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Abstract

Accurate  estimation  of  precipitation  in  both  space  and  time  is  essential  for

hydrological  research.  We compared multi-source  weighted ensemble  precipitation

(MSWEP) with multi-source fused satellite precipitation (CHIRPS) based on high-

density rain gauge precipitation observations in the Taihu Lake basin. We proposed a

new merge precipitation algorithm GWRMP based on the geographically weighted

regression (GWR) method.  GWRMP corrects  the bias of MSWEP by using high-

density rain gauge precipitation to address the common problem of daily precipitation

underestimation in MSWEP. The large-scale spatial coverage of the water surface in

this  region leads to  the uneven distribution of  rain gauges  on the lake.  There are

differences in the descriptive ability of the three spatial precipitation types, MSWEP,

GWRMP, and IDW, for spatial and temporal precipitation information in the Taihu

Lake  basin.  A comparison  shows  that  GWRMP  has  a  significant  advantage  in

obtaining the spatial and temporal variability of precipitation in areas with complex
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topographic  conditions.  GWRMP compensates  the  problem of  underestimation  of

precipitation by MSWEP (10% to 25%), and avoids the risk of the high dependence of

IDW on rain gauges, and improves the accuracy of spatial and temporal precipitation

in large lake areas with sparse distribution of rain gauges (Pbias limited to 10%).

GWRMP improved the estimation for different rainfall intensities in the Taihu Lake

basin,  especially  in  the  mid-level  rainfall  and  above  precipitation  frequencies.

Compared with IDW and MSWEP, GWRMP is more suitable for intense precipitation

monitoring and storm flood frequency study in the basin. Therefore, GWRMP is a

better choice for spatial and temporal estimation of precipitation in the Taihu Lake

basin. The GWRMP algorithm can be applied to other regions with unevenly spaced

high-density rain gauges.

Keywords:  Multi-Source  Weighted-Ensemble  Precipitation,  GWR  Merged

Precipitation, Accuracy Evaluation System, Spatial Inhomogeneity, Taihu Lake Basin.
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1. INTRODUCTION

As the principal medium of energy, water exchange, and transport between land

and  the  atmosphere,  precipitation  is  one  of  the  most  basic  meteorological  and

hydrological  elements  that  have  high  spatial  variability.  The  acquisition  of  high-

quality  spatial  and temporal  precipitation  data  is  the  basis  of  global  and regional

climate  change  studies  and  land  surface  hydrological  processes  (Behrangi  et  al.,

2011).  Taking  full  advantage  of  different  precipitation  acquisition  methods  and

integrating spatial distribution information of precipitation from various sources has

become an important development direction in the development of regional or global

precipitation data internationally.

Radar  precipitation is  highly dependent  on base information for regional  and

reanalysis rainfall. Satellite precipitation can cover a large part of the globe with high

spatial and temporal resolution. Satellite fusion precipitation products include Global

Precipitation Climatology Project (GPCP)(George J. Huffman, Adler, Bolvin, & Gu,

2009; 2001), TMPA from Tropical Rainfall Measuring Mission (TRMM) (George J.

Huffman,  Adler,  Bolvin,  &  Nelkin,  2010),  Integrated  Multi-Satellite  Retrievals

(IMERG)  for  GPM  (George  J.   Huffman,  Bolvin,  Nelkin,  &  Jackson  2015) and

CHIRPS data  (Climate  Hazards  Infrared  Precipitation  with  Stations)  (Funk et  al.,

2015).  With  the  advancement  of  observed  precipitation  technology,  the  fused

precipitation data sources are no longer limited to multi-satellite fusion, but towards

multiple pathways such as radar, satellite, and reanalysis. In 2002, the U.S. Climate

Prediction  Center  Morphing  Technique  developed  a  high-resolution  CMORPH

precipitation  product  with  global  coverage(Joyce,  Janowiak,  Arkin,  &  Xie,

2004).Beck et al.  (2017; 2018) integrated various types of precipitation data such as

CPC Unified, GPCC, CMORPH, GSMaP-MVK, TMPA 3B42RT, ERA-Interim, JRA-

55, etc., and proposed MSWEP V2.1, a multi-source precipitation fusion data based

on a weighted ensemble. MSWEP has the advantages of global coverage and high

spatial  and  temporal  resolution  (3  hours,  0.1×0.1°)  and  long  time  series  (1979
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present).  CHIRPS and  MSWEP have  both  long  time  series  and  high  spatial  and

temporal  resolution  features,  which  are  more  suitable  for  precipitation-related

meteorological drought monitoring and storm flood frequency analysis  (Abro, Zhu,

Ali Khaskheli, Elahi, & Aleem ul Hassan Ramay, 2020; Funk et al., 2015; Liu, Wei,

Zhang, Zhang, & LIiu, 2020; Xu et al., 2019; Yang et al., 2020).

Integration  of  precipitation  data  from  various  sources  requires  both

spatiotemporal resolution and application conditions. Therefore, accuracy assessment

is  essential  for  region-specific  applications.  The  accuracy  assessment  results  of

CHIRPS  and  MSWEP  in  different  regions  of  the  world  show  that  the  fused

precipitation  data,  despite  the  accuracy  validation  in  many  studies,  have  obvious

precipitation  underestimation  problems  and  limited  capability  in  estimating  heavy

precipitation.  (Akhilesh, nair, & Indu, 2017; Alijanian, Rakhshandehroo, Mishra, &

Dehghani, 2017; Awange, Hu, & Khaki, 2019; Darand & Khandu, 2020; Deng, Jiang,

Wang, & lv, 2018). Currently, most studies related to the application of CHIRPS and

MSWEP evaluate or validate the accuracy of rainfall estimates and analyze the error

characteristics, and then determine the applicability of various fused precipitation data

to the study area and content. Precipitation accuracy assessment has generally taken a

time-series accuracy assessment method based on rain gauges. This method does not

consider the correlation between precipitation events and neighboring spatial units,

which  can  be  inadequate  in  characterizing  the  spatial  structure  characteristics  of

precipitation. We evaluate the accuracy of the fused precipitation data in terms of time

series,  space,  and  intensity,  which  can  fully  describe  its  accuracy  characteristics.

Furthermore, it compares the applicability of data from several sources in the study

region.

For regions with a good observation database, surface rainfall is mainly obtained

based on dense rainfall observation stations. The accuracy of surface rainfall depends

on the density and uniformity of distribution of the observation station network. The

distribution of rainfall stations in the Taihu Lake basin is relatively dense, and there is
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a long time series of surface precipitation observation records. However, there are

fewer rainfall stations in the large lakes in the basin. Therefore, the limited rainfall

observation information is not enough to accurately reflect the real distribution of

precipitation in the large lakes. The multi-source ensemble spatial precipitation data

applicable to the Taihu Lake basin were chosen preferably as a source of precipitation

information analysis, which could help investigate the space-time evolution patterns

of meteorological and hydrological elements in the watershed. CHIRPS and MSWEP

have high Spatio-temporal accuracy compared with other fused precipitation data, but

there is a problem of precipitation underestimation. We correct the accuracy of multi-

source  fused  precipitation  based  on  the  precipitation  observed  by  intensive  rain

gauges and obtain fused precipitation data with a high spatial resolution and accurate

precipitation estimation capability. This data provides more refined precipitation data

for hydro-meteorological studies in the whole Taihu Lake basin. The excellent surface

observation data in the Taihu Lake basin provides both a foundation for the accuracy

of MSWEP precipitation calibration and sufficient measured precipitation comparison

information  for  MSWEP  and  the  accuracy  assessment  of  the  corrected  fused

precipitation.

Since the flood season, rainfall is the main part (more than 60%) of the annual

precipitation in the Taihu Lake basin, and the heavy rainfall that has an important

impact  on  the  regional  socio-economy also  occurs  mostly  during  this  period.  We

focused on the fusion estimation of precipitation in the Taihu Lake Basin during the

flood season. The specific research ideas are as follows: (1) Collect and organize the

precipitation  data  in  the  Taihu  Lake  basin  during  the  flood  season  (May  to

September), including daily rainfall station observations from 1979 to 2016, MSWEP

raster  precipitation  data  from  1979  to  2016  (0.1°×  0.1°),  and  CHIRPS  raster

precipitation data  from 1981 to 2016 precipitation information (0.05°× 0.05°).  (2)

Comparative analysis of CHIRPS and MSWEP daily precipitation accuracy based on

rain  gauge  rainfall,  and  preferable  selection  of  suitable  multi-source  fused  spatial
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precipitation  information  sources.  (3)  Construct  a  fused  precipitation  estimation

model based on GWR and generate ground-checked multi-source fused precipitation

data (GWRMP). (4) Construct a Spatio-temporal precipitation accuracy assessment

system to systematically evaluate the capability of GWRMP in capturing multi-source

precipitation information such as temporal, spatial, and precipitation intensity in the

Taihu basin.

2. DATA AND METHODS

2.1 Study Area

Taihu Lake Basin is located in the Yangtze River Delta area of China (Figure 1).

It is adjacent to the Yangtze River in the north, Qiantang River in the south, and the

sea in the east. The total area of the basin is 36,869 km2, of which the water area is

6134 km2 and the water surface proportion is 17%. It is a typical plain river network

area, located in the subtropical monsoon climate zone with four distinct seasons and

abundant rainfall.  The average annual precipitation is  1,185 mm, with the bulk of

precipitation  occurring  during  the  flood  season  (May  to  September)  at  726  mm,

approximately  61%  of  the  annual  precipitation.  The  topography  of  the  basin  is

complex and includes mountainous, plain, and lake topography, with a dense river

network and numerous lakes. The Central Lake area is the third-largest freshwater

lake in China, with a water area of nearly 2338 km2. The complex terrain and climate

conditions are characterized by low terrain in the middle of the basin and high in the

surrounding areas, thus, flooding is easy to produce and difficult to eliminate. Taihu

Lake Basin is one of the most developed areas in China, with a dense population and

large- and medium-sized cities. Once a flood disaster occurs, the resulting social and

economic losses are serious. According to the distribution of the river system, the

Taihu Basin (THB) can be categorized into seven water conservancy zones (Figure 1):

district  of  Huxi  (HX),  Hangjiahu  (HJH),  HQ,  Wuchengxiyu  (WCXY),

Yangchengdianmao (YCDM), Pudongpuxi district (PDPX), and Zhexi (ZX). Taking

into account the terrain height difference, the Taihu Basin can also be divided into
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three terrain areas: district of mountainous (ZX), lake (HQ), and plain (HX, WCXY,

YCDM, HJH, PDPX). Figure 1(a) shows the geographical location of the Taihu Lake

Basin, and Figures 1(b) and 1(c) show the physical geography and socio-economic

overview of the Taihu Lake Basin, respectively.

[Insert Figure 1]

2.2 Datasets

2.2.1 Precipitation data of the rainfall station network

The observation data of daily precipitation in Taihu Lake Basin mainly originate

from the hydrological yearbook of the basin, and the precipitation data have been

reorganized and quality controlled. There is a high-density rainfall gauge network in

the study area, and the spatial distribution of gauges is shown in Figure 1(d). The

number of available rainfall stations varies from year to year. We used 130 gauges of

rain daily observation precipitation data in Taihu Lake Basin from 1979 to 2016 as the

calibration benchmark to determine the accuracy of the spatial rainfall data in Taihu

Lake Basin. Meanwhile, eight rain gauges in the water conservancy zone are reserved,

and the remaining 122 rain gauges are used for inverse distance interpolation to obtain

the spatial precipitation IDW (0.1°×0.1°).

2.2.2 Climate Hazards Infrared Precipitation with Stations（CHIRPS）

The long series multi-source satellite fusion precipitation uses the CHIRPS daily

precipitation  dataset  proposed  by  the  USGS/Group  on  Climate  Hazards  (GCH)

science team that can be used in conjunction with surface models. This data covers

most of the global land area (50° S to 50° N) and is characterized by low latency, high

resolution (0. 05°), and long records (1981 to present). The data can be downloaded at

https://data.chc.ucsb.edu/products/CHIRPS-2.0/.  We used  the  global  0.05°  ×  0.05°

CHIRPS daily precipitation data from 1981 to 2016, and obtained the CHIRPS spatial

daily precipitation data of Taihu Lake basin by cropping and other pre-processing. 
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2.2.3 Multi-Source Weighted-Ensemble Precipitation (MSWEP)

The MSWEP precipitation information was obtained using the latest version 2

data released by the European Union Joint Research Centre (EU/JRC), which covers

the  global  region with  a  spatial  and temporal  resolution  of  3  h  and 0.1°  ×  0.1°,

respectively, and the data can be downloaded at http://www.gloh2o.org/. We used the

precipitation  data  from  1979  to  2016  MSWEP  periods  and  obtained  the  daily

precipitation cumulatively based on the three hours of precipitation within each day.

The raw data were stitched by MRT and cropped by ArcGIS to obtain the daily spatial

precipitation data of MSWEP in the Taihu Lake basin.

2.3 GWRMP Merged Precipitation Estimation and Accuracy Assessment Method

2.3.1 GWRMP merging precipitation estimation 

There are many precipitation fusion methods, but the basic idea is to use spatial

precipitation products such as satellites as the initial estimation field of precipitation,

calculate the difference between the rainfall observed at the same location station and

the initial estimation field, use the empirical function method to calculate the weights

of the different points and obtain the error field according to the weight interpolation

error,  and superimpose the error field and the initial  estimation field to obtain the

prediction  field  (Wang,  2019).  Brunsdon,  Fotheringham,  and  Charlton  (1998)

proposed a spatial regression model-geographic weighted regression model based on

the spatial variable coefficient regression model using the idea of local smoothness,

which  applies  to  the quantitative  simulation of  non-stationary spatial  relationships

among variables.  Hu, Yang, Wang, Yang, and Liu (2013) proposed a residual-based

GWR rainfall fusion scheme, which was later widely used in rainfall fusion analysis

calculation(Chao et al., 2018;). The GWRMP model mainly includes the following

three steps: (1) obtaining the rainfall deviation between rainfall station precipitation

and corresponding spatial precipitation. (2) Interpolating the local characteristics of

spatial  precipitation  as  weights  and  interpolating  the  geographically  weighted

regression of rainfall station precipitation deviation to obtain the spatial distribution of
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rainfall  error.  (3)  Through  the  inverse  operation  of  the  rain  gauge  rainfall  bias

estimation  method,  the  obtained  spatial  errors  are  superimposed  with  the  spatial

precipitation  to  obtain  the  geographically  weighted  regression-based  fused

precipitation data GWRMP. The specific calculation formula refers to the literature

(Li, 2018).

2.3.2 Timing accuracy evaluation index system

We take the daily precipitation data of actual sites as the benchmark to evaluate

the  accuracy  of  daily  precipitation  of  IDW,  MSWEP,  and  GWRMP grids.  The

indicator  system  includes  classification,  volume  classification,  and  quantitative

indicators.  Quantitative  accuracy  indicators  reflected  the  accuracy  of  daily

precipitation description by fused precipitation data. We used the common relative

bias  (Pbias  ),  the  coefficient  of  determination  (RR)(He  et  al.,  2017),  Root  Mean

Square Error (RMSE), and Kling-Gupta efficiency (KGE)(Pool, Vis, & Seibert, 2018)

metrics  to  assess  the  consistency  of  fused  daily  precipitation  with  the  baseline

precipitation in terms of time series distribution. The details of each accuracy index

are shown in Equations (1) to (7) in the Appendix.

The  classification  index  mainly  reflects  the  ability  of  fused  precipitation  to

recognize the occurrence of  daily  precipitation events.  We used the probability  of

detection  (POD) to  determine  the  degree  of  under-reporting  of  daily  precipitation

events by MSWEP, and Heidke's skill score (HSS) to synthesize the ability of fused

precipitation to estimate the occurrence of daily precipitation events in the raster of

the  Taihu  Lake  basin(Hu et  al.,  2013).  The  volumetric  classification  index  is  an

extension  of  the  classification  index,  which  strengthens  the  ability  to  identify

precipitation and overcomes the shortcomings of the traditional classification index to

a certain extent. The study used the volumetric detection index (VHI) to assess the

detection  ability  to  merge  precipitation  to  raster  precipitation  (AghaKouchak  &

Mehran, 2013). The specific formulas for each time-series accuracy index are detailed

in Equations (8) to (10) in Appendix A.
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2.3.3 Sliding space precipitation accuracy evaluation

The  sliding  window  statistical  method  can  quantify  the  spatial  precipitation

accuracy. We analyzed the relationship between GWRMP and IDW errors and the

density of ground rain gauges. The precipitation accuracy of GWRMP is less affected

by  the  density  of  rain  gauges  compared  to  IDW  from  a  side  perspective.  The

precipitation  accuracy  of  GWRMP  may  be  better  than  that  of  conventional

interpolated precipitation in areas with uneven distribution of ground observations.

Under ideal conditions, the higher the density of rainfall stations in the study area, the

higher  the  spatial  precipitation  accuracy  of  IDW,  and  the  smaller  the  difference

between  GWRMP and  IDW.The  above  statistical  results  indicate  that  IDW  has

significant errors in spatial precipitation accuracy in the area observed by few rainfall

stations, and its spatial  precipitation information inversion capability is lower than

that  of  GWRMP,  which  indirectly  proves  that  GWRMP is  better  than  IDW  in

describing spatial precipitation information. Figure 2 shows the specific process of

sliding window statistical analysis of spatial precipitation accuracy. Considering that

the statistical results may be affected by the window size, the study selects 2×2, 3×3,

and 4×4 sliding windows. The window unit is moved from left to right and from top

to bottom, counting the count gauges (CG) and mean deviation (MD) of the rainfall

stations in each window.

[Insert Figure 2]

2.3.4 Systematic evaluation of precipitation accuracy with multi-method 

combinations

Interpolation methods are common to reflect spatial precipitation information in

areas where rain gauges are densely and evenly distributed. The Taihu Lake basin has

a  large  lake  area  where  rain  gauges  are  densely  distributed  but  not  uniform.

Nevertheless, interpolated precipitation is the principal research method for spatial
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precipitation studies in the Taihu Lake basin. This study took the spatial precipitation

obtained  by  the  commonly  used  inverse  distance  interpolation  algorithm  as  a

reference,  analyzed the differences in  the accuracy of IDW, MSWEP, and ground

checked GWRMP daily precipitation, and systematically evaluated the reliability of

GWRMP daily precipitation. Considering the strong dependence of IDW precipitation

on  the  location  of  rainfall  stations,  eight  rainfall  stations  (covering  seven  water

subdivisions in the Taihu Lake basin) are reserved for daily precipitation observation

data as a reference for spatial precipitation accuracy calibration. Table 1 shows the

spatial  location  information  of  the  reserved  rain  gauges.  The  distribution  of  rain

gauges in the Taihu Lake area is extremely uneven (Figure 1), and two rain gauges

were reserved for calibration.

[Insert Table 1]

Advance  rain  gauge  methods  are  affected  by  objective  conditions  such  as

topography, and the accuracy assessment results may have errors. We also applied the

counting precision results of rain gauges within each water subarea to evaluate and

compare the precipitation precision in all aspects of time series, space, and intensity.

This method has the risk of high accuracy of IDW precipitation due to the dual role of

interpolated  precipitation  IDW  and  accuracy  assessment  benchmark  by  130  rain

gauges.  However,  the  accuracy  evaluation  results  are  much  more  statistically

significant when the accuracy evaluation and zonal comparison are carried out based

on more rain gauge precipitation samples. By the proposed method, we evaluate the

accuracy  of  130 rain  gauges  measured  precipitation  and  its  corresponding  spatial

precipitation MSWEP, GWRMP, and IDW. The results overall  show the ability of

each spatial precipitation data in capturing Spatio-temporal precipitation information

in the Taihu Lake basin.

3. RESULTS AND DISCUSSION
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3.1 Long series multi-source fusion precipitation data optimization

Multi-source ensemble precipitation combines the advantages of rainfall  from

different  sources.  However,  there  are  large  differences  in  the  Spatio-temporal

accuracy  and  time  series  length  of  precipitation  data.  For  long-term precipitation

change statistics in the Taihu Lake basin, we select the multi-source satellite fused

precipitation  CHIRPS  from  1981  to  present  and  the  multi-source  ensemble

precipitation MSWEP v2.1 data since 1979 from numerous spatial precipitation data.

We used 130 rainfall  stations with measured daily precipitation in the Taihu Lake

basin as the benchmark. Analysis of the precipitation detection accuracy of CHIRPS

and MSWEP in terms of time series and rain intensity filtered the daily-scale spatial

precipitation data that best characterize the Taihu Lake basin.

Using the high-density and long-series ground rain gauge observations, we took

the seven hydraulic subareas in the Taihu Lake basin as the statistical unit. We plotted

the scatter plots of sub-region rain gauge precipitation with the corresponding raster

rainfall of CHIRPS and MSWEP v2.1, respectively (Figure 3). The results show that

the consistency of daily precipitation with rainfall stations is significantly higher for

MSWEP  than  CHIRPS.  The  correlation  coefficients  between  MSWEP  daily

precipitation series and ground rain gauges observed precipitation are above 0.75 for

all  water  subdivisions.  The  correlation  coefficients  between  CHIRPS  daily

precipitation series and ground daily observed precipitation generally range from 0.61

to 0.63. It is worth noting that there is an underestimation of daily rainfall for the

MSWEP phenomenon, a problem of systematic errors in this data, which has been

proved in many studies (Akhilesh et al., 2017; Alijanian, Rakhshandehroo, Mishra, &

Dehghani,  2019;  Deng  et  al.,  2018;  Liu  et  al.,  2020).  In  contrast,  despite  the

underestimation of daily precipitation by MSWEP, the explanatory power of daily-

scale precipitation changes on the surface is still higher than that of CHIRPS, which

can reflect the trends of rainfall in the Taihu Lake basin.
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[Insert Figure 3]

The results of the combined assessment of time series and classification accuracy

(Figure  4)  show  that  MSWEP has  a  higher  ability  to  classify  and  identify  and

quantitatively characterize daily precipitation events in the Taihu Lake basin. MSWEP

accurately  characterizes  rainfall  information  better  than  CHIRPS.  The  Pbias  of

CHIRPS is significantly lower than MSWEP in all water sub-regions except for ZX,

probably  due  to  the  systematic  errors  prevalent  in  this  data.  MSWEP  always

underestimates surface precipitation to a certain extent, but CHIRPS does not have

similar problems. The quantitative accuracy indicators RMSE, KGE, and RR all show

that MSWEP precipitation is strongly synchronized with the baseline rainfall gauge

precipitation in terms of time series variation (RMSE<10, KGE>0.6, RR>0.6), while

CHIRPS  is  in  low  agreement  with  the  measured  rainfall  (RMSE>10,  KGE<0.5,

RR<0.5). In particular, the RR of CHIRPS in each subzone is less than 0.2, indicating

that CHIRPS cannot simulate the temporal variation of daily precipitation in the Taihu

Lake basin. Besides, the MSWEP classification indexes POD > 0.75, HSS generally

higher than 0.6, and VHI close to 1 are higher than the corresponding classification

indexes of CHIRPS (POD lower than 0.6, HSS no more than 0.5, and VHI less than

0.75). The evaluation shows that MSWEP has strong classification recognition ability

and precipitation characterization ability for daily precipitation events in the Taihu

Lake basin.  In general,  the quantitative assessment  and classification capability  of

MSWEP for daily precipitation events in the Taihu Lake basin is higher than that of

CHIRPS.

[Insert Figure 4]

According  to  the  precipitation  classification  standard  of  the  China

Meteorological Administration (GB/T 28592-2012, 2012), daily rainfall in the Taihu
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Lake basin is classified into six levels: no rain (0 to 0.1 mm), light rain (0.1 to 10

mm), moderate rain (10 to 25 mm), heavy rain (25 to 50 mm), rainstorms (50 to 100

mm), and heavy rainstorms (> 100 mm). We counted the precipitation frequency of

CHIRPS and MSWEP spatial  precipitation in different precipitation intensity class

intervals based on various levels of precipitation events at the actual rainfall stations,

respectively (Figure 5). 

The  combined  assessment  of  the  ability  of  CHIRPS  and  MSWEP  in  the

frequency of precipitation events of different intensities shows that both CHIRPS and

MSWEP have the problem of underestimating the frequency of precipitation. CHIRPS

is more accurate than MSWEP in evaluating days without rainfall, and MSWEP is

more  capable  of  capturing  days  with  rainfall  than  CHIRPS.  With  the  increase  of

precipitation intensity, MSWEP's ability to capture precipitation events decreases, and

the frequency of captured precipitation tends to be higher than that of CHIRPS. The

results indicate that CHIRPS is not sensitive to all levels of rainfall intensity, and the

underestimation phenomenon is not related to rainfall intensity. The underestimation

problem  of  MSWEP  becomes  more  obvious  with  the  increase  of  precipitation

intensity, and there is the phenomenon of underestimating high precipitation. On the

whole, CHIRPS can be used for the assessment of rainless days in dry areas and is

suitable  for  drought  monitoring,  while  MSWEP is  more  suitable  for  precipitation

accuracy assessment in wet areas, but not for extreme precipitation analysis.

[Insert Figure 5]

3.2 GWRMP merged precipitation time series accuracy assessment

We selected MSWEP, which has a higher ability to characterize precipitation in

the Taihu Lake basin, as the spatial daily rainfall data for this region. To address the

common problem of precipitation underestimation in MSWEP, especially the weak

ability to capture heavy rainfall.  We used 130 long series of rain gauge data to correct
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the  accuracy of  MSWEP daily  precipitation.  Based on a  geographically  weighted

regression model, we fused rain gauges with MSWEP daily precipitation to obtain

fused precipitation data (GWRMP). The GWRMP time series are daily precipitation

from May to September 1979 to 2016, and the spatial resolution is consistent with

MSWEP at 0.1° × 0.1°.

Figure 6 is a scatter plot of the observed and corresponding location MSWEP,

GWRMP, and IDW daily precipitation at the reserved rainfall stations from May to

September  1979  to  2016.  It  shows  that  the  consistency  between  the  calibrated

GWRMP daily rainfall  and the measured value is  the highest,  and the correlation

coefficient of each station reaches above 0.85. The consistent between MSWEP and

measured  precipitation  is  slightly  lower,  and  the  correlation  coefficient  between

spatial rainfall and measured precipitation at each calibrated station ranges from 0.75

to 0.8.  IDW has a high difference between the measured and estimated values at

DTXS,  located  in  the  lake  area  of  Taihu.  Since  the  distribution  of  lake-area  rain

gauges  is  relatively  sparse,  inappropriately  using  IDW  to  characterize  spatial

precipitation.

[Insert Figure 6]

We evaluated the quantitative and classification accuracy metrics for spatial and

measured precipitation at the eight sites (Table 2). It shows the strongest to weakest

ability to characterize the measured precipitation information in the order of GWRMP

(Pbias  controlled  within  12%),  IDW,  and  MSWEP  precipitation  without  error

correction  (Pbias  between  -9%  and  -22%).  The  consistent  agreement  between

GWRMP daily rainfall and measured precipitation is the highest, with RR generally

higher than 0.7 and RMSE controlled at 5~8 mm. The classification indexes show that

GWRMP, IDW, and MSWEP have high synchronicity in precipitation frequency and

rainfall characterization ability. The POD is generally higher than 0.85, the HSS is
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more than 0.6, and the VHI is 0.97~0.99. The above spatial precipitation data have a

good classification and identification ability for daily precipitation events in the Taihu

Lake basin, which can effectively characterize the precipitation changes during the

study  period.  In  summary,  GWRMP has  a  higher  classification  and  quantitative

characterization ability for daily precipitation events in the Taihu Lake basin, and its

daily precipitation accuracy is better than that of IDW and MSWEP.

[Insert Table 2]

In addition to the spatial precipitation accuracy assessment of the reserved rain

gauges,  we  also  develop  a  systematic  accuracy  assessment  of  rain  gauge  scale

precipitation for different hydraulic divisions (methods see chapter 4.1). Figures 7 and

8 show the scatter  plots  and the time-series precision assessment  of daily  rainfall

relative to the baseline precipitation for MSWEP, GWRMP, and IDW. The agreement

between GWRMP, IDW, and the baseline rainfall gauge precipitation is high in all the

seven hydraulic divisions in the Taihu basin. Both have strong explanatory power for

surface  daily  precipitation  events  and  rainfall  variability.  MSWEP data  generally

underestimate  daily  precipitation  (-10% to  -20%)  in  zonal  simulations.  IDW has

minor overall errors, but daily precipitation errors are slightly higher in mountainous

areas of western Zhejiang Province and Taihu Lake area than in other zoning areas

due  to  topography  and  rain  gauge  distribution.  The  GWRMP fused  precipitation

compensates  for  the  underestimation  problem  of  MSWEP.  However,  the  fusion

algorithm uses  the  interpolation  of  the  errors  (more  positive  values)  between  the

point-scale  actual  measurements  and  MSWEP to  obtain  the  surface-scale  errors,

which may cause regional expanded systematic errors in the surrounding area with the

imposed errors. It results in a certain degree of overestimation problem in GWRMP.

We found that MSWEP can capture the precipitation events in the basin by accuracy

evaluation, but there is a significant underestimation error. MSWEP has the lowest

accuracy among the three types of spatial precipitation. The index evaluation results

16

46

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

47

48



of IDW and MSWEP are similar for each hydraulic subdistrict  in the Taihu Lake

basin. However, there are differences in the quantitative index evaluation results in the

Taihu Lake area, with the Pbias of IDW relative to the measured precipitation ranging

from -15% to -20%, which is significantly higher than that of GWRMP (7% to 10%).

[Insert Figure 7]

[Insert Figure 8]

3.3 GWRMP merged precipitation intensity accuracy assessment

We analyzed the IDW, MSWEP, and GWRMP raster precipitation data in the

Taihu Lake basin to accurately capture the frequency of different levels of rainfall

using the reserved eight  rainfall  stations  for  various  levels  of  precipitation  events

(Figure 9). The results of the analysis within each hydraulic subarea show that the

frequency of different levels of rainfall during the flood season is no rain (60% to

65%), light rain (22% to 26%), moderate rain (7% to 9%), heavy rain (3% to 5%),

rainstorms (1.4% to 1.7%), and heavy rainstorms (0.1% to 0.4%). The study analyzed

the  sensitivity  of  IDW, MSWEP, and GWRMP precipitation intensities  using rain

gauge  observed  precipitation  as  a  benchmark.  The  results  show  that  there  are

differences in their ability to capture the frequency of actual precipitation intensity.

The IDW was subject to significant fluctuations due to the topography of the rain

gauge distribution. DTXS, WL (Taihu Lake lake area), SP (mountainous region), and

ZDG (higher  elevation)  were weak in capturing each precipitation intensity  event

compared to other zonal rain gauges. MSWEP and GWRMP observe a low frequency

of rainless  days,  which were more sensitive to  precipitation.  With the increase of

rainfall  intensity,  the  sensitivity  of  GWRMP  to  precipitation  events  gradually

increases,  especially  for  precipitation  levels  above  moderate  rainfall.  The  rainfall

intensity detection accuracy of GWRMP is significantly better than that of IDW and
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MSWEP.

[Insert Figure 9]

Figure 10 shows the statistical results of the zonal accuracy assessment, and it is

consistent with the results of the reserved rain gauge assessment. The probability of

rainless weather in each subzone of the Taihu basin is about 60%, and ZX is around

55%. The light rainfall weather is between 20% and 30%. Moderate rainfall ranges

from 7% to 9%, with ZX reaching 10%. The rainstorm and heavy rainstorm weather

are 1% to 2% and 0.2% to 0.4%, respectively. There a high proportion of rainy days in

the Taihu Lake basin during the flood season, with nearly half of the weather being

rainy days. There are most rainy days in the flood season due to the topography of

ZX. The highest frequency of light rainfall occurred in the Taihu Lake basin. With the

increase  of  precipitation  intensity,  the  probability  of  occurrence  decreases

significantly.  There  are  some  deviations  in  the  frequency  of  different  levels  of

precipitation in each subzone of the basin. Compared with other divisions, ZX has the

highest precipitation frequency in all different levels. Spatial precipitation data have

significant  differences  in  their  ability  to  characterize  precipitation  intensity  in  the

Taihu Lake basin.  The GWRMP and IDW are generally  higher  than MSWEP for

different levels of precipitation intensity, and the detection accuracy becomes higher

with  increasing  precipitation  intensity.  However,  the  difference  in  the  frequency

distribution of  IDW precipitation intensity  in each partition is  significantly higher

than that of GWRMP, indicating that the detection ability of IDW for precipitation

intensity is less stable than that of GWRMP.

Combining the results of the two precipitation intensity accuracy assessments,

we can see that GWRMP is more suitable for precipitation observation in the Taihu

Lake basin. It can be applied to extreme rainstorm monitoring and provide a reference

for storm flood analysis.
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[Insert Figure 10]

3.4 GWRMP merged precipitation spatial accuracy assessment

Under  the  condition  of  high  density  and uniform distribution  of  ground rain

gauge, the precipitation accuracy obtained by interpolation is relatively reliable.  To

explore the precipitation accuracy of GWRMP at the spatial scale of the Taihu Lake

basin,  we have selected IDW as the benchmark reference.  The study analyzes the

errors of GWRMP and IDW using the sliding window statistical method. We compare

the  differences  of  error  values  under  different  rain  gauge  density  distributions  to

indirectly  diagnose  the  accuracy  of  GWRMP  in  describing  spatial  precipitation

information in the Taihu Lake basin. We compare the differences of error values under

different  rain  gauge  density  distributions  to  indirectly  diagnose  the  accuracy  of

GWRMP in describing spatial precipitation information in the Taihu Lake basin.

Figure 11 shows the rainfall station density and spatial precipitation deviation for

different sliding windows in the Taihu Lake basin during the flood period from 1979

to 2016. The total bias of monthly precipitation for each sliding window is less than

60 mm, and the average value is less than 40 mm during the study period. With the

increase of rain gauge density, the average bias between GWRMP and IDW tends to

decrease. Because of the influence of IDW on the distribution of surrounding rain

gauges, there are some error dispersion points between GWRMP and IDW under the

same rain gauge density. The error dispersion points and dispersion values decrease as

the density of the rain gauge increases. Comparing the statistical results of different

window units, the average error within the 2×2 and 3×3 windows has a significant

negative correlation with the rain gauge density. Within the 4×4 window, the larger

the statistical rain gauge density is, the average error gradually tends to stabilize as a

systematic error that is not affected by the rain gauge density. Specifically, when the

window  rainfall  station  density  is  between  0  and  10,  the  relative  deviation  is
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significantly negatively correlated with the rainfall station density. The spatial rainfall

accuracy of GWRMP is better than that of IDW. When the window rainfall station

density is greater than 11, the trend of decreasing relative deviation is not significant

(the  average  error  is  20 mm).  The GWRMP spatial  rainfall  accuracy is  relatively

consistent with IDW.

To summarize, the GWRMP fused precipitation can accurately reflect the spatial

precipitation  information  in  the  Taihu  Lake  basin  with  better  accuracy  than  the

commonly used IDW rainfall.

[Insert Figure 11]

4 CONCLUSIONS

We selected the long-term sequence of high temporal and spatial accuracy multi-

source merged rainfall CHIRPS and MSWEP v2.1. It takes the actual precipitation

measured  by  the  rain  gauge  in  the  Taihu  basin  as  the  benchmark  for  accuracy

assessment. Evaluation of daily precipitation detection accuracy on time series and

rain  intensity  for  two  types  of  precipitation  data.  In  this  way,  the  daily  spatial

precipitation data were select to best characterize the daily scale spatial precipitation

data in the Taihu Lake basin. Based on the GWR model, we use the precipitation

information from the high-density rain gauge and the screened fused precipitation for

calibration and revision. Comprehensive integration of GWRMP merged spatial daily

precipitation data in the Taihu Lake basin. We conducted the accuracy evaluation of

the  spatially  integrated  precipitation  data  in  the  Taihu  Lake  basin,  and  the  main

conclusions are as follows:

(1) Both CHIRPS and MSWEP have the advantages of long time series and high

spatial and temporal resolution, while MSWEP has the problem of underestimating

precipitation  due  to  systematic  errors.  However,  in  terms  of  daily  precipitation

characterization ability, the quantitative assessment and classification recognition of
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daily precipitation events were significantly better than CHIRPS in the Taihu basin.

CHIRPS was more suitable for drought monitoring because of its ability to capture

rainless  days.  MSWEP has  high  precipitation  capture  ability,  so  it  was  useful  for

precipitation accuracy assessment in wet areas but was not preferable for extreme

precipitation analysis.

(2)  GWRMP  was  based  on  the  MSWEP  spatial  precipitation  distribution,  with

accuracy  calibration  by  used  rainfall  station  precipitation.  It  has  compensated  the

problem  of  underestimation  of  precipitation  by  MSWEP.GWRMP  provides

continuous  spatial  precipitation  distribution  information  of  the  watershed  with  a

precipitation accuracy guarantee. Compared with IDW, which relies too much on the

distribution of rainfall stations, GWRMP raster precipitation has a strong ability to

characterize the spatial information in low-density rainfall station distribution areas.

(3)  MSWEP has  limited  ability  to  characterize  intense  precipitation  information,

especially there was a significant underestimation of the frequency of precipitation of

medium rainfall intensity and above. IDW has a weak ability for each precipitation

intensity event in low-density areas. GWRMP has improved precipitation accuracy for

each precipitation level  after  fusing ground observed rainfall  information,  and the

precipitation  accuracy  increases  significantly  with  the  increase  of  precipitation

amount. Compared with MSWEP and IDW, GWRMP was more suitable for intense

precipitation monitoring and storm flood analysis in the Taihu Lake basin.
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 APPENDICES

(1)  Calculation  formula  for  the  time  series  quantitative  accuracy  index  is  as

follows:
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                       (1)

                         (2)

                                 (3)

                    (4)

                                  (5)

                                            (6)

                         (7)

where  Si  and Gi are  fusion  precipitation  (MSWEP,  GWRMP)  and  surface

reference (rainfall station, IDW) daily precipitation, respectively; Sand G are the daily

average values of fusion precipitation and surface reference precipitation; n = 5814,

the total number of days from May to September, 1979 to 2016.

(2) Calculation formula of time series classification accuracy index is as follows:
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                              (8)

               (9)

where  n11 is  the frequency of  daily  precipitation events  detected  by both the

reference precipitation data and the fusion precipitation data;  n01 is the frequency of

daily precipitation events detected by the reference precipitation data in which the

fusion precipitation data are not detected; n10 is the frequency of events detected by

the fusion precipitation data, not detected by the reference precipitation data; and n00

is the frequency at which both baseline precipitation data and fusion precipitation data

are detected as non-precipitation events.

           (10)

where Si, and Gi represent the daily precipitation of the benchmark data and the

daily precipitation of the fusion, respectively, and Pi is the daily precipitation event

threshold. This study uses 0.1 mm as the threshold for rain.
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