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Abstract

Predicting the fate of a microbial population (i.e., growth, gene expression…) remains a challenge,

especially when this population is exposed to very dynamic environmental conditions, such as those

encountered during continuous cultivation.  Indeed, the dynamic nature of  continuous cultivation

process  implies  the  potential  deviation  of  the  microbial  population  involving  genotypic  and

phenotypic diversification. This work has been focused on the induction of the arabinose operon in

Escherichia coli  as a model system. As a preliminary step, the GFP level triggered by an arabinose-

inducible ParaBAD promoter has been tracked by flow cytometry in chemostat with glucose-arabinose

co-feeding. For a large range of glucose-arabinose co-feeding, the simultaneous occurrence of GFP

positive  and  negative  subpopulation was  observed.  In  a  second set  of  experiments,  continuous

cultivation was performed by adding either glucose or arabinose, based on the ability of individual

cells for switching from low GFP to high GFP states, according to a technology called segregostat. In

segregostat  mode  of  cultivation,  on-line  flow  cytometry  analysis  was  used  for  adjusting  the

arabinose/glucose  transitions  based  on  the  phenotypic  switching  capabilities  of  the  microbial

population. This strategy allowed finding an appropriate arabinose pulsing frequency, leading to a

prolonged maintenance of the induction level with limited impact on phenotypic diversity for more

than 60 generations. This result suggests that constraining individual cells into a given phenotypic

trajectory is maybe not the best strategy for directing cell population. Instead, allowing individual

cells switching around a predefined threshold seems to be a robust strategy leading to oscillating, but

predictable, cell population behavior.  

Keywords :  Segregostat,  Single  cell,  Flow cytometry,  Phenotypic  switching,  Biological  oscillation,

Biological noise 
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Introduction

Due  to  the  inherent  intracellular  biological  noise  and  under  specific  diversification  pressures,

microbial  cells  within  the same population tend to split  into  subpopulations exhibiting different

metabolic  features  [1][2][3].  This  cell-to-cell  variability  in  metabolic  activities  has  long  been

recognized  as  an  adverse  effect  for  bioprocessing  [4].  In  general,  it  is  assumed  that  a  highly

homogeneous  microbial  population  leads  to  more  tractable,  robust  and  predictable  population

behaviour  [5][6]. However, in nature microbial cells have evolved to constantly adapt to different

diversification  pressures  and  phenotypic  plasticity  is  known  to  improve  cellular  decision-making

processes, resulting in most of the cases in a fitness gain for the whole population [7]. Adaptation to

carbon limitation [8] and switching to an alternative carbon source [9][10] have been found to be key

drivers of microbial phenotypic diversification. Optimal exploitation of the functionalities offered by

this  diversification process  by  microbial  populations typically  led  to  improved  fitness  in  front  of

environmental perturbations  [11], notably through mechanisms such as bet-hedging  [12][13]. Real

occurrence  of  bet-hedging  in  cell  population  is  still  a  debate,  but  such  phenomenon  has  been

observed to occur from relevant gene circuits driving e.g., the switch to alternative carbon sources in

bacteria [10][12] or the starvation response in yeast [14][15]. Bet-hedging relies on the simultaneous

occurrence of subpopulations of cells pre-adapted to diverse environmental conditions, leading to an

anticipative  adaptation to unexpected environmental  transition  [16].  It  has  been mathematically

demonstrated  that  this  strategy  is  particularly  beneficial  in  fluctuating  environments  with  given

fluctuation frequencies and amplitudes  [17]. More specifically, high phenotypic diversity has been

found to lead to a gain in fitness if the rate of phenotypic switching is equal or lower than the rate of

environmental transitions. Phenotypic switching dynamics are complex and involve several layers of

regulation, each at specific time-scales, i.e. transcription or translation, noise propagation through

the gene regulatory network (GRN)  [18] and possible feedback effects exerted by the cell division

process,  resulting  in  the  dilution  over  the  intracellular  molecular  species  [19].  These  switching

mechanisms are then dependent on the specifics of the biological system and its culturing processing
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conditions, therefore they must be explored and analyzed based on single cell data. In this work ,

population  stability  in  a  continuous  cultivation  was  controlled  via  population  heterogeneity

measurements coupled with tailored carbon source feeding strategies. In this context, the induction

of  the  arabinose  operon  in  Escherichia  coli following  glucose  scarcity  and  switch  to  arabinose

utilization was used as a tunable model system. The strategy relying on the use of environmental

perturbations  at  given  frequencies  and  amplitudes  for  stabilizing  and  directing  microbial

diversification  processes  was  explored  through  an  experimental  device  previously  set-up  and

published, i.e. the segregostat [20]. The segregostat is a continuous cultivation device connected to

on-line  flow  cytometry  for  tracking  phenotypic  diversification  processes.  More  importantly,  the

device is able to automatically induce environmental transitions based on the phenotypic switching

ability of the population. However, the idea developed in this work is to allow cells freely switching

around  a  predefined  fluorescence  threshold,  instead  of  constraining  cells  into  a  predefined

fluorescence time course as shown in previous work aiming at controlling gene expression in cell

population  [21][22][23].  In this work, this device was used to assess whether stochastic switching

could  be  applied  for  stabilizing  microbial  populations  under  continuous  cultivation.  Surprisingly,

when setting this switching rate for maximizing phenotypic diversification dynamics, the segregostat

led  to  a  more  predictable  induction  profile  of  the  arabinose-inducible  promoter  (ParaBAD),  which

remained stable over more than 60 cell generations. In comparison to chemostat cultivation, where

subpopulations of cells with different GFP content was observed, the segregostat led to a uniform

population of cells smoothly transitioning between the uninduced (low GFP) and induced (high GFP)

states. 
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Material and Methods

Strains and media

E. coli K12 W3110 wildtype was transformed with pBbB8k (4480 bp) plasmid with the ParaBAD::GFP ,

which is an arabinose inducible promoter system. This plasmid belongs to a library of expression

vectors compatible with the BglBrick standard  [24]. Pre-cultures and cultures were performed on

defined  mineral  salt  medium  containing  (in  g.L−1):  K2HPO4 14.6,  NaH2PO4.2H2O  3.6;  Na2SO4 2;

(NH4)2SO4 2.47, NH4Cl 0.5, (NH4)2‐H‐citrate 1, glucose 5, thiamine 0.01. Thiamine was sterilized by

filtration (0.2 μm). The medium was supplemented with 3 ml l−1 of trace element solution, 3 ml l−1 of

a FeCl3.6H2O solution (16.7 g.L−1), 3 ml l−1 of an EDTA solution (20.1 g l−1) and 2 ml.L−1 of a MgSO4

solution (120 g.L−1). The trace element solution contained (in g.L−1): CaCl2.H2O 0.74, ZnSO4.7H2O 0.18,

MnSO4.H2O 0.1, CuSO4.5H2O 0.1, CoSO4.7H2O 0.21.  Kanamycin (50  μg/mL) was used as a selective

marker.

Chemostat cultivations

Chemostat cultures were performed in a 2MAG© block systems (2mag AG, Munich, Germany). The

bioreactor  system was  equipped with  positions  for  eight  fermentation vessels  with  16  mL total

volume and working volume of 10 mL. The bioreactor block was equipped with magnetic inductive

drives  with  two  independent  heat  exchangers  integrated  into  the  bioreactor  block,  one  for

temperature control for the reaction broth and the second to control the headspace temperature

and prevent evaporation. The system was also equipped with fluorometric sensor spots for dissolved

oxygen (DO) positioned at  the bottom of  each reactor  (minireaktor  HTBD,  Presens,  Regensburg,

Germany).  Each reactor  was equipped with  a  magnetic S-impeller  with two permanent magnets

(Sm2Co17, IBS magnet, Berlin Germany). In each chemostat, fresh medium was pumped into the

culturing chamber at a constant rate, while culture effluent exits at an equal rate though the inlet

and  outlet  tubes  with  an  inner  diameter  of  0.8  mm  (Marprene  tubing;  Watson-Marlow,

Rommerskirchen, Germany). Overnight pre-cultures w performed in 1L baffled flasks containing 100
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ml of culture medium and stirred with 200 rpm at 37°C. Fermenter inoculation was adjusted to 0.5

OD600 for the initial batch phase. The temperature was maintained at 37°C under continuous stirring

rate of 2600 rpm. The DO signal was used as an indicator for switching to the continuous operation

modes (a rapid increase of the DO signals after depletion of glucose in the initial batch medium,

observed  typically  after  3–5  h).  The  medium  was  continuously  fed  with  the  complete  minimal

medium containing glucose and arabinose at different ratios at a dilution rate of 0.5 h−1.  Off-line

samples were taken from the reactors each 5-10 h and the analysis of the GFP expression levels was

performed with a BD Accuri C6 (BD Biosciences, CA, USA) based on FL1-A channel (excitation 488 nm,

emission 533 nm).

Segregostat cultivations 

Cultures  in  segregostat  mode  were  performed  in  lab‐scale  stirred  bioreactor  (Biostat  B‐Twin,

Sartorius) with 1 L working volume. The batch phase was started at an OD 600 value of 0.5. The pH was

maintained at  7.0 by automatic addition of  ammonia solution 25%(w/v)  or phosphoric  acid 25%

(w/v). The temperature was maintained at 37°C under a continuous stirring rate of 800 rpm and an

aeration rate of  1 vvm. The DO signal  was used as an indicator for  switching to the continuous

operation modes (a rapid increase of the DO signals after depletion of glucose in the initial batch

medium,  observed  typically  after  3–5  h).  The  feeding  medium,  containing  5  g/L  glucose,  was

continuously fed with a dilution rate of 0.5 h−1. According to the sequences controlled by the online

FC software, pulse of arabinose was injected in order to quickly increase (approx. 30 seconds) the

global arabinose concentration to 0.5 g/L  [20]. On-line sampling was performed every 12 minutes

and processed according to the dilution sequence set through the following series of steps. First, the

sample  is  automatically  transferred  to  C6  FC  (BD  Accuri  C6,  BD  Biosciences)  and  analyzed  at  a

medium flow rate (33 μl min¯¹). All the data related to the different parameters (mean, median, CV)

are displayed in real-time during the cultivation. Then a tailor‐made feedback control loop MATLAB

script based on the FC data regulated the actuator profile for the arabinose addition. Within this
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script, FC events were gated based on forward scatter (FSC) to distinguish to single cells and clumps.

Then GFP positive events were gated based on a fluorescence threshold value of 1000 (arbitrary

units, FL1-A; excitation 488 nm, emission 533 nm) for the first segregostat (considered as a loose

control  policy)  and  with  a  threshold  fluorescence  value  of  10000  for  the  second  segregostat

(considered as a tight control policy). Control policy was set for actuator activation when the fraction

of GFP positive cells was measured to be below 50%. Actuator activation then exerted arabinose

pulsing by the use of a digital control system comprising a peristaltic pump (Watson Marlow, 101

UR). Each segregostat experiment were carried out in duplicate. Data were exported as .fcs files and

processed by a custom Python script  (see next sections for  a  description of  the data processing

steps).

Online flow cytometry (FC) analyses

The online flow cytometer platform comprises three modules and can be operated in segregostat

mode: (i) a conventional culture device, (ii) a physical interface for sampling and dilution containing

peristaltic pumps and mixing chamber, and (iii)  a detection device, in this work an Accuri C6 flow

cytometer  (BD  Accuri,  San  Jose  CA,  USA)  was  used.  Briefly,  sample  processing  comprises  the

following steps: (i) sample acquisition, (ii) online FC analysis, (iii) dilution threshold and (iv) feedback

control loop. The sample is entered and removed from the mixing chamber based on silicone tubing

(internal  diameter:  0.5  mm;  external  diameter:  1.6  mm,  VWR,  Belgium)  and  peristaltic  pumps

(400FD/A1 OEM‐pump ~13 rpm and 290 rpm, Watson Marlow). Before and after each experiment,

all the connection parts (tubing, pumps and mixed chamber) were cleaned with ethanol and rinsed

with filtered PBS as described in a previous protocol [25].

On-line FC data processing and accessibility

Segregostat experiment involves the generation of a huge amount of FC data. A typical run of 100

hours led to 500 FC analyses, with a total of approximately 107 cells processed. Before processing,

6



these independent .fcs files were compacted in a dataframe (.pkl file extension) based on the Pandas

package (https://pandas.pydata.org/) from Python. The codes for generating the .pkl files and the

figures  are  available  on  a  GitLab  repository

https://gitlab.uliege.be/F.Delvigne/paper_segregostat_arabinose.  The  code  with  name

“From_fcs_to_pkl_and_statistics.py” can be used for generating most of the figures presented in this

paper (i.e., figure 3 and 5).  The code with name “Plots_from_pkl.py” can be used for generating the

FC dotplots from a .pkl file and for each time points. These dotplots were further assembled into a

single .avi movie file based on the ImageJ software [26] shown as Supplemental material (Movies S1

and S2).  Raw .fcs data were deposited on FlowRepository and can be accessed by following the links

below:

- Segregostat with low fluorescence threshold (1000 FU, loose control policy), replicate 1: 
https://flowrepository.org/id/RvFrEWS971a7Qf5j898Q69CxIFLXBEdUOHTfFHKnPjUH1WLbeV
1cIIFzehipclaB 

- Segregostat with low fluorescence threshold (1000 FU, loose control policy), replicate 2: 
https://flowrepository.org/id/RvFrxXrXzOyPLkV3VC511Hjd1oIQSKrmNA3YqtRA4SQfoAyCHW
u0Uc1JAPclRU4l

- Segregostat with high fluorescence threshold (10000 FU, tight control policy), replicate 1: 
https://flowrepository.org/id/RvFr3nYp6dmQ67MifFodTFGBta817Q9a6J9AY8nYnyNqaBhJG
Mx7bQY2lReJCzFo

- Segregostat with high fluorescence threshold (10000 FU, tight control policy), replicate 2: 
https://flowrepository.org/id/RvFrcBz8IGuHc49bVpnhZRbY19JqqZfENSWPJKONfRfCyH74O2Z
sqKMSBaAinlkc

Poisson process simulation

Simulations were performed in order to estimate the potential Poisson behavior of cell  switching

between the high and low state in segregostat. Poisson process can be simulated by considering that

the inter-event time (i.e., in our case the time between two cell transitions from the low to the high

state or from the high to the low state). Based on this, an event occurs at a time determined by -

log(rand)/λ, with λ being the switching rate (h-1).
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Transcripts isolation and quantification

Samples were taken at different times during fermentation. Samples were immediately frozen and

kept at − 80°C. The total RNA was extracted using the  NucleoSpin RNA Mini kit ( Macherey-Nagel,

Germany)  following  the  manufacturer's  protocols.  qPCRs  measurements  were  conducted  in  an

Applied Biosystems Step One Real-Time PCR system (Life Technologies, Grand Island, NY, USA). The

thermal cycling protocol was performed as follows: initial denaturation for 15 min at 95°C, 40 cycles

of 95°C for 10 sec, at 65°C for 15 sec, and at 72°C for 20 sec, and a final dissociation cycle at 95°C for

30 sec, 65°C. qPCR data was normalized to the housing keeping gene ihfB, and the sample taken from

the end of batch phase was used as a reference [27]. The 2(-Delta Delta C(T)) method was used to

process the data and compute the relative changes in gene expression [28].

Results

Chemostat with glucose/arabinose co-feeding leads to the formation of subpopulations of cells

exhibiting different GFP content

In a first set of experiments, classical chemostat cultivation has been run at a dilution rate of 0.5 h -1.

Combinations of glucose and arabinose were considered as co-feeding strategy for activating the

arabinose operon during the continuous cultivation phase, and the population heterogeneity was

determined based on the signal provided by the GFP reporter system expressed by the means of the

ParaBAD promoter  (Figure  1A).  Flow cytometry  analysis  revealed  that  the co-feeding strategy  with

arabinose and glucose led to a heterogeneous GFP expression profile, traduced by the appearance of

two subpopulation of cells (Figure 1B). Indeed, the simultaneous presence of GFP negative and GFP

positive subpopulations was observed right after the induction upon activation of the co-feeding

regime. This “all-or-none” response has previously been observed under similar operating conditions

with  arabinose/glucose  [29] and  lactose/glucose  co-feeding  [30].  In  our  case,  this  behavior  was

observed for different arabinose/glucose ratios (Figure 1C and 1D). 

Design of a control strategy based on cell phenotypic switching dynamics
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Based on the data gathered from chemostat with glucose-arabinose co-feeding, it  is clear that a

classical  control  procedure  based  on  the  definition  of  a  setpoint  (i.e.,  the  quantity  of  GFP

accumulated in cells in our case) and the use of a Proportional-Integral-Differential (PID) controller is

not  suitable  (Figure  2A).  Indeed,  considering  the  diversity  of  the  GFP  values  observed  during

continuous culture, the proper identification of a given setpoint is impossible. The picture is even

more complicated if the simultaneous occurrence of GFP negative and GFP positive subpopulations is

considered. Previous researches have pointed out that PID control is not appropriate for controlling

synthetic gene circuits within cell  population  [31].  As an example, Lugagne and co-workers have

demonstrated that bacterial population engineered with a synthetic gene circuit can be stabilized

based on simple  ON/OFF control  strategy  involving  the periodic  addition of  inducers  [32].  Since

biological  noise  is  impairing  the  efficient  utilization  of  a  classical  PID  strategy  for  directing  cell

population, a new approach is then needed. Whereas sophisticated control procedure relying on

model-predictive  approaches  have  already been  investigated  [33][23],  we decided  to  consider  a

simple  control  procedure  based  on  the  intrinsic  switching  properties  of  microbial  cells.  Indeed,

instead of constraining cell fluorescence trajectories around a given setpoint, we allowed them to

freely switch around a predefined value. The critical step remains the appropriate identification of

the fluorescence threshold fluorescence value to be used for defining the cell switching process. As

stated before, two subpopulations of cells, differing in global GFP content, can be observed i.e., GFP

negative (“low” state) and GFP positive (“high” state), and we focused on this specific population

structure for defining the switching thresholds (Figure 2A). A cell-machine interface relying on the

on-line  FC monitoring  of  the ParaBAD::GFP  reporter  was designed for  automatically  triggering  the

addition  of  arabinose  pulses  during  continuous  cultivation  based  on  the  phenotypic  switching

capabilities of microbial cells  [20]. It has been   shown previously that microbial cells are able to

switch  stochastically  from  one  phenotypic  state  to  another  in  response  to  environmental

perturbations [17]. In the present work, this specific behavioral feature was exploited for optimizing

the GFP expression profiles for the whole population. The cell-machine interface builds up on the
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previously described segregostat concept. This system, relying on the use of feedback control based

on on-line  FC  measurement,  has  been  previously  used  for  minimizing  phenotypic  heterogeneity

related to the membrane permeabilization process during E. coli continuous cultivation [20][34]. In

its current version, the segregostat comprises a continuous cultivation device connected to an on-

line flow cytometry device allowing sampling the state of the population at regular time intervals.

This device then allows optimizing the glucose-arabinose switches based on the actual phenotypic

switching  dynamics  of  the  microbial  population.  According  to  the  bimodal  behavior  of  the  cell

population observed during chemostat cultivation (Figure 2A), two different thresholds have been

considered (Figure 2B and 2C).

Automated  addition  of  arabinose  pulses  based  on  the  phenotypic  switching  capability  of  cell

population leads to oscillating but stable gene expression profiles

In the first segregostat experiments, low fluorescence threshold (1000 RFU), corresponding to the

upper limit of the low state (Figure 2B) was chosen. When at least 50% of the population has crossed

this  threshold,  then an  environmental  fluctuation,  here  represented  by  an  arabinose  pulse,  was

triggered.  According  to  this  control  policy,  it  was  possible  to  maintain  the  whole  population

fluctuating between the high and the low state (Figure 3). Additionally, no bimodal GFP distribution

was observed, the whole population following the glucose to arabinose transitions by dynamically

adapting gene expression (Supplemental Material,  Movie S1).  Additionally, gene expression levels

were monitored the cultivation by RT-qPCR, and residual arabinose and glucose was determined by

HPLC (Supplemental Material, Figure S1). In a second step, the transition rate of cells between the

low and the high state have been analyzed. It was assumed that cell stochastic switching could be

modelled by a simple Poisson process. The transitions from the low to the high state (Figure 4A) and

from the high to the low state (Figure 4B) were then modelled and compared to the experimental

data. A transition rate of 2.8 h-1 was determined for the switch to the low to the high state, and the

process was nicely fitted by a simple Poisson process (Figure 4A). On the other hand, a much slower
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transition rate was determined for the switch from the high to the low state. In this case, two phases

can be observed at the level of the GFP decay plot, each of them being approximated by two Poisson

processes occurring at different rate i.e., 0.02 h -1 and 0.3 h-1 respectively. These results suggests that

several subpopulations of cells were involved in the decay of GFP fluorescence. Since the GFP variant

used in this work was quite stable, dilution of GFP occurred mainly by cell division. Then, a cell-to-cell

difference  in  growth  rate  could  explain  this  wider  heterogeneity  at  the  level  of  the  switching

dynamics during the relaxation to the low state. Such differences have been previously reported for

cells involved in diauxic shift [12][9]. It is then interesting to wonder if the segregostat could be used

for further improving the GFP expression level in presence of this extra layer of biological noise. A

more constraining control procedure has been considered accordingly and will be described in the

next section.

Forcing the entry into the high state leads to harmonic oscillations at the level of the GFP content

For optimizing gene expression, the relaxation of cells into the low state must be prevented. Then, it

would be interesting to know if it is possible to maintain the whole cell population into the high state

under  continuous  cultivation.  In  order  to  optimize  GFP  accumulation,  a  high  threshold  was

considered for running a second segregostat based on a more constraining control policy (Figure 2C).

This threshold was set based on the upper limit of the high state (10000 RFU) and is then exerting

more pressure on the cells by comparison with the experiment carried out with a loose control policy

(i.e.,  the  first  segregostat  with  a  fluorescence  threshold  set  at  1000  RFU).  Based  on  this  new

threshold, all cells were kept into the high state during the whole cultivation, with a GFP copies/cell

oscillating around a higher value by comparison to what was obtained based on the loose control

policy (Figure 5). Again, it is important to point out that no bimodal GFP distribution was observed

during  continuous  cultivation  under  segregostat  regime  (Supplemental  Material,  Movie  S2).

Furthermore, these results pointed out that it is also possible to the entire cell population into the

high state over long periods of time (more than 60 generations). Enhancing the switching threshold
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led  to  a  transition  from  relaxed  GFP  oscillations  to  harmonic  oscillations.  Such  effect  was  also

observed  when optimizing  the  dynamics  of  a  synthetic  oscillatory  circuits  [35].  Additionally,  the

amplitude of the oscillations was decreased and the frequency was increased, further improving the

absolute gene expression of  the population.   Another important feature to be considered is  the

stability  of  the  population.  In  order  to  analyze  the robustness  of  the  GFP  oscillations  obtained,

correlation between the GFP level of expression (Figure 6B) and the resulting changes in cell density

(Figure 6A).  The resulting phase plane analysis  showed that robust cycles were achieved after a

couple of hours of cultivation and that a limit cycle was reached (Figure 6C). Further experiments

were also performed in order to explore potential sources for these biological oscillations. Basically,

biological  oscillations  can  be  generated  from  a  system  exhibiting  two  features  i.e.,  a  negative

feedback and a delay [36][37]. In our case, negative feedback is provided by two regulatory elements

in the GRN responsible for the regulation of the arabinose operon i.e., the transcriptional factors CRP

and AraC. For the optimal induction of the arabinose operon the respective factors must bind to

cAMP (signal for glucose limiting conditions) and arabinose (signal for the presence of arabinose). In

segregostat,  glucose  is  always  maintained  at  a  very  low  concentration  and  arabinose  is  pulsed

according to the state of the population, generating a sequential switching of cells between the low

and the high state. Accordingly, the expression level of a set of key genes were monitored during

segregostat cultivation, with samples taken at the either during or after the arabinose pulsing phase

(Figure 7). We can see that among the arabinose operon, the araC gene expression remains at the

same level, whereas the araB genes, coding for one of the enzymes implied in arabinose utilization,

fluctuates according to the arabinose pulsing. These results suggest that the genetic oscillations are

due to the arabinose availability. However, the RT-qPCR data pointed out thar  crp gene fluctuates

also a lot, adding another layer of complexity to the induction mechanisms linked to the arabinose

operon. The other genes tracked i.e., acs (implied in acetate re-utilization), ptsG (coding for the main

glucose transporter) and pta (also implied in acetate re-utilization, showed no significant fluctuations

following glucose-arabinose transitions. 
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Discussion 

Only a few studies are actually dealing with the response of cell population to repetitive stimuli and

new insights are  needed at  this  level.  The main issue is  that  the whole spectrum of  amplitude-

frequency related to environmental perturbation is too broad to be screened in a time efficient way.

One of the remarkable features of the segregostat is that the environmental perturbation is triggered

by the capacity of the microbial population to split into different phenotypic states, leading to the

systematic determination of the optimal rate of environmental perturbations to be tested among the

whole spectrum of amplitude/frequency. The use of the segregostat platform shed new light about

the impact of phenotypic heterogeneity on the dynamics and stability of microbial populations. In

comparison  to  bimodality  in  GFP distribution observed in  chemostat  with  glucose/arabinose co-

feeding, cultivation performed in the segregostat mode led to an unimodal GFP distribution with the

microbial population smoothly transiting between the high (i.e., high GFP content driven by ParaBAD

promoter) and low induction states (See movies S1 and S2 supplied in Supplemental Material for an

animated evolution of GFP distribution with time). This led to a fully predictable oscillating pattern

for  GFP  expression  that  was  stable  during  the  whole  continuous  cultivation comprising  several

generations. Two specific features need to be further discussed, the first one being about the way

that population control is achieved and the second is about the biological oscillations observed under

such control procedure. About the first feature, it is important to recall that segregostat operates by

letting individual cells among the population to freely switch around a predetermined fluorescence

threshold.  Microbial  cell  among  a  given  population  naturally  switch  for  adapting  to  changing

environmental  conditions and stresses.  This  is  particularly  true for  microbial  population growing

under continuous cultivation conditions, where stress pressure is high and is known to force cells into

different  phenotypic  trajectories.  Accordingly,  it  is  utopic  to  think  that  cell  trajectories  in  gene

expression can be precisely constrained [22]. Instead, it has been proposed in this work to give the
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opportunity to cell for switching around given gene expression threshold. This remarkable feature is

quite original by comparison to the well adopted predictive model control loops generally used for

directing cell populations [21][23][33]. This control strategy led to genetic oscillations that was found

to be particularly robust. The second feature is about these resulting biological oscillations. It is quite

surprising  to  obtain  such oscillations,  since biological  oscillators  are  recognized for  their  specific

architecture  i.e.,  either  gene  circuits  containing  three  mutually  repressing  genes  (known as  the

repressilator)[35][38], or two genes involving the presence of a negative and a positive feedback loop

[39].  However,  a  previous study reported that simplified circuit  design could also lead to robust

oscillations if stimulated at the right frequency of inducer inputs  [37]. In our case, the arabinose

operon is under the control of a gene circuit exhibiting a specific feedforward loop architecture [36]

[40].  Being cultivated under glucose limiting conditions,  cell  population is  readily  activated upon

addition of the inducer arabinose. This feature has been confirmed by approximating the segregostat

cycle involving the switch from the high to the low state by a simple Poisson process (Figure 4A).

Biological  oscillations are then generated by the negative regulation arising from the progressive

disappearance of the arabinose from the cultivation medium. This disappearance occurs with a delay

in time i.e., in our case the time needed by the cells to consume the arabinose, further strengthening

the oscillatory behavior of the system [36][37]. In our case, phase resetting (switching from the high

the low state) has indeed been shown to be dependent on cell  division (Figure 4B).  It  has been

previously demonstrated analytically that for a population of biological oscillator under entrainment,

phase resetting can be achieved through cell division [41]. In our case, it is indeed suspected that cell

division is implied into the relaxation from the high to the low state, with at least two subpopulation

of cells exhibiting different growth rate. 

Besides its utilization as an effective population control device, segregostat data can also be used for

understanding the dynamics of key biological processes involved in phenotypic switching dynamics

and microbial population stability. Biological noise is known to play a significant role in the process of

adaptation  to  environmental  perturbations  [17][18][42],  such  as  the  switch  from  glucose  to

14



arabinose considered in this study. As stated in the introduction section, biological noise is quite well

characterized for a single gene [43], but the picture becomes more complex in the case of complex

GRN . In this case, it is particularly difficult to predict how noise propagate from a gene to another in

the regulatory network  [44].  The arabinose operon is  under the control  of  a  feedforward motif,

allowing  the  cell  to  tightly  regulate  the  expression  of  the  genes  needed for  efficient  arabinose

utilization [45]. This tight regulation mechanism has been selected in order to mitigate the metabolic

burden associated with the expression of the araBADEFGH genes by optimally inducing this operon

when glucose is absent and arabinose becomes available in the environment  [36]. It is also known

that,  under specific environmental conditions,  this  motif can lead to bimodal behavior with cells

inducing the operon whereas others in the same population remains at a low state. This strategy

could be interpreted as a bet-hedging mechanisms where microbial population effectively exploit

noise in order to optimize its fitness in uncertain environmental conditions [16]. Bimodality in GFP

expression has been observed in our case during chemostat experiment with glucose-arabinose co-

feeding. Interestingly, this bimodal behavior can be avoided when pulsing glucose and arabinose at a

particular frequency, which is in accordance with the phenotypic switching ability of cells. In this case

indeed, only a unimodal GFP expressing population was observed. However, this  population also

exhibited noise but with a mean GFP expression level oscillating at a frequency corresponding to the

environmental fluctuations. This specific mode of diversification, called dynamic heterogeneity, has

been previously predicted based on mathematical modelling by Thattai and van Oudenaarden [17].

The  results  presented  in  this  work  point  out  that  cell  physiology  in  segregostat  is  significantly

different from the one that is observed in chemostat, involving a fundamentally different modes of

diversification dynamics. Further work is needed for characterizing this physiology and the underlying

mechanisms behind dynamic heterogeneity. 
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Conclusion

The segregostat can be used for automatically adjusting the rate of environmental perturbation to

the  intrinsic  dynamics  of  the  GRN  under  consideration  without  any  prior  knowledge  about  the

architecture and dynamical feature of this GRN. This specific feature could be exploited in the future

for ensuring the stability of microbial population in continuous cultivation, or to make the acquisition

of  fundamental  knowledge about the role  of  biological  noise in microbial  response strategies to

environmental fluctuations. The former perspective is in frame with a developing field of research

i.e.,  cybergenetics.  Cybergenetics  uses  computer  interface  for  controlling  in  real-time  biological

processes [46][47]. This approach has been demonstrated to be very useful for controlling a variety

of GRNs, including the antithetic motif [21][48] and the toggle switch [32].  
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List of figures

Figure 1: A Sketch of the chemostat set-up used for the glucose-arabinose co-feeding experiments. B

Flow  cytometry  monitoring  (x-axis:  forward  scatter  signal;  y-axis:  green  fluorescence  signal

accounting  for  the  accumulation of  GFP  inside  cells)  of  a  chemostat  with  glucose-arabinose  co-

feeding (dilution rate  0.5  h-1;  ration glucose-arabinose 5:1).  C Evolution of  the GFP positive cell

fraction and D the mean GFP copies/cell 

Figure 2: A Design of a population control strategy based on cell phenotypic switching dynamics and

on  the  bimodal  GFP  distribution.  B  Adjustment  of  arabinose  pulsing  based  on  the  phenotypic

switching ability of cells. In this case, a low threshold has been selected (loose control procedure). C

Adjustment of glucose and arabinose pulsing based on the phenotypic switching ability of cells. In

this case a high threshold has been selected (tight control procedure). 

Figure 3: Population dynamics in function of the automated addition of glucose/arabinose pulses.

Mean  GFP  copies  per  cells  and  Fano  factor  (ratio  between  the  variance  and  the  mean of  GFP

distribution) have been computed based on the GFP positive fraction only. 

Figure 4: Analysis of the cell switching dynamics during segregostat experiment described in Figure 3.

A Comparison of the experimental switching data for the transition from the low to the high state

with a Poisson process. B Comparison of the experimental switching data for the relaxation from the

high to the low state with two Poisson processes. 

Figure 5: Population dynamics in function of the automated addition of arabinose pulses. Mean GFP

copies per cells and Fano factor (ratio between the variance and the mean of GFP distribution) have

been computed based on the GFP positive fraction only.
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Figure  6: Time course  of  A the  mean GFP copies/cell  and B the  cell  density  during  segregostat

experiment depicted in Figure 5. C phase plane analysis of the oscillations between cell density and

GFP content during segregostat experiment. Limit cycle have been highlighted in red.

Figure 7: Dynamics of the expression level of araC (), crp(▲), ptsG(), acs(), araB() and pta()

for the segregostat cultivation performed based on tight control procedure. Dashed lines correspond

to the arabinose pulsing phases. Results were expressed as the mean of three technical replicates.
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