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Abstract 

Identifying local adaptation in bottlenecked species is essential for conservation management. 

Selection detection methods have an important role in species management plans, assessments of

adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes

exploited in selection detection methods are similar to those caused by the strong neutral genetic 

drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection 

detection methods have across bottlenecked populations. In this study, simulations were used to 

explore if signals of selection could be confidently distinguished from genetic drift across 23 

bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously 

recorded demographic history of the Alpine ibex was used to generate comprehensive simulated 

SNP data. The simulated SNPs were then used to benchmark the confidence we could place in 

outliers identified in empirical Alpine ibex SNP data. Within the simulated dataset, the false 

positive rates were high for all selection detection methods but fell substantially when two or 

more methods were combined. True positive rates were consistently low and became negligible 

with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, 

none could be distinguished from genetic drift-driven false positives. Unfortunately, the low true 

positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The 

baselines and stringent approach outlined here should be applied to other bottlenecked species to 

ensure the risk of false positive, or negative, signals of selection are accounted for in 

conservation management plans. 

Keywords: Outlier, Bottleneck, Reintroduction, Evolutionary management, Conservation 
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Introduction 

Identification of recent responses to selection, or local adaptation, is of great interest to 

evolutionary and conservation biologists. Insights gained from recent selective changes can 

facilitate our understanding of evolutionary processes (Whitlock and Lotterhos, 2015a). For 

conservation biologists, insights into local adaptation also have a more applied or practical 

importance. Characterizing within species adaptive differences is often necessary for species 

management plans (e.g. Robertson et al., 2014), and optimizing source population choice for 

translocations or reintroductions (Flanagan et al., 2017). Characterizing adaptive processes may 

also offer insight into long-term extinction risk, particularly if a population or species is no 

longer able to respond to selection (Frankham et al., 2010). Within reintroduced populations 

specifically, the sudden environmental change experienced when founder individuals are 

released in new locations may fuel rapid adaptive change (e.g. Stockwell et al., 2003; Reznick et 

al., 2004). Understanding of which is important if future- potentially disruptive- translocations 

are planned. This new conservation ethos where evolutionary processes are considered in species

management, is known as “evolutionary” or “adaptive” conservation management (Hoffmann et 

al., 2015). The long-term success of evolutionary conservation management requires accurate 

assessments of the evolutionary processes in bottlenecked populations and thus, an 

understanding of the analytical constraints non-equilibrium populations can face.

The current ease in obtaining genome-wide SNP data has driven a renaissance of studies 

scanning for selection at the genomic level in wild populations (e.g. Gasterosteus aculeatus, 

Hohenlohe et al., 2010; Peromyscus maniculatus, Linnen et al., 2013; Sarcophilus harrisii, 

Epstein et al., 2016; Oncorhynchus clarkii henshawi, Amisch et al., 2019). Fst-based selection 
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detection methods are widely used to detect recent intra-species selective responses by scanning 

for unusually high values of Fst (“outlier” loci), which are assumed to be driven directly or 

indirectly (i.e. hitchhiking) by positive selection (Lewontin and Krakauer, 1973; Fay and Wu, 

2000). Popularity of these methods has fueled analytical extensions that identify selective 

responses using environmental clines (Coop et al., 2010; De Mita et al., 2013). Referred to as 

genetic-environment association analyses or “GEA” analyses, these methods pinpoint alleles that

display repeated associations with an environmental variable due to local adaptation (Lotterhos 

and Whitlock, 2015; Hoban et al., 2016). The degree to which currently available selection 

detection methods successfully accommodate unusual, or more complex demographic histories, 

is still being tested. This information is essential to ensure accuracy because small demographic 

assumption violations can fuel elevated rates of false signals of selection, where neutral loci are 

falsely identified as outliers. This can arise, for example, from unaccounted variance in the 

distribution of Fst due to shared history and relatedness of populations (Robertson, 1975a; 

Robertson, 1975b; Excoffier et al., 2009). Recent population bottlenecks and reintroductions 

pose a new challenge for selection detection, because they are associated with very complex 

patterns of high inter-population relatedness that may violate model assumptions and exacerbate 

false positive rates (Frankham et al., 2010). Furthermore, the random allele frequency changes 

caused by the strong genetic drift inherent in a bottleneck can lead to large allele-frequency 

differences between populations (Kimura 1955a; Kimura 1955b). Genetic drift can therefore 

create outlier-like loci that can easily be mistaken as loci under selection and will increase the 

false positive rate of selection detection methods in bottlenecked populations (Lotterhos and 

Whitlock, 2014; Klopfstein et al., 2006; Nielsen et al., 2007; Foll and Gaggiotti, 2008; Hofer et 
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al., 2009). Such false signals have previously hampered selection scans in bottlenecked species, 

including humans (Sabeti et al., 2006). 

Examination of selection detection accuracy in bottlenecked populations is limited. Foll 

and Gaggiotti, (2008) examined the effects of including a subset of populations that are 

bottlenecked in a selection detection analysis. It was recommended to remove bottlenecked 

populations due to the increase in false positives this caused (Foll and Gaggiotti, 2008). The 

effects of historical bottlenecks (thousands of generations prior) were also examined using 

simulated populations of Peromyscus spp. (Poh et al., 2014) and Haemorhous mexicanus (Shultz

et al., 2016), where the false positive rate often exceeded selection detection power. 

Nevertheless, selection detection analyses have since been applied to bottlenecked populations 

(e.g. Pilot et al., 2014; Funk et al., 2016; Amish et al., 2019), and will likely continue to be 

applied, because of the conservation management need to identify intra-species adaptive 

differences. It is therefore essential that we expand our exploration of bottleneck effects on 

selection detection accuracy.

The Alpine ibex (Capra ibex) is a recently bottlenecked and reintroduced species with a 

demographic history that is virtually unparalleled in recorded detail (Biebach and Keller, 2009). 

In this study, we utilized these population records to create a comprehensive simulated SNP data 

set through individual-based forward simulations. We then examined the performance of 

different selection detection methods by quantifying both the observed true and false positive 

rates and the composition of outlier loci. This information was coupled with selection scans on 

an empirical Alpine ibex restriction site associated DNA sequencing (RADseq) data set, and 

used to guide the confidence we could place in any outliers detected in these reintroduced 

populations. This provided insight into the accuracy, or rather lack-there-of, expected within 
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species with complex histories of bottlenecks and reintroductions. The detection thresholds and 

methods outlined here can be used as a guideline to help avoid false positive loci in other species

with similar histories. Furthermore, they highlight the high risk of false negatives, where local 

adaptation present but unidentified.  

Materials and methods

Alpine ibex demographic history

Alpine ibex underwent a prolonged decline starting in the 16th century due to overhunting. Only a

single population of an estimated 100 individuals survived this crash in the Gran Paradiso region 

of Northern Italy. Royal protection in the 19th century enabled the population to grow to 3000-

5000 individuals. Reintroductions of Alpine ibex from the Gran Paradiso region into Switzerland

began in 1906. Detailed demographic records were kept as part of the reintroduction program in 

Switzerland. Information that was recorded included the origin of founder individuals (often 

coming from previously reintroduced populations, Figure 1), the number and gender of founders,

and the year an individual was moved. In addition, annual census records of the number of 

animals alive in spring were collected for many reintroduced populations (Stuwe and Grodinsky, 

1987; Stuwe and Neivergelt, 1991; Biebach and Keller, 2009). This reintroduction program was 

very successful, to date more than 17 thousand Alpine ibex are present in the Swiss Alps 

(Shackleton and Group ISCI, 1997; BAFU, 2015; Brambilla et al. 2020). The focal populations 

used in this study are shown in Figure 1. 

RAD sequencing: 
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To apply selection detection methods to an empirical data set from a bottlenecked species, we 

used the published RADseq data set from Leigh et al., (2018) and Grossen et al., (2017). This 

consists of 304 Alpine ibex from 23 reintroduced populations (Figure 1). We used only variants 

called by GATK (Poplin et al., 2017; see Leigh et al., 2018 for a discussion of variant caller 

effects). After SNP filtering (described in section S3) a sample of 213 individuals remained. For 

selection detection all singletons were removed and SNPs within 1kb were randomly thinned 

using vcftools (vcftools; Danecek et al., 2011), which resulted in a final data set of 12695 SNPs. 

After exclusion of individuals from the Gran Paradiso, inclusion of which potentially violates 

selection detection analysis relatedness assumptions (Günther and Coop, 2013), 5225 SNPs were

suitable for the selection detection analyses. 

Simulating the Alpine ibex history 

Simulated SNP data sets were generated using forward time simulations in Nemo (version 

2.3.51; Guillaume and Rougemont, 2006) and used to assess the expected accuracy if each 

selection detection methods when applied to bottlenecked and reintroduced species. Details of 

the simulations can be found in the supplementary material (section S1). Briefly, in each 

simulation all 23 populations sampled for RADseq were simulated. In order to accurately 

simulate these populations, an additional three populations that were founder sources for the 

focal populations were also simulated (see panel in Figure 1). Therefore, 26 populations were 

simulated in total. The reintroduction history and population sizes were informed by detailed 

records and census data. Ten replicate simulations of the Alpine ibex reintroduction history were 

conducted for each of three genetic architectures: 1) neutral SNPs only, 2) 30 loci under 

selection, and 3) 120 loci under selection. The loci under selection were di-allelic QTL 
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contributing additively to a quantitative trait. In all architectures, each individual had 30 

chromosomes (linkage groups) of 10M (Morgan) each with 60 thousand neutral loci. In the two 

architectures with selection the 30 or 120 QTL were equally spread among the neutral loci. The 

recombination rate was 5x10-4 between adjacent neutral SNPs. The QTL were set either at the 

center of each chromosome (30 QTL) or four QTL were positioned 3.33M apart and 0.5cM from

the start on each chromosome (120QTL). This ensured several thousand SNPs were polymorphic

after the bottleneck and generated the same chromosome number and a similar level of linkage 

disequilibrium to that in the RADseq data set as evaluated by the r2 values between final 

polymorphic SNPs in vcftools. 

In each simulation, neutral loci and loci under selection were allowed to reach mutation-

selection-drift equilibrium during a “burn-in” of 10 thousand generations in a single population 

that represented the Gran Paradiso population. After this time, a bottleneck was applied. We 

simulated phenotypic selection on the quantitative trait with a Gaussian fitness surface where the 

trait optimum value varies among populations depending on an environmental variable (snow 

cover). The trait optimum value during the burn-in was held at zero (in the ‘Gran Paradiso’ 

reference population) to maintain alleles of both negative and positive effect. To generate post-

reintroduction selection across the 30 or 120 QTL, the trait optimum in reintroduced populations 

was varied to either zero, -2 or +2. Values reflected observed real world snow conditions relative

to the Gran Paradiso, for example those with a higher average snow depth had an value of +2 and

those with a lower average snow depth had a value of -2. Snow conditions were chosen as they 

are a strong candidate real-world selection pressure, specifically they have previously been 

shown to affect Alpine ibex population dynamics and vary dramatically across sites (detailed in 

8

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197



Supplementary material S1 and S2 and Table S1 and S2) (Jacobsen et al., 2004; Grøtan et al., 

2008). 

The strength of selection at each locus was determined by the size of its contribution to 

the trait. For the architecture where 30 diploid loci were under selection: six loci had large 

contributions to each trait (allelic value, a = ±0.1), and 24 were divided equally into 4 categories 

of lesser effect (a = ±0.08, ±0.04, ±0.02, ±0.01). A maximum trait value of ±3 was therefore 

achievable. For the architecture where 120 loci were under selection, the division of loci 

remained identical except for the loci of smallest effect. Specifically, 96 loci were of minor 

effect (±0.01) and 24 were equally divided amongst the remaining allelic values (±0.1, ±0.08, 

±0.04, ±0.02, 6 of each value in total). A maximum trait value of ±4.8 was achievable. Selection 

coefficients (s) equaled 0.027 (a = ±0.1), 0.022 (a = ±0.08), 0.012 (a = ±0.04), 0.007 (a = ±0.02) 

and 0.004 (a = ±0.01) in both architectures. This was calculated according to Bürger (2000) 

using the phenotypic variance (Vp) of 0.047 (120 loci under selection) or 0.035 (30 loci under 

selection), as well as a selection variance (ω2) of 7.5. This generated two biologically realistic 

trait architectures and realistic strengths of selection.

The simulated genotypes from the final generation were used to evaluate the expected 

accuracy of different selection detection methods, and only polymorphic SNPs were included in 

the simulated data from this time point. To mimic the available RADseq data, 10 simulated 

individuals were randomly chosen from each of the 23 populations that were sequenced with 

RADseq, 6000 polymorphic loci were the taken for each individual including all polymorphic 

selected loci and a subset of randomly selected neutral loci. 20% of genotypes were randomly set

to “missing” due to missing data in the RADseq genotypes and singletons were removed 
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(vcftools; Danecek et al., 2011). PGDspider (version: 2.0.9.2; Lischer and Excoffier, 2012) and 

custom scripts were used to convert Nemo output into input for the selection analyses. 

Screens for signals of positive selection

Selection detection analyses were conducted for both the empirical Alpine ibex RADseq data 

and simulated data sets. This enables us to quantify the confidence we could place in any 

empirical outliers. To detect signatures of selection, Bayenv 2.0 (Günther and Coop, 2013), 

Baypass 2.1 (Gautier, 2015a), and OutFLANK (Whitlock and Lotterhos, 2015a) were used 

(following Leigh et al., 2018). These three programs were chosen as they have been shown to 

have high accuracy in species with complex patterns of population relatedness (Günther and 

Coop, 2013; Lotterhos and Whitlock, 2014; Gautier, 2015a; Whitlock and Lotterhos, 2015a). 

Bayenv 2.0 and Baypass2.1 utilize a modified Fst-like statistic called XTX that is corrected for 

shared population history (Günther and Coop, 2013; Gautier, 2015a). Outflank utilizes an Fst 

statistic called F’st, a metric based on Wright’s Fst statistic without corrections for a finite 

sample size (Whitlock and Lotterhos, 2015a). These three methods are hereafter referred to as 

Fst-like approaches. Bayenv 2.0 and Baypass2.1 also detect selection using GEA selection scans 

(as in Hoban et al., 2016). 

Selection detection program conditions are detailed in Leigh et al., (2018). Briefly, the 

estimation of covariance matrix and subsequence selection scan in Bayenv 2.0 were run 

independently three times with 2 x105 Markov-Chain-Monte-Carlo (MCMC) iterations (Blair et 

al., 2014). SNPs were considered putatively under selection for the GEA method, if the Bayes 

factor (BF) value exceeded 3 and the Spearman’s rho value was in the top and bottom 2.5% of 

all SNPs across the three runs. This threshold was chosen because it suggests high support for a 
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SNP being under selection and that the trend is not due to a single outlier population (Nadeau et 

al., 2016; Günther and Coop, 2013). The Fst-like approach SNPs had to have XTX value among 

the top 100 ranking SNPs across all three runs (Günther and Coop, 2013). 

Baypass2.1 was run three times for each data set with 20 pilot runs of 1000 MCMC 

iterations and 5000 MCMC iterations for the “burn-in” (default conditions). For the GEA 

analysis we used the Auxillary model and consider a loci to be under selection when it had a 10 x

log10 Bayes factor (db) greater than 4.7 for all three replicates (Gautier, 2015a). This value is 

equivalent to the threshold of a BF of 3 used in Bayenv 2.0. For the Fst-like approach, XTX 

outliers were determined following the best-practice tutorial accompanying Baypass2.1 (Gautier,

2015b). This uses trained-simulations to find the 99% threshold for XTX values for each dataset, 

outliers were those loci in the top 1% for all three Baypass runs (Gautier, 2015b).

In OutFLANK, outlier SNPs were identified following the best practice tutorial (default 

settings, Whitlock and Lotterhos, 2015b). To be considered an outlier, a SNP had to have a Q-

value of less than 0.05 (Storey and Tibshirani, 2003; Whitlock and Lotterhos, 2015a), as well as 

a heterozygosity of greater than 10% (Whitlock and Lotterhos, 2015b). 

Loci identified across multiple programs as outliers were also compared. Loci identified 

as outliers across two programs were called “double positives” those found by all three programs

were called “triple positives.” To account for the different signals the Fst-like and GEA 

approaches look for, the outliers identified by the two methods in Bayenv 2.0 and Baypass2.1 

were not combined into a single set. Thus we had double and triple positive Fst-like outliers, and

double positive GEA outliers. For the triple positive GEA outliers, the GEA outliers from 

Bayenv 2.0 and Baypass2.1 were overlapped with the Fst-like outliers from OutFLANK because

OutFLANK does not us a GEA approach.   
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All environmental data used in the GEA analyses were obtained from MeteoSwiss 

(Switzerland). For each population, data from the closest meteorological station available (Figure

1, Section S1 and S2, Table S2) were used to obtain averages since a population was founded, or 

since records began. The environmental variables in the analyses were divided across winter and 

summer and included air temperature (°C), daily precipitation (mm), and snow depth measures 

(cm). Further details are available in the supplementary material (section S1 and S2). Since the 

simulations were intended to mimic real Alpine ibex populations, the corresponding weather data

were included as environmental covariates in the Bayenv 2.0 and Baypass2.1 analyses of the 

simulated data. In addition, each simulated population’s true simulated environmental optimum 

was also included as an environmental covariate in the analysis of the simulated data (Table S1).

Evaluating method accuracy with simulations

 The simulated genotype data were used to estimate the true or false negative and positive

rates. When examining loci flagged as putatively under selection, a true positive was considered 

to be a simulated locus under selection that was correctly identified as being under selection. A 

false positive was considered to be a simulated neutral locus that was wrongly identified as being

under selection. The proportion of all loci identified by a method as under selection that were 

true positives, hence indeed under selection (the true discovery rate), was used as a metric of the 

method’s accuracy and reliability of selection detection. To place the results in the context of 

other simulation studies, the true positive rate, false positive rate, the false discovery rate, and 

false negative rate, were also calculated. All metrics are defined in Table 1 for ease of reference. 

All values displayed are the averages across 10 simulated datasets for each genetic architecture 
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and are relative only to the number of polymorphic QTL loci and neutral loci in the final SNP 

set.  

Results

In this study, we generated empirical RADseq and simulated SNP data for the Alpine ibex. 

Bayenv 2.0, Baypass2.1, and OutFLANK were then used to identify loci putatively under 

selection in these datasets. The simulated data provided an estimate of the selection detection 

accuracy of these three popular tools in the empirical Alpine ibex dataset. Low true discovery 

rates were identified for all selection detection methods (detailed below), preventing us from 

confidently distinguishing selection from false positive outliers in the Alpine ibex RADseq data. 

Alpine ibex RADseq data and signals of selection:

Each selection detection method identified outliers in the Alpine ibex RADseq data set. Between 

172 to 2 loci were found to be putatively under selection by the different selection detection 

methods (Figure 2A). However, only 14 loci were identified as double positives and no locus 

exceeded the triple positive threshold. The highest number of double positive loci was found by 

the Bayenv Baypass GEA overlap. The two other double positive loci were found separately in 

the overlap of Bayenv and Baypass Fst-like, as well as the Bayenv and Outflank Fst-like overlap.

As detailed below, this is within the range of drift-driven false positives expected under all 

simulated genetic architectures.
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Evaluating expected selection detection accuracy 

Analyses of simulated data revealed a very low selection detection accuracy under the Alpine 

ibex demography, regardless of the genetic architecture simulated. Figure 2B shows the false 

positive rates for the neutral only simulations and Figure 3 the true and false discovery rates (i.e. 

the composition of loci identified as outliers) for the simulations with loci under selection. For 

the two architectures with selection, the true positive rate, false positive rate and false negative 

rates are shown in Table 2. 

 For all simulation types, each individual selection detection method had a high number 

of false positives and a striking false negative rate (Figures 3). The false positives rate did 

decrease considerably (<0.001) for the double and triple positive methods, but this was at the 

expense of the false negative rate increasing (Table 2). Greater variability in accuracy is seen for 

the architecture with 30 loci under selection than 120 loci under selection. Specifically, the true 

discovery rate does occasionally reach 1.0 (see Figure 3). However, as shown by the true positive

rate and false negative rate (Table 2), this does not reflect high accuracy of these methods but 

stochastic chance. Virtually all simulations had no outliers exceed this threshold, but a single 

simulation had 1 true positive locus, leading to a mean true discovery rate of 1.    

 In the simulations with selection, the allelic values and hence the strength of selection 

experienced by each QTL locus, were not equal. The loci with allelic values of 0.1 or 0.08 were 

under much stronger selection (s=0.027, 0.022) relative to those with allelic values of 0.04, 0.02 

or 0.01 (s=0.012, 0.007, 0.004). Consequently, the signal of selection and therefore the true 

positive rate may be unequal across loci under selection. Table 3 shows the average allele 

frequency change of loci under selection, this can be considered a rough proxy for the signal of 

selection visible at a locus. As expected due to the strength of selection, loci under the strongest 
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selection were often at extreme allele frequencies after the burn-in and before the bottleneck 

(Figure S1 and S2). Consequently, such loci were fixed more frequently over the course of our 

simulations and thus more likely to be excluded from selection detection analysis. Nevertheless, 

loci under a selection pressure of >0.022 were the most likely to be identified as outliers in the 

architecture with 30 loci under selection. Those under weaker selection (0.004) were most likely 

to be identified as outliers in the architecture with 120 loci under selection, but this was because 

they were by far the most common in this architecture and their abundance drives this trend.

  

Discussion 

In this study the accuracy of selection detection methods was assessed for the Alpine ibex, a 

species with a complex history of bottlenecks and reintroductions. We generated comprehensive 

simulations that followed the species’ recorded population history. Three genetic architectures 

were simulated: neutral loci only, 30 loci under selection, and 120 loci under selection. The 

simulated data revealed a low selection detection accuracy for each individual selection detection

method. Improved accuracy was possible when only considering outliers identified by multiple 

methods, though this came at the expense of an increased false negative rate. This made it 

impossible to adjust our thresholds as we were either overrun with false positives, or rarely 

identified ongoing selection. While candidate outlier loci could be identified in the Alpine ibex 

RADseq data set, the simulation results indicate they cannot be confidently considered as under 

selection. Importantly, the low true positive rate also prevents us from confidently concluding 

the absence of recent adaptation in the populations, posing significant challenges for the 

evolutionary management of this species. Nevertheless, identifying false positive outliers and 
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concluding two populations are separate Evolutionary Significant Units has a number of costly 

consequences for conservation management. Until more accurate selection detection methods are

found, the stringent approach and criteria outlined here should be applied to other bottlenecked 

species to offer an indication of the confidence that we can place in outlier loci.

Screen for selection with Alpine ibex RADseq data

In the Alpine ibex RADseq dataset 14 loci were identified as under selection using the double 

positive approach but no loci were triple positives. Based on the simulations, a proportion of 

<0.04 of loci identified by the double positive approach are likely to be true positives. This 

extremely low proportion indicates that these putatively selected loci should be viewed with 

extreme caution because many are likely to be false positive loci. Consequently, these loci were 

not explored further (as in, Shultz et al., 2016). Interestingly, the significant environmental 

correlations found in the GEA outliers were related to environmental variables known to have 

recruitment effects and to vary dramatically across the reintroduced range. Despite biologically 

realistic explanations, the expected high rates of false positives prevent us from making any 

confident conclusions about local adaptation in the Alpine ibex at this time. Furthermore, the size

and nature of this species make the functional validation that was used in Peromyscus spp. 

impossible (Poh et al., 2014). Though it is likely some adaptation may be occurring in Alpine 

ibex, these candidate outliers and those found in other bottlenecked species, must be confirmed 

when more accurate selection methods for bottleneck population are identified in the future. 

Future studies should focus on selection detection methods less reliant on Fst  (e.g. time series 

approach, Brüniche-Olsen et al., 2016), and explore if sufficient power can be gained by more 

densely sampling the genome with Whole Genome Sequencing (Lowry et al., 2017). For studies 

interested in examining multiple naturally bottlenecked populations (i.e. not reintroduced 
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species) exploiting museum and collection specimens could also be used to circumvent major 

genetic drift driven false positives by offering pre-bottleneck allele frequencies. 

Simulated data and selection detection accuracy: 

Alpine ibex have experienced several profound and serial population bottlenecks. Given this 

extreme history, genome-wide drift effects are highly likely and a high false positive rate was 

expected for selection detection methods applied to this data (Kimura 1955a; Kimura 1955b; 

Lotterhos and Whitlock, 2014). The simulations of the Alpine ibex demography confirmed this, 

revealing an expected false positive rate of up to 0.03 and a false discovery rate often exceeding 

0.99 of all outliers. This accuracy was considerably less than that found for non-bottlenecked 

populations and for scans where a single population is bottlenecked (e.g. 0.1 false positive rate, 

Foll and Gaggiotti, 2008). However, the low accuracy is similar to studies where more ancient 

bottlenecks were simulated (e.g. 0.03-0.41 false positive rate, Poh et al., 2014; 0.05-0.30, Shultz 

et al., 2016). Importantly, increasing stringency to a double or triple positive approach did 

improve the false positive rate in the Alpine ibex data. This suggests that the double or triple 

overlap approaches may offer some improved power in bottlenecked populations, and their 

accuracy should be assessed for more simple bottleneck scenarios. However, this approach 

increases the already high risk of being too stringent and removing all loci under selection (high 

false negative rate), which must also be taken in to account when applying this method. 

A low true positive rate was identified for all simulated loci under selection. To generate 

a biologically realistic trait, majority of loci simulated were of small or moderate effect and it has

been previously demonstrated that many selection detection methods struggle to identify such 

loci, regardless of demographic history (e.g. Biswas and Akey, 2006; Kalsson and Moen, 2010; 
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Narum and Hess, 2011; Kemper et al., 2014; Lotterhos and Whitlock, 2015). This is particularly 

pronounced for loci contributing to polygenic traits such as ours (Kemper et al., 2014; Berg and 

Coop, 2014). However, in this study, loci under comparable selection coefficients were identified

much less frequently than expected based on previous studies. Specifically in our study, loci with

a selection coefficient below 0.012 were rarely identified by the double or triple positive method.

However, Lotterhos and Whitlock (2015) found a true positive rate of at least 0.11 for loci under 

a weaker selection coefficient of  0.005, with two or more selection detection methods. Our true 

positive rate for loci of the largest effect was also lower than seen previously, for example for the

Bayenv GEA we found a 0.04 true positive rate, while previous studies have found 0.58-1 across

multiple demographic scenarios (Coop et al., 2010; De Mita et al., 2013; Lotterhos and 

Whitlock; 2015). 

The lower accuracy found here is likely driven by a combination of factors, including the 

intrinsic characteristics of bottlenecked populations. Specifically, the swamping of true positives 

with drift-driven false positives (which will increase the false discovery and false positive rate), 

as well as the lower effective population size of a bottlenecked species. A lower effective 

population size will reduce the efficacy of selection (Frankham et al., 2010). This in turn limits 

detectable signals of selection. Though 17 thousand Alpine ibex are now present in the Alps, 

population connectivity is low and contemporary population sizes are often in the hundreds. 

Effective population sizes range from ~900 to as low as 20 (Biebach and Keller, 2009). While 

the strength of selection at loci with an allelic value of 0.1 or 0.8 (s>0.02) was sufficient to 

theoretically elicit a response even in the smallest simulated populations (s>1/2Ne, Frankham et 

al., 2010), loci of the smallest effect will not overpower drift unless the effective population size 

exceeds 125 individuals and the census size of three of our simulated populations fell below this 
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threshold. The reduced efficacy of selection in our smallest populations must disrupt signals of 

selection at loci under weak selection, and contribute to the low true positive rate observed for 

these loci. In addition, loci under stronger selection were more often at extreme allele 

frequencies after the burn-in (i.e. preceding any bottleneck) and their rare alleles were easily lost 

during the bottlenecks or during the shifts in selection pressures. Many of these loci had to be 

subsequently excluded from selection scans due to their fixation across all populations, 

exacerbating our difficulty in identifying selection. These issues are likely common to selection 

scans on bottlenecked species where selection is long acting (i.e. continuous before and during a 

bottleneck). Accordingly, true positive rate is similar to that found in other bottlenecked species 

(e.g. Poh et al., 2014). This is highly problematic for adaptive population management, because 

long standing adaptive differences are often exactly what we are trying to conserve. This result 

does suggest that greater success may be had when looking for signals of post-bottleneck 

adaptation, for example when scanning for rapid post-reintroduction adaptation to a novel 

environmental variable or adaptation to a new disease. To circumvent the reduced accuracy due 

to fixation of selected alleles, future studies should explore if any increase in power is obtained 

through using pre-bottleneck samples for SNP ascertainment. 

Conclusions

Overall, for populations like the Alpine ibex with a history of extreme population bottlenecks 

(and notably, serial founding events as well as complex reintroductions) the selection detection 

methods explored here have a considerably reduced accuracy relative to other demographic 

histories. Based on these results, loci identified as under selection in similar bottlenecked 

populations using GEA or Fst outlier methods should be viewed with caution, particularly those 
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based on single selection detection methods. Unfortunately for bottlenecked species, the high 

false positive rate is also coupled with a high false negative rate. Therefore, if selective responses

are not identified in bottlenecked populations, this cannot be considered evidence for an absence 

of responses to selection pressures or an absence of local adaptation. This unfortunate lack of 

power is highly problematic for effective adaptive population management and it is vital this 

uncertainty is now incorporated into management plans. Alongside this, the costs of concluding 

two populations as separate ESUs based on erroneous outliers must be evaluated. The criteria 

and approach outlined here, may offer other studies on bottlenecked species an approach and 

baseline on which to gauge their confidence in any outliers identified and adjust management 

plans accordingly. In the future, the accuracy of selection detection methods less reliant on Fst, 

such as those exploiting temporal samples, as well as use of more dense marker data, should be 

evaluate across bottlenecked scenarios. Despite the high false positive rate expected, it is 

important to see if these approaches offer greater power and if they can better facilitate 

conservation management. 
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Figure 1: The 23 Alpine ibex focal populations and a simplified representation of the 
reintroduction history in Switzerland equating to the effective bottleneck number each 
population experienced (top left panel). All Swiss populations descend from the Gran Paradiso 
national park in Northern Italy (open circle), which is included in the figure but was excluded 
from the selection detection analysis. Reintroductions in Switzerland often used founder 
individuals from previously established reintroduced populations. As a result, many populations 
have experienced several serial bottlenecks. Within this figure, each circle represents a Swiss 
Alpine ibex focal population and the circle’s shading indicates the number of bottlenecks each 
population experienced. Marked by a cross are the weather stations used to estimate the local 
environment experienced by each population. 

Figure 2: A) The number of empirical outliers detected by each selection detection method in the Alpine 
ibex RADseq SNP set. B) The false positive rate from the fully neutral simulations. Shown below each bar
is the average number of outlier loci identified 

Figure 3: The true and false discovery rate of different selection detection methods for A) the 
architecture with 30 loci under selection and B) the architecture with 120 loci under selection. Each bar 
shows the average composition of loci identified as outliers using each selection detection method, at the 
bottom of the bar is the average number of outliers across 10 replicate simulations. Replicates where no 
loci exceeded the significance threshold were excluded from the figure.

Accuracy metric Definition 
True discovery rate The proportion of all simulated loci identified as outliers that were 

actually under selection (i.e. QTL loci). 
True positive rate The proportion of loci under selection (i.e. QTL loci) correctly 

identified as an outlier. 
False positive rate The number of neutral loci incorrectly identified as under selection

(false positive outliers) divided by the number of retained 
polymorphic neutral SNPs.

False discovery rate The proportion of outlier SNPs that were false positives (i.e. 
simulated neutral loci)(Lotterhos and Whitlock, 2014)

False negative rate The proportion of polymorphic QTLs that were not identified as 
outliers (and thus not identified as under selection). 
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Table 1: Definitions of each metric used to assess a selection detection method’s accuracy 
with the simulated data. 
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Selection detection method 
True positive

rate
False positive

rate
False negative 

rate 

  30 120 30 120 30 120

Bayenv Fst-like 0.026 0.012 0.012 0.012 0.974 0.988

Baypass Fst-like 0.005 0.001 0.004 0.005 0.995 0.999

OutFLANK Fst-like 0.009 0.001 0.000 0.001 0.991 0.999

Bayenv GEA 0.005 0.004 0.003 0.003 0.995 0.996

Baypass GEA 0.033 0.030 0.032 0.031 0.967 0.970

Double positive Bayenv Baypass Fst-like 0.005 0.001 0.001 0.001 0.995 0.999

Double positive Bayenv OutFLANK Fst-like 0.009 0.001 0.000 0.001 0.991 0.999

Double positive Baypass OutFLANK Fst-like 0.005 0.001 0.000 0.001 0.995 0.999

Double positive Bayenv Baypass GEA 0.000 0.003 0.001 0.001 1.000 0.997

Double positive Bayenv OutFLANK GEA 0.005 0.000 0.000 0.000 0.995 1.000

Double positive Baypass OutFLANK GEA 0.005 0.000 0.000 0.000 0.995 1.000

Triple positive Fst-like 0.005 0.001 0.000 0.001 0.995 0.999

Triple positive GEA 0.000 0.000 0.000 0.000 1.000 1.000
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Table 2: Selection detection accuracy as measured by the true and false positive rate, as well 
as the false negative rate. 30 or 120 signifies the number of loci under selection (QTL loci). 
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Average allele frequency change (percentage polymorphic)

Locus type 30 Loci under selection 120 Loci under selection

0.01 0.0860.071 (93%) 0.0870.079 (86%)

0.02 0.0950.082 (94%) 0.0930.078 (93%)

0.04 0.0670.067 (77%) 0.0880.078 (83%)

0.08 0.0430.058 (48%) 0.0450.060 (49%)

0.1 0.0310.034 (44%) 0.0160.022 (23%)
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Table 3: Mean absolute allele frequency change for loci under selection  the standard error. Shown in
brackets is the percentage of loci that remain polymorphic in at least one population at the end of the 
simulations. Values are calculated from immediately after the burn-in using the values from the 
simulated Gran Paradiso population, relative to the frequency across all simulated populations in final 
generation. Loci fixed after the burn-in were excluded from the values.  
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Supplementary material 

Section S1: Simulations of neutral loci and loci under selection

Section S2: Weather Data

Section S3: RADseq bioinformatics steps

Table S1: The simulated optima of the populations included in the simulations. Positive and 

negative values were based on the relative difference in snow depth between each population and

the Gran Paradiso population. An optimum of zero was used for the burn-in

Table S2: Weather stations used for each population. Data included in the analyses are an 

average of each season over the years since each population’s founding or when records began. 

Stations were chosen based on proximity and similarity in conditions.

Figure S1: Allele frequencies of selection loci from the architecture with 30 loci under selection.

Shown are loci that remain polymorphic after the burn-in within the remnant population (left 

panels) and their subsequent frequencies across all populations (right panels) in the final 

simulated generation. Top panels are loci under strong selection with an allelic value of 0.08 or 

0.1, bottom panels are loci under weaker selection with an allelic value of 0.04,0.02 or 0.01. 
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Figure S2: Allele frequencies of selection loci from the architecture with 120 loci under 

selection. Shown are loci that remain polymorphic after the burn-in within the remnant 

population (left panels) and their subsequent frequencies across all populations (right panels) in 

the final simulated generation. Top panels are loci under strong selection with an allelic value of 

0.08 or 0.1, bottom panels are loci under weaker selection with an allelic value of 0.04,0.02 or 

0.01.
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