References
Abbe, T. B. & Montgomery, D. R. 1996. Large woody debris jams, channel
hydraulics and habitat formation in large rivers. Regulated
Rivers, Research and Applications, 12, 201-221.
Acuna, V., Munoz, I., Giorgi, A., Omella, M., Sabater, F. & Sabater, S.
2005. Drought and postdrought recovery cycles in an intermittent
mediterranean stream: Structural and functional aspects. Journal
of the North American Benthological Society, 24, 919-933.
Aho, K. S., Hosen, J. D., Logozzo, L. A., Mcgillis, W. R. & Raymond, P.
A. 2021. Highest rates of gross primary productivity maintained despite
co2 depletion in a temperate river network. Limnology and
Oceanography Letters, 6, 200-206.
Alberts, J. M., Beaulieu, J. J. & Buffam, I. 2017. Watershed land use
and seasonal variation constrain the influence of riparian canopy cover
on stream ecosystem metabolism. Ecosystems, 20, 553-567.
Amador-Castro, F., González-López, M. E., Lopez-Gonzalez, G.,
Garcia-Gonzalez, A., Díaz-Torres, O., Carbajal-Espinosa, O. &
Gradilla-Hernández, M. S. 2024. Internet of things and citizen science
as alternative water quality monitoring approaches and the importance of
effective water quality communication. Journal of Environmental
Management, 352, 119959.
Appling, A. P., Read, J. S., Winslow, L. A., Arroita, M., Bernhardt, E.
S., Griffiths, N. A., Hall, R. O., Jr., Harvey, J. W., Heffernan, J. B.,
Stanley, E. H., Stets, E. G. & Yackulic, C. B. 2018. The metabolic
regimes of 356 rivers in the united states. Scientific Data, 5.
Arroita, M., Elosegi, A. & Hall Jr, R. O. 2019. Twenty years of daily
metabolism show riverine recovery following sewage abatement.Limnology and Oceanography, 64, S77-S92.
Aspray, K. L., Holden, J., Ledger, M. E., Mainstone, C. P. & Brown, L.
E. 2017. Organic sediment pulses impact rivers across multiple levels of
ecological organization. Ecohydrology, 10, e1855.
Ba-Alawi, A. H., Heo, S., Aamer, H., Chang, R., Woo, T., Kim, M. & Yoo,
C. 2023. Development of transparent high-frequency soft sensor of total
nitrogen and total phosphorus concentrations in rivers using stacked
convolutional auto-encoder and explainable ai. Journal of Water
Process Engineering, 53, 103661.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold, J. D. & Sabater, F. 2008. Biophysical controls
on organic carbon fluxes in fluvial networks. Nature Geoscience,1, 95-100.
Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L.
G., Hall Jr, R. O., Hotchkiss, E. R., Maavara, T., Pavelsky, T. M., Ran,
L., Raymond, P., Rosentreter, J. A. & Regnier, P. 2023. River ecosystem
metabolism and carbon biogeochemistry in a changing world.Nature, 613, 449-459.
Behrenfeld, M. J. & Falkowski, P. G. 1997. A consumer’s guide to
phytoplankton primary productivity models. Limnology and
Oceanography, 42, 1479-1491.
Bernal, S., Cohen, M. J., Ledesma, J. L. J., Kirk, L., Martí, E. &
Lupon, A. 2022. Stream metabolism sources a large fraction of carbon
dioxide to the atmosphere in two hydrologically contrasting headwater
streams. Limnology and Oceanography, 67, 2621-2634.
Bernhardt, E. S., Heffernan, J. B., Grimm, N. B., Stanley, E. H.,
Harvey, J. W., Arroita, M., Appling, A. P., Cohen, M. J., Mcdowell, W.
H., Hall, R. O., Jr., Read, J. S., Roberts, B. J., Stets, E. G. &
Yackulic, C. B. 2018. The metabolic regimes of flowing waters.Limnology and Oceanography, 63, S99-S118.
Bernhardt, E. S., Savoy, P., Vlah, M. J., Appling, A. P., Koenig, L. E.,
Hall, R. O., Jr., Arroita, M., Blaszczak, J. R., Carter, A. M., Cohen,
M., Harvey, J. W., Heffernan, J. B., Helton, A. M., Hosen, J. D., Kirk,
L., Mcdowell, W. H., Stanley, E. H., Yackulic, C. B. & Grimm, N. B.
2022. Light and flow regimes regulate the metabolism of rivers.Proceedings of the National Academy of Sciences of the United
States of America, 119.
Bieroza, M., Acharya, S., Benisch, J., Ter Borg, R. N., Hallberg, L.,
Negri, C., Pruitt, A., Pucher, M., Saavedra, F., Staniszewska, K., Van’t
Veen, S. G. M., Vincent, A., Winter, C., Basu, N. B., Jarvie, H. P. &
Kirchner, J. W. 2023. Advances in catchment science, hydrochemistry, and
aquatic ecology enabled by high-frequency water quality measurements.Environmental Science & Technology, 57, 4701-4719.
Blaen, P. J., Khamis, K., Lloyd, C. E. M., Bradley, C., Hannah, D. &
Krause, S. 2016. Real-time monitoring of nutrients and dissolved organic
matter in rivers: Capturing event dynamics, technological opportunities
and future directions. Science of the Total Environment,569, 647-660.
Bresnahan, P., Briggs, E., Davis, B., Rodriguez, A. R., Edwards, L.,
Peach, C., Renner, N., Helling, H. & Merrifield, M. 2023. A low-cost,
diy ultrasonic water level sensor for education, citizen science, and
research. Oceanography, 36, 51-58.
Butturini, A. & Fonollosa, J. 2022. Use of metal oxide semiconductor
sensors to measure methane in aquatic ecosystems in the presence of
cross-interfering compounds. Limnology and Oceanography-Methods,20, 710-720.
Cao, H., Xie, X., Shi, J., Jiang, G. & Wang, Y. 2022. Siamese
network-based transfer learning model to predict geogenic contaminated
groundwaters. Environmental Science & Technology, 56,11071-11079.
Carvalho, M. C. 2020. Portable open-source autosampler for shallow
waters. Hardwarex, 8.
Casillas-García, L. F., De Anda, J., Yebra-Montes, C., Shear, H.,
Díaz-Vázquez, D. & Gradilla-Hernández, M. S. 2021. Development of a
specific water quality index for the protection of aquatic life of a
highly polluted urban river. Ecological Indicators, 129,107899.
Chan, K., Schillereff, D. N., Baas, A. C. W., Chadwick, M. A., Main, B.,
Mulligan, M., O’shea, F. T., Pearce, R., Smith, T. E. L., Van
Soesbergen, A., Tebbs, E. & Thompson, J. 2021. Low-cost electronic
sensors for environmental research: Pitfalls and opportunities.Progress in Physical Geography-Earth and Environment,45, 305-338.
Charriau, A., Lissalde, S., Poulier, G., Mazzella, N., Buzier, R. &
Guibaud, G. 2016. Overview of the chemcatcher® for the passive sampling
of various pollutants in aquatic environments part a: Principles,
calibration, preparation and analysis of the sampler. Talanta,148, 556-571.
Chegoonian, A. M., Zolfaghari, K., Leavitt, P. R., Baulch, H. M. &
Duguay, C. R. 2022. Improvement of field fluorometry estimates of
chlorophyll a concentration in a cyanobacteria-rich eutrophic lake.Limnology and Oceanography-Methods, 20, 193-209.
Cole, J. J., Prairie, Y. T., Caraco, N. F., Mcdowell, W. H., Tranvik, L.
J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A.,
Middelburg, J. J. & Melack, J. 2007. Plumbing the global carbon cycle:
Integrating inland waters into the terrestrial carbon budget.Ecosystems, 10, 171-184.
Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G.
2017. Co2 time series patterns in contrasting headwater streams of north
america. Aquatic Sciences, 79, 473-486.
Cui, Y., Lai, B. & Tang, X. 2019. Microbial fuel cell-based biosensors.Biosensors, 9, 92.
Dean, J. F. & Battin, T. J. 2024. Future directions for river carbon
biogeochemistry observations. Nature Water, 2, 219-222.
Demars, B. O. L., Manson, J. R., Olafsson, J. S., Gislason, G. M.,
Gudmundsdottir, R., Woodward, G., Reiss, J., Pichler, D. E., Rasmussen,
J. J. & Friberg, N. 2011. Temperature and the metabolic balance of
streams. Freshwater Biology, 56, 1106-1121.
Demars, B. O. L., Thompson, J. & Manson, J. R. 2015. Stream metabolism
and the open diel oxygen method: Principles, practice, and perspectives.Limnology and Oceanography-Methods, 13, 356-374.
Díaz-Torres, O., Lugo-Melchor, O. Y., De Anda, J., Orozco-Nunnelly, D.
A., Gradilla-Hernández, M. S. & Senés-Guerrero, C. 2022. Characterizing
a subtropical hypereutrophic lake: From physicochemical variables to
shotgun metagenomic data. Frontiers in Microbiology, 13.
Dodds, W. K. & Cole, J. J. 2007. Expanding the concept of trophic state
in aquatic ecosystems: It’s not just the autotrophs. Aquatic
Sciences, 69, 427-439.
Dodds, W. K., Veach, A. M., Ruffing, C. M., Larson, D. M., Fischer, J.
L. & Costigan, K. H. 2013. Abiotic controls and temporal variability of
river metabolism: Multiyear analyses of mississippi and chattahoochee
river data. Freshwater Science, 32, 1073-1087.
Droujko, J., Kunz Jr, F. & Molnar, P. 2023. Otz-t: 3d-printed
open-source turbidity sensor with arduino shield for suspended sediment
monitoring. Hardwarex, 13.
Duc, N. T., Silverstein, S., Lundmark, L., Reyier, H., Crill, P. &
Bastviken, D. 2013. Automated flux chamber for investigating gas flux at
water–air interfaces. Environmental Science & Technology,47, 968-975.
Ferreira, V., Elosegi, A., D. Tiegs, S., Von Schiller, D. & Young, R.
2020. Organic matter decomposition and ecosystem metabolism as tools to
assess the functional integrity of streams and rivers-a systematic
review. Water, 12.
Fornai, F., Bartaloni, F., Ferri, G., Manzi, A., Ciuchi, F. & Laschi,
C. An autonomous water monitoring and sampling system for small-sized
asv operations. 2012 Oceans, 14-19 Oct. 2012 2012. 1-6.
Friedlingstein, P., O’sullivan, M., Jones, M. W., Andrew, R. M., Gregor,
L., Hauck, J., Le Quere, C., Luijkx, I. T., Olsen, A., Peters, G. P.,
Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G.,
Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora,
V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L.,
Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R.
A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G.,
Gruber, N., Gurses, O., Harris, I., Hefner, M., Houghton, R. A., Hurtt,
G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato,
E., Kennedy, D., Goldewijk, K. K., Knauer, J., Korsbakken, J. I.,
Landschutzer, P., Lefevre, N., Lindsay, K., Liu, J., Liu, Z., Marland,
G., Mayot, N., Mcgrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R.,
Nakaoka, S.-I., Niwa, Y., O’brien, K., Ono, T., Palmer, P. I., Pan, N.,
Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E.,
Rodenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Seferian, R.,
Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J.,
Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H.,
Tilbrook, B., Tsujino, H., Tubiello, F., Van Der Werf, G. R., Walker, A.
P., Wanninkhof, R., Whitehead, C., Wranne, A. W., Wright, R., et al.
2022. Global carbon budget 2022. Earth System Science Data,14, 4811-4900.
Galloway, J., Fox, A., Lewandowski, J. & Arnon, S. 2019. The effect of
unsteady streamflow and stream-groundwater interactions on oxygen
consumption in a sandy streambed. Scientific Reports, 9.
Gardner, J. R., Ensign, S. H., Houser, J. N. & Doyle, M. W. 2020. Light
exposure along particle flowpaths in large rivers. Limnology and
Oceanography, 65, 128-142.
Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E.
2015. A critical analysis of regulated river ecosystem responses to
managed environmental flows from reservoirs. Freshwater Biology,60, 410-425.
Grace, M. R., Giling, D. P., Hladyz, S., Caron, V., Thompson, R. M. &
Mac Nally, R. 2015. Fast processing of diel oxygen curves: Estimating
stream metabolism with base (bayesian single-station estimation).Limnology and Oceanography: Methods, 13, e10011.
Guerin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler,
P. & Delmas, R. 2006. Methane and carbon dioxide emissions from
tropical reservoirs: Significance of downstream rivers.Geophysical Research Letters, 33.
Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. 2013. Revisiting
odum (1956): A synthesis of aquatic ecosystem metabolism.Limnology and Oceanography, 58, 2089-2100.
Holtgrieve, G. W., Schindler, D. E. & Jankowski, K. 2016. Comment on
demars et al. 2015, ”stream metabolism and the open diel oxygen method:
Principles, practice, and perspectives”. Limnology and
Oceanography-Methods, 14, 110-113.
Hong, W. J., Shamsuddin, N., Abas, E., Apong, R. A., Masri, Z., Suhaimi,
H., Godeke, S. H. & Noh, M. N. A. 2021. Water quality monitoring with
arduino based sensors. Environments, 8.
Honious, S. a. S., Hale, R. L., Guilinger, J. J., Crosby, B. T. &
Baxter, C. V. 2022. Turbidity structures the controls of ecosystem
metabolism and associated metabolic process domains along a 75-km
segment of a semiarid stream. Ecosystems, 25, 422-440.
Hosen, J. D., Aho, K. S., Appling, A. P., Creech, E. C., Fair, J. H.,
Hall, R. O., Jr., Kyzivat, E. D., Lowenthal, R. S., Matt, S., Morrison,
J., Saiers, J. E., Shanley, J. B., Weber, L. C., Yoon, B. & Raymond, P.
A. 2019. Enhancement of primary production during drought in a temperate
watershed is greater in larger rivers than headwater streams.Limnology and Oceanography, 64, 1458-1472.
Hosen, J. D., Aho, K. S., Fair, J. H., Kyzivat, E. D., Matt, S.,
Morrison, J., Stubbins, A., Weber, L. C., Yoon, B. & Raymond, P. A.
2021. Source switching maintains dissolved organic matter chemostasis
across discharge levels in a large temperate river network.Ecosystems, 24, 227-247.
Hu, B., Wang, D., Zhou, J., Meng, W., Li, C., Sun, Z., Guo, X. & Wang,
Z. 2018. Greenhouse gases emission from the sewage draining rivers.Science of the Total Environment, 612, 1454-1462.
Huang, S., Xia, J., Wang, Y., Wang, W., Zeng, S., She, D. & Wang, G.
2022. Coupling machine learning into hydrodynamic models to improve
river modeling with complex boundary conditions. Water Resources
Research, 58, e2022WR032183.
Ipcc 2019. Ipcc, 2019: Climate change and land: An ipcc special report
on climate change, desertification, land degradation, sustainable land
management, food security, and greenhouse gas fluxes in terrestrial
ecosystems. In: P.R. Shukla, J. S., E. Calvo Buendia, V.
Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S.
Connors, R. Van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M.
Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K.
Kissick, M. Belkacemi, J. Malley, (ed.).
Jankowski, K. J., Mejia, F. H., Blaszczak, J. R. & Holtgrieve, G. W.
2021. Aquatic ecosystem metabolism as a tool in environmental
management. Wiley Interdisciplinary Reviews-Water, 8.
Jarvie, H. P., Sharpley, A. N., Kresse, T., Hays, P. D., Williams, R.
J., King, S. M. & Berry, L. G. 2018. Coupling high-frequency stream
metabolism and nutrient monitoring to explore biogeochemical controls on
downstream nitrate delivery. Environmental Science & Technology,52, 13708-13717.
Khamis, K., Bradley, C. & Hannah, D. M. 2018. Understanding dissolved
organic matter dynamics in urban catchments: Insights from in situ
fluorescence sensor technology. Wiley Interdisciplinary
Reviews-Water, 5.
Khandelwal, A., Castillo, T. & González-Pinzón, R. 2023. Development of
the navigator: A lagrangian sensing system to characterize surface
freshwater ecosystems. Water Research, 245, 120577.
Kim, Y., Jeong, J., Park, H., Kwon, M., Cho, C. & Jeong, J. 2022.
Development of a data-driven ensemble regressor and its applicability
for identifying contextual and collective outliers in groundwater level
time-series data. Journal of Hydrology, 612, 128127.
Klemme, A., Rixen, T., Mueller-Dum, D., Muller, M., Notholt, J. &
Warneke, T. 2022. Co2 emissions from peat-draining rivers regulated by
water ph. Biogeosciences, 19, 2855-2880.
Kominoski, J. S., Rosemond, A. D., Benstead, J. P., Gulis, V. &
Manning, D. W. P. 2018. Experimental nitrogen and phosphorus additions
increase rates of stream ecosystem respiration and carbon loss.Limnology and Oceanography, 63, 22-36.
Laganovska, K., Zolotarjovs, A., Vazquez, M., Mc Donnell, K., Liepins,
J., Ben-Yoav, H., Karitans, V. & Smits, K. 2020. Portable low-cost
open-source wireless spectrophotometer for fast and reliable
measurements. Hardwarex, 7.
Lee, E. J., Yoo, G. Y., Jeong, Y., Kim, K. U., Park, J. H. & Oh, N. H.
2015. Comparison of uv-vis and fdom sensors for in situ monitoring of
stream doc concentrations. Biogeosciences, 12,3109-3118.
Lee, K.-H., Ali, S., Kim, Y., Lee, K., Kwon, S. Y. & Kam, J. 2023. High
resolution mapping of nitrate loads of a reservoir using an uncrewed
surface vehicle: Potential opportunities and challenges. Water
Resources Research, 59, e2023WR034665.
Levintal, E., Kang, K. L., Larson, L., Winkelman, E., Nackley, L.,
Weisbrod, N., Selker, J. S. & Udell, C. J. 2021. Egreenhouse:
Robotically positioned, low-cost, open-source co2 analyzer and sensor
device for greenhouse applications. Hardwarex, 9.
Li, J., Lu, W., Wang, H., Fan, Y. & Chang, Z. 2020. Groundwater
contamination source identification based on a hybrid particle swarm
optimization-extreme learning machine. Journal of Hydrology,584, 124657.
Liang, J., Li, W., Bradford, S. A. & Šimůnek, J. 2019. Physics-informed
data-driven models to predict surface runoff water quantity and quality
in agricultural fields. Water [Online], 11.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R.,
David, C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J.
& Wood, E. F. 2019. Global reconstruction of naturalized river flows at
2.94 million reaches. Water Resources Research, 55,6499-6516.
Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H.,
Lin, P., Pan, M., Yamazaki, D., Brinkerhoff, C., Gleason, C., Xia, X. &
Raymond, P. A. 2022. The importance of hydrology in routing terrestrial
carbon to the atmosphere via global streams and rivers.Proceedings of the National Academy of Sciences, 119,e2106322119.
Lofton, M. E., Howard, D. W., Thomas, R. Q. & Carey, C. C. 2023.
Progress and opportunities in advancing near-term forecasting of
freshwater quality. Global Change Biology, 29,1691-1714.
Maavara, T., Brinkerhoff, C., Hosen, J., Aho, K., Logozzo, L., Saiers,
J., Stubbins, A. & Raymond, P. 2023. Watershed doc uptake occurs mostly
in lakes in the summer and in rivers in the winter. Limnology and
Oceanography, 68, 735-751.
Maavara, T., Logozzo, L., Stubbins, A., Aho, K., Brinkerhoff, C., Hosen,
J. & Raymond, P. 2021. Does photomineralization of dissolved organics
matter in temperate rivers? Journal of Geophysical Research:
Biogeosciences, 126, e2021JG006402.
Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G. & Jeffrey, L. C.
2019. Iames: An inexpensive, automated methane ebullition sensor.Environmental Science & Technology, 53, 6420-6426.
Marchant, R., Reading, D., Ridd, J., Campbell, S. & Ridd, P. 2015. A
drifter for measuring water turbidity in rivers and coastal oceans.Marine Pollution Bulletin, 91, 102-106.
Martinez Vargas, S., Vitale, A. J., Genchi, S. A., Nogueira, S. F.,
Arias, A. H., Perillo, G. M. E., Siben, A. & Delrieux, C. A. 2023.
Monitoring multiple parameters in complex water scenarios using a
low-cost open-source data acquisition platform.HardwareX , e00492.
Mcclure, R. P., Thomas, R. Q., Lofton, M. E., Woelmer, W. M. & Carey,
C. C. 2021. Iterative forecasting improves near-term predictions of
methane ebullition rates. Frontiers in Environmental Science, 9.
Mejia, F. H., Fremier, A. K., Benjamin, J. R., Bellmore, J. R., Grimm,
A. Z., Watson, G. A. & Newsom, M. 2018. Stream metabolism increases
with drainage area and peaks asynchronously across a stream network.Aquatic Sciences, 81, 9.
Mendes, J. P., Coelho, L., Kovacs, B., De Almeida, J. M. M. M., Pereira,
C. M., Jorge, P. a. S. & Borges, M. T. 2019. Dissolved carbon dioxide
sensing platform for freshwater and saline water applications:
Characterization and validation in aquaculture environments.Sensors, 19.
Mendez-Barroso, L. A., Rivas-Marquez, J. A., Sosa-Tinoco, I. &
Robles-Morua, A. 2020. Design and implementation of a low-cost
multiparameter probe to evaluate the temporal variations of water
quality conditions on an estuarine lagoon system. Environmental
Monitoring and Assessment, 192.
Meyer, A. M., Klein, C., Fünfrocken, E., Kautenburger, R. & Beck, H. P.
2019. Real-time monitoring of water quality to identify pollution
pathways in small and middle scale rivers. Science of The Total
Environment, 651, 2323-2333.
Murray, E., Roche, P., Briet, M., Moore, B., Morrin, A., Diamond, D. &
Paull, B. 2020. Fully automated, low-cost ion chromatography system for
in-situ analysis of nitrite and nitrate in natural waters.Talanta, 216.
Nebgen, E. L. & Herrman, K. S. 2019. Effects of shading on stream
ecosystem metabolism and water temperature in an agriculturally
influenced stream in central wisconsin, USA. Ecological
Engineering, 126, 16-24.
O’grady, J., Zhang, D., O’connor, N. & Regan, F. 2021. A comprehensive
review of catchment water quality monitoring using a tiered framework of
integrated sensing technologies. Science of The Total
Environment, 765, 142766.
Pan, S. J. & Yang, Q. 2010. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22, 1345-1359.
Pathak, D. & Demars, B. O. L. 2023. Metabolism modeling in rivers with
unsteady flow conditions and transient storage zones. Journal of
Geophysical Research: Biogeosciences, 128, e2022JG007245.
Pathak, D., Hutchins, M., Brown, L. E., Loewenthal, M., Scarlett, P.,
Armstrong, L., Nicholls, D., Bowes, M., Edwards, F. & Old, G. 2022.
High-resolution water-quality and ecosystem-metabolism modeling in
lowland rivers. Limnology and Oceanography, 67,1313-1327.
Peipoch, M. & Ensign, S. H. 2022. Deciphering the origin of riverine
phytoplankton using in situ chlorophyll sensors. Limnology and
Oceanography Letters, 7, 159-166.
Perez-Calpe, A. V., De Guzman, I., Larranaga, A., Von Schiller, D. &
Elosegi, A. 2022. Organic matter processing on dry riverbeds is more
reactive to water diversion and pollution than on wet channels.Frontiers in Environmental Science, 9.
Powers, C., Hanlon, R. & Schmale, D. G. 2018. Tracking of a fluorescent
dye in a freshwater lake with an unmanned surface vehicle and an
unmanned aircraft system. Remote Sensing, 10, 81.
Qiao, Y., Yin, J., Wang, W., Duarte, F., Yang, J. & Ratti, C. 2023.
Survey of deep learning for autonomous surface vehicles in marine
environments. IEEE Transactions on Intelligent Transportation
Systems, 24, 3678-3701.
Raymond, P. A., Saiers, J. E. & Sobczak, W. V. 2016. Hydrological and
biogeochemical controls on watershed dissolved organic matter transport:
Pulse-shunt concept. Ecology, 97, 5-16.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N. & Prabhat 2019. Deep learning and process understanding
for data-driven earth system science. Nature, 566,195-204.
Richards, C. E., Tzachor, A., Avin, S. & Fenner, R. 2023. Rewards,
risks and responsible deployment of artificial intelligence in water
systems. Nature Water, 1, 422-432.
Risse-Buhl, U., Arnon, S., Bar-Zeev, E., Oprei, A., Packman, A. I.,
Peralta-Maraver, I., Robertson, A., Teitelbaum, Y. & Mutz, M. 2023.
Streambed migration frequency drives ecology and biogeochemistry across
spatial scales. WIREs Water, 10, e1632.
Roberts, B. J., Mulholland, P. J. & Hill, W. R. 2007. Multiple scales
of temporal variability in ecosystem metabolism rates: Results from 2
years of continuous monitoring in a forested headwater stream.Ecosystems, 10, 588-606.
Rodríguez-Castillo, T., Estévez, E., González-Ferreras, A. M. &
Barquín, J. 2019. Estimating ecosystem metabolism to entire river
networks. Ecosystems, 22, 892-911.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu,
S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H.,
Olefeldt, D., Poulter, B., Battin, T. I. & Eyre, B. D. 2021. Half of
global methane emissions come from highly variable aquatic ecosystem
sources. Nature Geoscience, 14, 225-+.
Rudee, A. & Phillips, J. 2021. Why greenhouse gas inventories are
important for natural and working lands — and how to fix them[Online]. Available:
https://www.wri.org/technical-perspectives/greenhouse-gas-emissions-natural-working-lands
[Accessed].
Savoy, P. & Harvey, J. W. 2021. Predicting light regime controls on
primary productivity across conus river networks. Geophysical
Research Letters, 48, e2020GL092149.
Schulz, H., Teitelbaum, Y., Lewandowski, J., Singer, G. A. & Arnon, S.
2023. Moving bedforms control co2 production and distribution in sandy
river sediments. Journal of Geophysical Research-Biogeosciences,128.
Segatto, P. L., Battin, T. J. & Bertuzzo, E. 2020. Modeling the coupled
dynamics of stream metabolism and microbial biomass. Limnology and
Oceanography, 65, 1573-1593.
Segatto, P. L., Battin, T. J. & Bertuzzo, E. 2021. The metabolic
regimes at the scale of an entire stream network unveiled through sensor
data and machine learning. Ecosystems, 24, 1792-1809.
Segatto, P. L., Battin, T. J. & Bertuzzo, E. 2023. A network-scale
modeling framework for stream metabolism, ecosystem efficiency, and
their response to climate change. Water Resources Research,59, e2022WR034062.
Shabani, F., Philamore, H. & Matsuno, F. 2021. An energy-autonomous
chemical oxygen demand sensor using a microbial fuel cell and embedded
machine learning. IEEE Access, 9, 108689-108701.
Shen, C. 2018. A transdisciplinary review of deep learning research and
its relevance for water resources scientists. Water Resources
Research, 54, 8558-8593.
Shi, W., Maavara, T., Chen, Q., Zhang, J., Ni, J. & Tonina, D. 2023.
Spatial patterns of diffusive greenhouse gas emissions from cascade
hydropower reservoirs. Journal of Hydrology, 619.
Singh, S., Rai, S., Singh, P. & Mishra, V. K. 2022. Real-time water
quality monitoring of river ganga (india) using internet of things.Ecological Informatics, 71, 101770.
Snyder, L., Potter, J. D. & Mcdowell, W. H. 2018. An evaluation of
nitrate, fdom, and turbidity sensors in new hampshire streams.Water Resources Research, 54, 2466-2479.
Spencer, R. G. M., Aiken, G. R., Butler, K. D., Dornblaser, M. M.,
Striegl, R. G. & Hernes, P. J. 2009. Utilizing chromophoric dissolved
organic matter measurements to derive export and reactivity of dissolved
organic carbon exported to the arctic ocean: A case study of the yukon
river, alaska. Geophysical Research Letters, 36.
Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D.
& Barajas-Solano, D. 2020. Physics-informed deep neural networks for
learning parameters and constitutive relationships in subsurface flow
problems. Water Resources Research, 56, e2019WR026731.
Tromboni, F., Hotchkiss, E. R., Schechner, A. E., Dodds, W. K., Poulson,
S. R. & Chandra, S. 2022. High rates of daytime river metabolism are an
underestimated component of carbon cycling. Communications Earth
& Environment, 3.
Valdivia-Garcia, M., Weir, P., Graham, D. W. & Werner, D. 2019.
Predicted impact of climate change on trihalomethanes formation in
drinking water treatment. Scientific Reports, 9, 9967.
Vieweg, M., Kurz, M. J., Trauth, N., Fleckenstein, J. H., Musolff, A. &
Schmidt, C. 2016. Estimating time-variable aerobic respiration in the
streambed by combining electrical conductivity and dissolved oxygen time
series. Journal of Geophysical Research-Biogeosciences,121, 2199-2215.
Von Schiller, D., Marti, E., Riera, J. L., Ribot, M., Marks, J. C. &
Sabater, F. 2008. Influence of land use on stream ecosystem function in
a mediterranean catchment. Freshwater Biology, 53,2600-2612.
Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D.,
Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A.,
Liermann, C. R. & Davies, P. M. 2010. Global threats to human water
security and river biodiversity. Nature, 467, 555-561.
Wallingford, H. no date. The arcboat range.
Wastine, B., Hummelgard, C., Bryzgalov, M., Rodjegard, H., Martin, H. &
Schroder, S. 2022. Compact non-dispersive infrared multi-gas sensing
platform for large scale deployment with sub-ppm resolution.Atmosphere, 13.
Willard, J. D., Read, J. S., Appling, A. P., Oliver, S. K., Jia, X. &
Kumar, V. 2021. Predicting water temperature dynamics of unmonitored
lakes with meta-transfer learning. Water Resources Research,57, e2021WR029579.
Wollheim, W. M., Bernal, S., Burns, D. A., Czuba, J. A., Driscoll, C.
T., Hansen, A. T., Hensley, R. T., Hosen, J. D., Inamdar, S., Kaushal,
S. S., Koenig, L. E., Lu, Y. H., Marzadri, A., Raymond, P. A., Scott,
D., Stewart, R. J., Vidon, P. G. & Wohl, E. 2018. River network
saturation concept: Factors influencing the balance of biogeochemical
supply and demand of river networks. Biogeochemistry,141, 503-521.
Wu, S.-S., Hernández, M., Deng, Y.-C., Han, C., Hong, X., Xu, J., Zhong,
W.-H. & Deng, H. 2019. The voltage signals of microbial fuel cell-based
sensors positively correlated with methane emission flux in paddy fields
of china. FEMS Microbiology Ecology, 95.
Xiao, Q., Hu, Z., Hu, C., Islam, A. R. M. T., Bian, H., Chen, S., Liu,
C. & Lee, X. 2021. A highly agricultural river network in jurong
reservoir watershed as significant co2 and ch4 sources. Science of
the Total Environment, 769.
Xing, Z., Chow, L., Rees, H., Meng, F., Li, S., Ernst, B., Benoy, G.,
Zha, T. & Hewitt, L. M. 2013. Influences of sampling methodologies on
pesticide-residue detection in stream water. Archives of
Environmental Contamination and Toxicology, 64, 208-218.
Xu, W., Chen, J. & Zhang, X. J. 2022. Scale effects of the monthly
streamflow prediction using a state-of-the-art deep learning model.Water Resources Management, 36, 3609-3625.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H. &
Pavelsky, T. M. 2019. Merit hydro: A high-resolution global hydrography
map based on latest topography dataset. Water Resources Research,55, 5053-5073.
Yeshno, E., Dahan, O., Bernstain, S. & Arnon, S. 2021. A novel
analytical approach for the simultaneous measurement of nitrate and
dissolved organic carbon in soil water. Hydrology and Earth System
Sciences, 25, 2159-2168.
Yorkshire water. 2023. Yorkshire water invests in rural tech[Online]. Available:
https://www.yorkshirewater.com/news-media/news-articles/2023/yorkshire-water-invests-in-rural-tech/
[Accessed].
Ysi no date. Rqpod remote surface water vehicle.https://www.ysi.com/rqpod.
Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J. I. &
Trimmer, M. 2011. Warming increases the proportion of primary production
emitted as methane from freshwater mesocosms. Global Change
Biology, 17, 1225-1234.
Zhang, J., Chen, X., Khan, A., Zhang, Y.-K., Kuang, X., Liang, X.,
Taccari, M. L. & Nuttall, J. 2021a. Daily runoff forecasting by deep
recursive neural network. Journal of Hydrology, 596,126067.
Zhang, W., Li, H., Xiao, Q. & Li, X. 2021b. Urban rivers are hotspots
of riverine greenhouse gas (n2o, ch4, co2) emissions in the
mixed-landscape chaohu lake basin. Water Research, 189,116624.
Zhang, Y., Zheng, H., Zhang, X., Leung, L. R., Liu, C., Zheng, C., Guo,
Y., Chiew, F. H. S., Post, D., Kong, D., Beck, H. E., Li, C. & Blöschl,
G. 2023. Future global streamflow declines are probably more severe than
previously estimated. Nature Water, 1, 261-271.
Zheng, H., Liu, Y., Wan, W., Zhao, J. & Xie, G. 2023. Large-scale
prediction of stream water quality using an interpretable deep learning
approach. Journal of Environmental Management, 331,117309.
Zheng, Y., Wu, S., Xiao, S., Yu, K., Fang, X., Xia, L., Wang, J., Liu,
S., Freeman, C. & Zou, J. 2022. Global methane and nitrous oxide
emissions from inland waters and estuaries. Global Change
Biology, 28, 4713-4725.
Zhou, Y. 2020. Real-time probabilistic forecasting of river water
quality under data missing situation: Deep learning plus post-processing
techniques. Journal of Hydrology, 589, 125164.
Zia, H., Harris, N. R., Merrett, G. V., Rivers, M. & Coles, N. 2013.
The impact of agricultural activities on water quality: A case for
collaborative catchment-scale management using integrated wireless
sensor networks. Computers and Electronics in Agriculture,96, 126-138.