high-cycle fatigue
regimes for a titanium alloy, International Journal of Fatigue 115
(2018) 67-78.
[44] W. Li, H. Zhao, A. Nehila, Z. Zhang, T. Sakai, Very high cycle
fatigue of TC4 titanium alloy under variable stress ratio: Failure
mechanism and life prediction, International Journal of Fatigue 104
(2017) 342-354.
[45] K. Yang, Q. Huang, Q. Wang, Q. Chen, Competing crack initiation
behaviors of a laser additively manufactured nickel-based superalloy in
high and very high cycle fatigue regimes, International Journal of
Fatigue 136 (2020).
[46] X. Pan, Y. Hong, High‐cycle and very‐high‐cycle fatigue
behaviour of a titanium alloy with equiaxed microstructure under
different mean stresses, Fatigue & Fracture of Engineering Materials &
Structures 42(9) (2019) 1950-1964.
[47] Y. Hong, C. Sun, The nature and the mechanism of crack
initiation and early growth for very-high-cycle fatigue of metallic
materials–An overview, Theoretical and Applied Fracture Mechanics 92
(2017) 331-350.
[48] W.B. Hutchinson, M.R. Barnett, Effective values of critical
resolved shear stress for slip in polycrystalline magnesium and other
hcp metals, Scripta Materialia 63(7) (2010) 737-740.
[49] T. Hama, H. Takuda, Crystal-plasticity finite-element analysis
of inelastic behavior during unloading in a magnesium alloy sheet,
International Journal of Plasticity 27(7) (2011) 1072-1092.
[50] T. Hama, N. Kitamura, H. Takuda, Effect of twinning and
detwinning on inelastic behavior during unloading in a magnesium alloy
sheet, Materials Science and Engineering: A 583 (2013) 232-241.