loading page

The Brezis-Nirenberg problem for fractional systems with Hardy potentials
  • Yansheng Shen
Yansheng Shen
Beijing Normal University

Corresponding Author:[email protected]

Author Profile

Abstract

In this work we study the existence of positive solutions to the following fractional elliptic systems with Hardy-type singular potentials, and coupled by critical homogeneous nonlinearities \begin{equation*} \begin{cases} (-\Delta)^{s}u-\mu_{1}\frac{u}{|x|^{2s}}=|u|^{2^{\ast}_{s}-2}u+\frac{\eta\alpha}{2^{\ast}_{s}}|u|^{\alpha-2} |v|^{\beta}u+\frac{1}{2}Q_{u}(u,v) \ \ in \ \Omega, \\[2mm] (-\Delta)^{s}v-\mu_{2}\frac{v}{|x|^{2s}}=|v|^{2^{\ast}_{s}-2}v+\frac{\eta\beta}{2^{\ast}_{s}}|u|^{\alpha} |v|^{\beta-2}v+\frac{1}{2}Q_{v}(u,v) \ \ in \ \Omega, \\[2mm] \ \ u, \ v>0 \ \ \ \ \ in \ \ \Omega, \\[2mm] \ u=v=0 \ \ \ \ in \ \ \mathbb{R}^{N}\backslash\Omega, \end{cases} \end{equation*} where $(-\Delta)^{s}$ denotes the fractional Laplace operator, $\Omega\subset\mathbb{R}^{N}$ is a smooth bounded domain such that $0\in\Omega$, $\mu_{1}, \mu_{2}\in [0,\Lambda_{N,s})$, $\Lambda_{N,s}=2^{2s}\frac{\Gamma^{2}(\frac{N+2s}{4})}{\Gamma^{2}(\frac{N-2s}{4})}$ is the best constant of the fractional Hardy inequality and $2^{*}_{s}=\frac{2N}{N-2s}$ is the fractional critical Sobolev exponent. In order to prove the main result, we establish some refined estimates on the extremal functions of the fractional Hardy-Sobolev type inequalities and we get the existence of positive solutions to the systems through variational methods.
26 Jan 2021Submitted to Mathematical Methods in the Applied Sciences
26 Jan 2021Submission Checks Completed
26 Jan 2021Assigned to Editor
04 Mar 2021Reviewer(s) Assigned
16 Jun 2021Review(s) Completed, Editorial Evaluation Pending
23 Jun 2021Editorial Decision: Revise Minor
07 Jul 20211st Revision Received
07 Jul 2021Submission Checks Completed
07 Jul 2021Assigned to Editor
28 Jul 2021Reviewer(s) Assigned
07 Sep 2021Review(s) Completed, Editorial Evaluation Pending
08 Sep 2021Editorial Decision: Accept
Feb 2022Published in Mathematical Methods in the Applied Sciences volume 45 issue 3 on pages 1341-1358. 10.1002/mma.7856