Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Rui Xiao

and 4 more

Lei Su

and 6 more

Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but how investigations of such responses to multiple levels of nutrient enrichment remains unclear. In this study, we manipulated nitrogen (N) and phosphorus (P) availability to examine seed production responses to three levels each of N and P addition in a factorial experiment: no N addition (0 g N m-2 yr-1), low N addition (10 g N m-2 yr-1), high N addition (40 g N m-2 yr-1), and no P addition (0 g P m-2 yr-1), low P addition (5 g P m-2 yr-1), high P addition (10 g P m-2 yr-1). Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but it did enhance it under N addition. Furthermore, N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is limited not by P but rather by N in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics of steppe ecosystems under intensified nutrient enrichment and can inform their improved management in the future.