References

  1. [dataset] Brown, Thomas (2020), Telomere data, Dryad, Dataset, https://doi.org/10.5061/dryad.xwdbrv1cj
  2. Anchelin, M. et al. (2011) ‘Behaviour of Telomere and Telomerase during Aging and Regeneration in Zebrafish’, PLoS ONE . Edited by C. Wolkow, 6(2), p. e16955. doi: 10.1371/journal.pone.0016955.
  3. Angelier, F. et al. (2019) ‘Is telomere length a molecular marker of individual quality? Insights from a long-lived bird’,Functional Ecology , 33(6), pp. 1076–1087. doi: 10.1111/1365-2435.13307.
  4. Asghar, Muhammad et al. (2015) ‘Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds’, Science , 347(6220), pp. 436–438. doi: 10.1126/science.1261121.
  5. Asghar, M. et al. (2015) ‘Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds’, Science , 347(6220), pp. 436–438. doi: 10.1126/science.1261121.
  6. Asghar, M. et al. (2016) ‘Parallel telomere shortening in multiple body tissues owing to malaria infection’, Proceedings of the Royal Society B: Biological Sciences , 283(1836). doi: 10.1098/rspb.2016.1184.
  7. Asghar, M. et al. (2018) ‘Cellular aging dynamics after acute malaria infection: A 12-month longitudinal study’, Aging Cell . Blackwell Publishing Ltd, 17(1), p. e12702. doi: 10.1111/acel.12702.
  8. Aubert, G. and Lansdorp, P. M. (2008) ‘Telomeres and Aging’,Physiological Reviews , 88(2), pp. 557–579. doi: 10.1152/physrev.00026.2007.
  9. Badás, E. P. et al. (2015) ‘Ageing and reproduction: Antioxidant supplementation alleviates telomere loss in wild birds’,Journal of Evolutionary Biology . Blackwell Publishing Ltd, 28(4), pp. 896–905. doi: 10.1111/jeb.12615.
  10. Baker, G. T. and Sprott, R. L. (1988) ‘Biomarkers of aging’,Experimental Gerontology . Pergamon, 23(4–5), pp. 223–239. doi: 10.1016/0531-5565(88)90025-3.
  11. Barrett, E. L. B. et al. (2013) ‘Telomere length and dynamics predict mortality in a wild longitudinal study’, Molecular Ecology , 22(1), pp. 249–259. doi: 10.1111/mec.12110.
  12. Bates, D. et al. (2015) ‘Fitting linear mixed-effects models using lme4’, Journal of Statistical Software , 67(1). doi: 10.18637/jss.v067.i01.
  13. Bateson, M. and Nettle, D. (2017) ‘The telomere lengthening conundrum – it could be biology’, Aging Cell , 16(2), pp. 312–319. doi: 10.1111/acel.12555.
  14. Bauch, C., Becker, P. H. and Verhulst, S. (2013) ‘Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird’, Proceedings of the Royal Society B: Biological Sciences , 280(1752). doi: 10.1098/rspb.2012.2540.
  15. Bebbington, K. et al. (2016) ‘Telomere length reveals cumulative individual and transgenerational inbreeding effects in a passerine bird’, Molecular ecology , 25(12), pp. 2949–2960. doi: 10.1111/mec.13670.
  16. Bebbington, K. et al. (2017) ‘Kinship and familiarity mitigate costs of social conflict between Seychelles warbler neighbors’,Proceedings of the National Academy of Sciences of the United States of America , 114(43), pp. E9036–E9045. doi: 10.1073/pnas.1704350114.
  17. Bebbington, K. et al. (2018) ‘Joint care can outweigh costs of nonkin competition in communal breeders’, Behavioral Ecology , 29(1), pp. 169–178. doi: 10.1093/beheco/arx137.
  18. Beirne, C. et al. (2014) ‘Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal’, PLoS ONE , 9(9). doi: 10.1371/journal.pone.0108964.
  19. Bendix, L. et al. (2010) ‘The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells’, Aging Cell . John Wiley & Sons, Ltd, 9(3), pp. 383–397. doi: 10.1111/j.1474-9726.2010.00568.x.
  20. Bendix, L. et al. (2014) ‘Longitudinal Changes in Leukocyte Telomere Length and Mortality in Humans’, MEDICAL SCIENCES Cite journal as: J Gerontol A Biol Sci Med Sci , 69(2), pp. 231–239. doi: 10.1093/gerona/glt153.
  21. Bernardes de Jesus, B. et al. (2012) ‘Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer’, EMBO Molecular Medicine . John Wiley & Sons, Ltd, 4(8), pp. 691–704. doi: 10.1002/emmm.201200245.
  22. Blackburn, E. H. et al. (1989) ‘Recognition and elongation of telomeres by telomerase’, Genome , 31(2), pp. 553–560. doi: 10.1139/g89-104.
  23. van Boheemen, L. A. et al. (2019) ‘Compensatory and additive helper effects in the cooperatively breeding Seychelles warbler (Acrocephalus sechellensis)’, Ecology and Evolution . John Wiley and Sons Ltd, 9(5), pp. 2986–2995. doi: 10.1002/ece3.4982.
  24. Boonekamp, J. J. et al. (2014) ‘Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds’, Proceedings of the Royal Society B: Biological Sciences , 281(1785). doi: 10.1098/rspb.2013.3287.
  25. Brouwer, L. et al. (2006) ‘The role of group size and environmental factors on survival in a cooperatively breeding tropical passerine’, Journal of Animal Ecology , 75(6), pp. 1321–1329. doi: 10.1111/j.1365-2656.2006.01155.x.
  26. Campisi, J. (2003) ‘Cellular senescence and apoptosis: How cellular responses might influence aging phenotypes’, in Experimental Gerontology . Pergamon, pp. 5–11. doi: 10.1016/S0531-5565(02)00152-3.
  27. Cesare, A. J. and Reddel, R. R. (2010) ‘Alternative lengthening of telomeres: Models, mechanisms and implications’, Nature Reviews Genetics , pp. 319–330. doi: 10.1038/nrg2763.
  28. Chen, W. et al. (2011) ‘Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: Age-dependent telomere shortening is the rule’, Journals of Gerontology - Series A Biological Sciences and Medical Sciences , 66 A(3), pp. 312–319. doi: 10.1093/gerona/glq223.
  29. Cong, Y. and Shay, J. W. (2008) ‘Actions of human telomerase beyond telomeres’, Cell Research , 18(7), pp. 725–732. doi: 10.1038/cr.2008.74.
  30. Criscuolo, F. et al. (2018) ‘Experimental manipulation of telomere length: Does it reveal a corner-stone role for telomerase in the natural variability of individual fitness?’, Philosophical Transactions of the Royal Society B: Biological Sciences . doi: 10.1098/rstb.2016.0440.
  31. van de Crommenacker, J. et al. (2012) ‘Parasitic infection and oxidative status are associated and vary with breeding activity in the Seychelles warbler’, Proceedings of the Royal Society B: Biological Sciences , 279(1733), pp. 1466–1476. doi: 10.1098/rspb.2011.1865.
  32. Van de Crommenacker, J. et al. (2011) ‘Spatio-temporal variation in territory quality and oxidative status: A natural experiment in the Seychelles warbler (Acrocephalus sechellensis)’,Journal of Animal Ecology , 80(3), pp. 668–680. doi: 10.1111/j.1365-2656.2010.01792.x.
  33. van de Crommenacker, J., Komdeur, J. and Richardson, D. S. (2011) ‘Assessing the cost of helping: The roles of body condition and oxidative balance in the seychelles warbler (acrocephalus sechellensis)’, PLoS ONE , 6(10). doi: 10.1371/journal.pone.0026423.
  34. Davis, T. and Kipling, D. (2005) ‘Telomeres and telomerase biology in vertebrates: Progress towards a non-human model for replicative senescence and ageing’, Biogerontology , 6(6), pp. 371–385. doi: 10.1007/s10522-005-4901-4.
  35. Van Deursen, J. M. (2014) ‘The role of senescent cells in ageing’,Nature . Nature Publishing Group, 509(7501), pp. 439–446. doi: 10.1038/nature13193.
  36. Edwards, H. A., Burke, T. and Dugdale, H. L. (2017) ‘Repeatable and heritable behavioural variation in a wild cooperative breeder’,Behavioral Ecology , 28(3), pp. 668–676. doi: 10.1093/beheco/arx013.
  37. Fairlie, J. et al. (2016) ‘Lifelong leukocyte telomere dynamics and survival in a free-living mammal’, Aging Cell , 15(1), pp. 140–148. doi: 10.1111/acel.12417.
  38. Fletcher, Q. E. et al. (2013) ‘Oxidative damage increases with reproductive energy expenditure and is reduced by food-supplementation’, Evolution . John Wiley & Sons, Ltd, 67(5), pp. 1527–1536. doi: 10.1111/evo.12014.
  39. Foley, N. M. et al. (2020) ‘Drivers of longitudinal telomere dynamics in a long-lived bat species, Myotis myotis’, Molecular Ecology . Blackwell Publishing Ltd, p. mec.15395. doi: 10.1111/mec.15395.
  40. Giraudeau, M. et al. (2019) ‘Telomere shortening as a mechanism of long-term cost of infectious diseases in natural animal populations’, Biology Letters , 15(5). doi: 10.1098/rsbl.2019.0190.
  41. Hammers, M. et al. (2015) ‘Senescence in the wild: Insights from a long-term study on Seychelles warblers’, Experimental Gerontology . Elsevier Inc., 71, pp. 69–79. doi: 10.1016/j.exger.2015.08.019.
  42. Hammers, M. et al. (2016a) ‘Age-specific haemosporidian infection dynamics and survival in Seychelles warblers’,Scientific Reports . Nature Publishing Group, 6(1), p. 29720. doi: 10.1038/srep29720.
  43. Hammers, M. et al. (2016b) ‘Age-specific haemosporidian infection dynamics and survival in Seychelles warblers’,Scientific Reports . Nature Publishing Group, 6(1), p. 29720. doi: 10.1038/srep29720.
  44. Hammers, M. et al. (2019) ‘Breeders that receive help age more slowly in a cooperatively breeding bird’, Nature Communications , 10(1). doi: 10.1038/s41467-019-09229-3.
  45. Hammers, M. and Brouwer, L. (2017) ‘Rescue behaviour in a social bird: Removal of sticky “bird-catcher tree” seeds by group members’,Behaviour . Brill Academic Publishers, 154(4), pp. 403–411. doi: 10.1163/1568539X-00003428.
  46. Harshman, L. G. and Zera, A. J. (2007) ‘The cost of reproduction: the devil in the details’, Trends in Ecology and Evolution , 22(2), pp. 80–86. doi: 10.1016/j.tree.2006.10.008.
  47. Haussmann, M. F. et al. (2003) ‘Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones’,Proceedings of the Royal Society B: Biological Sciences , 270(1522), pp. 1387–1392. doi: 10.1098/rspb.2003.2385.
  48. Haussmann, M. F. et al. (2007) ‘Telomerase activity is maintained throughout the lifespan of long-lived birds’,Experimental Gerontology , 42(7), pp. 610–618. doi: 10.1016/j.exger.2007.03.004.
  49. Haussmann, M. F., Winkler, D. W. and Vleck, C. M. (2005) ‘Longer telomeres associated with higher survival in birds.’, Biology letters , 1(2), pp. 212–214. doi: 10.1098/rsbl.2005.0301.
  50. Heidinger, B. J. et al. (2012) ‘Telomere length in early life predicts lifespan’, Proceedings of the National Academy of Sciences , 109(5), pp. 1743–1748. doi: 10.1073/pnas.1113306109.
  51. Hellgren, O., Waldenström, J. and Bensch, S. (2004) ‘A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood’, Journal of Parasitology , 90(4), pp. 797–802. doi: 10.1645/GE-184R1.
  52. Hoelzl, F. et al. (2016) ‘Telomere dynamics in free-living edible dormice (Glis glis): The impact of hibernation and food supply’, Journal of Experimental Biology . The Company of Biologists Ltd, 219(16), pp. 2469–2474. doi: 10.1242/jeb.140871.
  53. Karell, P. et al. (2017) ‘Pale and dark morphs of tawny owls show different patterns of telomere dynamics in relation to disease status’, Proceedings of the Royal Society B: Biological Sciences , 284(1859). doi: 10.1098/rspb.2017.1127.
  54. Kingma, S. A. et al. (2016) ‘The cost of prospecting for dispersal opportunities in a social bird’, Biology Letters , 12(6). doi: 10.1098/rsbl.2016.0316.
  55. Komdeur, J. (1991) ‘Cooperative breeding in the Seychelles warbler’,Trends in Ecology & Evolution , 7(10), pp. 330–331. Available at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239141 (Accessed: 15 August 2019).
  56. Komdeur, J. (1992) ‘Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler’, Nature . Nature Publishing Group, 358(6386), pp. 493–495. doi: 10.1038/358493a0.
  57. Komdeur, J. (1994) ‘Experimental evidence for helping and hindering by previous offspring in the cooperative-breeding Seychelles warbler Acrocephalus sechellensis’, Behavioral Ecology and Sociobiology . Springer-Verlag, 34(3), pp. 175–186. doi: 10.1007/BF00167742.
  58. Komdeur, J. et al. (2004) ‘Why Seychelles Warblers fail to recolonize nearby islands: Unwilling or unable to fly there?’,Ibis . John Wiley & Sons, Ltd (10.1111), 146(2), pp. 298–302. doi: 10.1046/j.1474-919X.2004.00255.x.
  59. Komdeur, J. and Daan, S. (2005) ‘Breeding in the monsoon: Semi-annual reproduction in the Seychelles warbler (Acrocephalus sechellensis)’,Journal of Ornithology . Springer-Verlag, 146(4), pp. 305–313. doi: 10.1007/s10336-005-0008-6.
  60. Kotrschal, A., Ilmonen, P. and Penn, D. J. (2007) ‘Stress impacts telomere dynamics’, Biology Letters , 3(2), pp. 128–130. doi: 10.1098/rsbl.2006.0594.
  61. Kurz, D. J. et al. (2004) ‘Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells’, Journal of Cell Science . The Company of Biologists Ltd, 117(11), pp. 2417–2426. doi: 10.1242/jcs.01097.
  62. Lemaître, J.-F. et al. (2015) ‘Early-late life trade-offs and the evolution of ageing in the wild.’, Proceedings. Biological sciences / The Royal Society , 282(1806), p. 20150209. doi: 10.1098/rspb.2015.0209.
  63. Lemaître, J. F. et al. (2013) ‘Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores’, Experimental Gerontology . Pergamon, 48(2), pp. 162–167. doi: 10.1016/j.exger.2012.12.004.
  64. van Lieshout, S. H. J. et al. (2019) ‘Individual variation in early‐life telomere length and survival in a wild mammal’,Molecular Ecology , (July), pp. 1–14. doi: 10.1111/mec.15212.
  65. López-Otín, C. et al. (2013) ‘The hallmarks of aging’,Cell , 153(6). doi: 10.1016/j.cell.2013.05.039.
  66. Low, M., Makan, T. and Castro, I. (2012) ‘Food availability and offspring demand influence sex-specific patterns and repeatability of parental provisioning’, Behavioral Ecology , 23(1), pp. 25–34. doi: 10.1093/beheco/arr145.
  67. Mizutani, Y. et al. (2013) ‘Environmental perturbations influence telomere dynamics in long-lived birds in their natural habitat’, Biology Letters , 9(5). doi: 10.1098/rsbl.2013.0511.
  68. Monaghan, P. and Ozanne, S. E. (2018) ‘Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms and consequences’,Philosophical Transactions of the Royal Society B: Biological Sciences . doi: 10.1098/rstb.2016.0446.
  69. Morrison, S. J. et al. (1996) ‘Telomerase activity in hematopoietic cells is associated with self-renewal potential’,Immunity , 5(3), pp. 207–216. doi: 10.1016/S1074-7613(00)80316-7.
  70. Nettle, D. et al. (2015) ‘An experimental demonstration that early-life competitive disadvantage accelerates telomere loss.’,Proceedings. Biological sciences / The Royal Society , 282(1798), p. 20141610. doi: 10.1098/rspb.2014.1610.
  71. Nussey, D. H. et al. (2013) ‘Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology’, Ageing Research Reviews , 12(1), pp. 214–225. doi: 10.1016/j.arr.2012.07.004.
  72. Nussey, D. H. et al. (2014) ‘Measuring telomere length and telomere dynamics in evolutionary biology and ecology’, Methods in Ecology and Evolution . John Wiley & Sons, Ltd, 5(4), pp. 299–310. doi: 10.1111/2041-210X.12161.
  73. Olovnikov, A. M. (1996) ‘Telomeres, telomerase, and aging: Origin of the theory’, Experimental Gerontology , 31(4), pp. 443–448. doi: 10.1016/0531-5565(96)00005-8.
  74. Raj Pant, S. et al. (2019) ‘Socio-ecological conditions and female infidelity in the Seychelles warbler’, Behavioral Ecology . doi: 10.1093/beheco/arz072.
  75. Raj Pant, S. et al. (2020) ‘Age-dependent changes in infidelity in Seychelles warblers’, Molecular Ecology . Blackwell Publishing Ltd, 29(19), pp. 3731–3746. doi: 10.1111/mec.15563.
  76. Reichert, S., Bize, P., et al. (2014) ‘Experimental increase in telomere length leads to faster feather regeneration’,Experimental Gerontology , 52, pp. 36–38. doi: 10.1016/j.exger.2014.01.019.
  77. Reichert, S., Stier, A., et al. (2014) ‘Increased brood size leads to persistent eroded telomeres’, Frontiers in Ecology and Evolution . Frontiers Media S. A, 2(APR), p. 9. doi: 10.3389/fevo.2014.00009.
  78. Reichert, S. and Stier, A. (2017) ‘Does oxidative stress shorten telomeres in vivo ? A review’, Biology Letters , 13(12), p. 20170463. doi: 10.1098/rsbl.2017.0463.
  79. Richardson, D. S. et al. (2001) ‘Parentage assignment and extra-group paternity in a cooperative breeder: The Seychelles warbler (Acrocephalus sechellensis)’, Molecular Ecology , 10(9), pp. 2263–2273. doi: 10.1046/j.0962-1083.2001.01355.x.
  80. Richardson, D. S., Burke, T. and Komdeur, J. (2002) ‘Direct benefits and the evolution of female-biased cooperative breeding in Seychelles warblers’, Evolution . Wiley/Blackwell (10.1111), 56(11), pp. 2313–2321. doi: 10.1111/j.0014-3820.2002.tb00154.x.
  81. Richardson, D. S., Burke, T. and Komdeur, J. (2007) ‘Grandparent helpers: The adaptive significance of older, postdominant helpers in the Seychelles warbler’, Evolution , 61(12), pp. 2790–2800. doi: 10.1111/j.1558-5646.2007.00222.x.
  82. Salomons, H. M. et al. (2009) ‘Telomere shortening and survival in free-living corvids’, Proceedings of the Royal Society B: Biological Sciences . Royal Society, 276(1670), pp. 3157–3165. doi: 10.1098/rspb.2009.0517.
  83. Santos, E. S. A. and Nakagawa, S. (2012) ‘The costs of parental care: A meta-analysis of the trade-off between parental effort and survival in birds’, Journal of Evolutionary Biology . John Wiley & Sons, Ltd (10.1111), 25(9), pp. 1911–1917. doi: 10.1111/j.1420-9101.2012.02569.x.
  84. Schielzeth, H. (2010) ‘Simple means to improve the interpretability of regression coefficients’, Methods in Ecology and Evolution , 1(2), pp. 103–113. doi: 10.1111/j.2041-210x.2010.00012.x.
  85. Shay, J. W. and Wright, W. E. (2011) ‘Role of telomeres and telomerase in cancer’, Seminars in Cancer Biology . Academic Press, pp. 349–353. doi: 10.1016/j.semcancer.2011.10.001.
  86. Simons, M. J. P. (2015) ‘Questioning causal involvement of telomeres in aging’, Ageing Research Reviews , pp. 191–196. doi: 10.1016/j.arr.2015.08.002.
  87. Soulsbury, C. D. and Halsey, L. G. (2018) ‘Does Physical Activity Age Wild Animals?’, Frontiers in Ecology and Evolution , 6(December). doi: 10.3389/fevo.2018.00222.
  88. Sparks, A. et al. (2020) ‘Telomere heritability and parental age at conception effects in a wild avian population’. EcoEvoRxiv. doi: 10.32942/osf.io/eq2af.
  89. Spurgin, L. G. et al. (2017) ‘Spatio-temporal variation in lifelong telomere dynamics in a long- term ecological study’,Journal of Animal Ecology , (July), pp. 1–12. doi: 10.1111/1365-2656.12741.
  90. Stearns, S. C. (2008) ‘Trade-Offs in Life-History Evolution S. C. Stearns’, Evolution , 3(3), pp. 259–268.
  91. Steenstrup, T. et al. (2013) ‘The telomere lengthening conundrum - Artifact or biology?’, Nucleic Acids Research , 41(13). doi: 10.1093/nar/gkt370.
  92. Stier, A. et al. (2015) ‘Red blood cells open promising avenues for longitudinal studies of ageing in laboratory, non-model and wild animals’, Experimental Gerontology . Elsevier Inc., 71, pp. 118–134. doi: 10.1016/j.exger.2015.09.001.
  93. Sudyka, J. et al. (2014a) ‘Experimentally increased reproductive effort alters telomere length in the blue tit (Cyanistes caeruleus )’, Journal of Evolutionary Biology . Blackwell Publishing Ltd, 27(10), pp. 2258–2264. doi: 10.1111/jeb.12479.
  94. Sudyka, J. et al. (2014b) ‘Experimentally increased reproductive effort alters telomere length in the blue tit (Cyanistes caeruleus)’, Journal of Evolutionary Biology . Blackwell Publishing Ltd, 27(10), pp. 2258–2264. doi: 10.1111/jeb.12479.
  95. Sudyka, J., Arct, A., et al. (2019) ‘Birds with high lifetime reproductive success experience increased telomere loss’,Biology Letters , 15(1). doi: 10.1098/rsbl.2018.0637.
  96. Sudyka, J. (2019) ‘Does Reproduction Shorten Telomeres? Towards Integrating Individual Quality with Life-History Strategies in Telomere Biology’, BioEssays . John Wiley and Sons Inc., p. 1900095. doi: 10.1002/bies.201900095.
  97. Sudyka, J., Podmokła, E., et al. (2019) ‘Sex-specific effects of parasites on telomere dynamics in a short-lived passerine—the blue tit’, Science of Nature , 106(1–2). doi: 10.1007/s00114-019-1601-5.
  98. Svenson, U. et al. (2011) ‘Blood cell telomere length is a dynamic feature’, PLoS ONE , 6(6), p. 21485. doi: 10.1371/journal.pone.0021485.
  99. Therneau, T. M. (2014) ‘A package for survival analysis in S. R package version 2.37-7. Available at http://CRAN.R-project.org/package=survival’, Survival . Available at: http://r-forge.r-project.org (Accessed: 11 September 2020).
  100. Vera, E. et al. (2012) ‘The Rate of Increase of Short Telomeres Predicts Longevity in Mammals’, Cell Reports . The Authors, 2(4), pp. 732–737. doi: 10.1016/j.celrep.2012.08.023.
  101. Verhulst, S. et al. (2013) ‘Do leukocyte telomere length dynamics depend on baseline telomere length? An analysis that corrects for “regression to the mean”’, European Journal of Epidemiology , 28(11), pp. 859–866. doi: 10.1007/s10654-013-9845-4.
  102. Visser, M. E. and Lessells, C. M. (2001) ‘The costs of egg production and incubation in great tits (Parus major)’, Proceedings of the Royal Society B: Biological Sciences , 268(1473), pp. 1271–1277. doi: 10.1098/rspb.2001.1661.
  103. Watson, H., Bolton, M. and Monaghan, P. (2015) ‘Variation in early-life telomere dynamics in a long-lived bird: Links to environmental conditions and survival’, Journal of Experimental Biology . The Company of Biologists Ltd, 218(5), pp. 668–674. doi: 10.1242/jeb.104265.
  104. Watson, J. D. (1972) ‘Origin of concatemeric T7 DNA’, Nature New Biology . Nature Publishing Group, 239(94), pp. 197–201. doi: 10.1038/newbio239197a0.
  105. Weng, N. ping (2012) ‘Telomeres and immune competency’, Current Opinion in Immunology , pp. 470–475. doi: 10.1016/j.coi.2012.05.001.
  106. Wilbourn, R. V et al. (2018) ‘The relationship between telomere length and mortality risk in non-model vertebrate systems: A meta-analysis’, Philosophical Transactions of the Royal Society B: Biological Sciences , 373(1741). doi: 10.1098/rstb.2016.0447.
  107. Williams, T. D. (2005) ‘Mechanisms underlying the costs of egg production’, BioScience . Oxford University Press, 55(1), p. 39. doi: 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2.
  108. Wood, E. M. and Young, A. J. (2019) ‘Telomere attrition predicts reduced survival in a wild social bird, but short telomeres do not’,Molecular Ecology , (June), pp. 3669–3680. doi: 10.1111/mec.15181.
  109. Young, A. J. (2018) ‘The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing’, Philosophical Transactions of the Royal Society B: Biological Sciences . doi: 10.1098/rstb.2016.0452.
  110. Von Zglinicki, T. (2002) ‘Oxidative stress shortens telomeres’,Trends in Biochemical Sciences , 27(7), pp. 339–344. doi: 10.1016/S0968-0004(02)02110-2.