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Key Points: 11 

• Science stands at the cusp of a new, open science, cloud-enabled era  12 

• Advances in data, software, and computing are enabling transformational, 13 
interdisciplinary science, changing the realm of possible questions 14 

• Deliberately designed open science communities can advance science and inclusivity 15 
simultaneously  16 
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Abstract 17 

The core tools of science (data, software, and computers) are undergoing a rapid and historic 18 
evolution, changing what questions scientists ask and how they find answers. Earth science data 19 
are being transformed into new formats optimized for cloud storage that enable rapid analysis of 20 
multi-petabyte datasets. Datasets are moving from archive centers to vast cloud data storage, 21 
adjacent to massive server farms. Open source cloud-based data science platforms, accessed 22 
through a web-browser window, are enabling advanced, collaborative, interdisciplinary science 23 
to be performed wherever scientists can connect to the internet. Specialized software and 24 
hardware for machine learning and artificial intelligence (AI/ML) are being integrated into data 25 
science platforms, making them more accessible to average scientists. Increasing amounts of data 26 
and computational power in the cloud are unlocking new approaches for data-driven discovery. 27 
For the first time, it is truly feasible for scientists to bring their analysis to data in the cloud 28 
without specialized cloud computing knowledge. This shift in paradigm has the potential to 29 
lower the threshold for entry, expand the science community, and increase opportunities for 30 
collaboration while promoting scientific innovation, transparency, and reproducibility.  Yet, we 31 
have all witnessed promising new tools which seem harmless and beneficial at the outset become 32 
damaging or limiting. What do we need to consider as this new way of doing science is 33 
evolving? 34 

Plain Language Summary 35 

For a long time, scientists have downloaded data and analyzed it on their computer. This made 36 
collaborating hard because other people didn’t have access to the same data, software, and 37 
computer. It also gave scientists at big institutions with fast internet and lots of computers an 38 
advantage. Now, data are being put on the cloud, scientists are sharing their software, and 39 
anyone can access a computer on the cloud through their web browser. This makes it easier to 40 
collaborate because everyone can access the same data, software, and computer. Also, more 41 
people can access powerful computers and do science. This is a different way of doing science 42 
and there are potential drawbacks. We need to be careful that this new way of doing science 43 
actually advances science and includes more people so that we get better answers, faster. 44 

1 Introduction 45 

“New directions in science are launched by new tools much more often than by new 46 
concepts. The effect of a concept-driven revolution is to explain old things in new ways. 47 
The effect of a tool-driven revolution is to discover new things that have to be explained.” 48 
--Freeman Dyson 49 

Since the advent of scientific computing, computers have driven major scientific 50 
breakthroughs. We have peered into deep space, developed models to predict our weather and 51 
climate, and sequenced the entire human genome.  There is no question that computers have 52 
advanced science and improved lives. Yet, challenges around computing have frustrated 53 
researchers, driving efforts to improve efficiency through data standardization, development of 54 
common software tools, and connecting computers into a cluster. For many research topics, the 55 
Pareto Principle’s 80/20 distribution ‘rule’ applies (Pareto, 1971). 80% of time on a project is 56 
spent ‘data-wrangling’ (downloading, storing, maintaining a private archive of data and 57 
developing software to access it), leaving only 20% for efforts to analyze results and share what 58 
was learned. This ratio changes depending on what level of institutional support is provided to 59 
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researchers, creating inequalities and barriers to research. Larger organizations may have 60 
invested in vast private data storage, powerful computer clusters, and technology support. At 61 
least in part, at top-tier institutions, cutting-edge transformational science is enabled by the 62 
infrastructure that these institutions have built up over decades, and this resource is not always 63 
available to others. In other words, while computers have undoubtedly advanced science, they 64 
have also perpetuated and strengthened some inequalities. 65 

Challenges around data storage and management, a reliance on outdated programming 66 
languages, and limitations around access to powerful computers are barriers to accomplishing 67 
science. In this article we discuss how innovations in data access, software tools, and computer 68 
infrastructure are fundamentally changing how science is accomplished and who is able to 69 
participate. We believe this shift is going to change the realm of possible questions and our 70 
ability to answer them. The speed and impact of this shift will, in part, depend on whether this 71 
new way of doing science is able to empower more voices to yield better, stronger solutions. 72 

2 Innovations in Data 73 

“Paradigm shifts arise when the dominant paradigm under which normal science 74 
operates is rendered incompatible with new phenomena, facilitating the adoption of a 75 
new theory or paradigm.” (Thomas, 1962) 76 

When scientists need data, they often turn to agency archive centers for access. Data is 77 
downloaded, stored locally, and networked to a computer for analysis. Large datasets can take 78 
weeks or months to download, and when a new version of the data is released, the process must 79 
be repeated. Many scientists at smaller institutions or in developing countries don’t have the 80 
bandwidth or infrastructure to handle these data, limiting their ability to do science. Data are 81 
being moved from archive centers to vast cloud data storage facilities. NASA has partnered with 82 
Amazon Web Services (AWS) in a Space Act Agreement to provide free access to NASA 83 
datasets stored on AWS (NASA, 2020). NOAA has partnered with multiple public commercial 84 
cloud providers for their Big Data Project (BDP) to enable free, cloud-based data storage and 85 
access for users of the most popular portions of their data holdings (NOAA, 2020). Through 86 
these partnerships, data are public and can be freely accessed or downloaded (Text S1). These 87 
agencies are in the midst of a historic transformation in data access, moving data from archive 88 
centers to public commercial cloud and national cloud storage facilities adjacent to server farms.   89 

Beyond where the data are stored, how the data are stored determines how fast and easy it 90 
can be accessed. For example, NOAA datasets made available through integrations with highly-91 
scalable data warehouse tools such as Google’s BigQuery have been observed to be used at rates 92 
1000x greater than when they were only available from an agency archive  (Kearns et al., 2018). 93 
Traditional databases are giving way to highly scalable formats that can accommodate heavy 94 
search loads with faster performance. Cloud-optimized data are organized into ‘chunks’ of data, 95 
making it possible to distribute the access to 100 Gigabytes (GB) across 100 machines. The open 96 
science community Pangeo Project (http://pangeo.io/) (Abernathey et al., 2017) is creating a 97 
‘Pangeo Forge’, to crowdsource and automate the creation of cloud optimized data 98 
(https://github.com/pangeo-forge/roadmap). This change in how data are accessed is due to 99 
improvements in the software used to access data (Abernathey et al., 2020). 100 

http://pangeo.io/
https://github.com/pangeo-forge/roadmap
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3 Innovations in Software 101 

For decades, science has relied on fast compiled programming languages, such as Fortran 102 
and C, and commercial interpreted  analysis languages such as Matlab, S-Plus, and Interactive 103 
Data Language (IDL). The reliance on expensive commercial software for scientific analysis 104 
directly reinforces the inequities between wealthy, privileged institutions and scientists and those 105 
from economically disadvantaged communities and the developing world. Also, these languages 106 
are rarely used outside of the science community and therefore 1) there simply aren’t many 107 
people to ask for help when stuck on a problem and 2) there aren’t many community-developed 108 
software tools (Fangohr, 2004; Momcheva & Tollerud, 2015). The open source languages 109 
Python and R have experienced a substantial growth in popularity over the last decade (Figure 110 
S1). Software based on an open source language encourages others to build open source tools 111 
that can be widely shared, incrementally improved, and adopted by large communities as they 112 
mature.  113 

The shift in science towards using and participating in the development of open source 114 
software libraries has enabled rapid innovations and software improvements. Contributors to 115 
open source libraries help eliminate programming errors, improve documentation, and extend 116 
capabilities to broaden applicability. For example, the Python Xarray software library (Hoyer & 117 
Hamman, 2017). Xarray provides a powerful and easy-to-use toolkit for analysis of structured 118 
files common in Earth science (eg. Network Common Data Form (NetCDF), GRIB, and gridded 119 
raster). Xarray was built on top of other layers of the scientific python software ecosystem, 120 
specifically NumPy (Harris et al., 2020) and Pandas (McKinney, 2010). While only three 121 
software libraries required for a basic Xarray installation, there are 21 more optional ones, such 122 
as the plotting library Matplotlib (Hunter, 2007), analysis library Scipy (Virtanen et al., 2020), 123 
and parallel computing library, Dask (Rocklin, 2015).  124 

The integration of these disparate software libraries in the service of Earth system science 125 
doesn’t happen by magic. Coordinated efforts from funding agencies, such as NSF EarthCube’s 126 
funding of the Pangeo Project, helped accelerate and coordinate the development of Xarray and 127 
Dask to meet the needs of science users. Other agencies are also recognizing the value of these 128 
software libraries to science.  For example, in 2020, NASA released a request for proposals “for 129 
the improvement and sustainment of high-value, open source tools, frameworks, and libraries'' 130 
(https://tinyurl.com/nasaE7OSS). 131 

4 Innovations in Computation 132 

To help scientists handle increasingly large and complex datasets, the default response by 133 
institutions is often to purchase a local computing cluster. While local computer clusters can be 134 
efficient and cost-effective when fully utilized, only a select few institutions can afford them. 135 
This excludes vast parts of the scientific community and creates a have-have/not situation. These 136 
are computing fortresses that only the lucky can enter. Much like a medieval fortress, the 137 
infrastructure ages rapidly, requires constant maintenance, and is not as agile as science often 138 
requires. The closed environment means that collaborating with outside investigators can be 139 
challenging, often there is an application process and a steep learning curve to understand the 140 
computational environment.  141 

Public commercial cloud computing solutions offer data storage and computing services, 142 
which can be provisioned and scaled by anyone, on demand. Three commercial providers (AWS, 143 

https://tinyurl.com/nasaE7OSS
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Google Cloud Platform (GCP), and Microsoft Azure) dominate the market, but others also offer 144 
competitive solutions (Digital Ocean, Wasabi, OVH). Science funding agencies are also 145 
experimenting with operating their own clouds (e.g. NSF Jetstream). Unfortunately, accessing 146 
cloud resources requires specialized expertise. Configuring a ‘computer on the cloud’ involves 147 
selecting virtual machines, data storage, setting security access rules, monitoring costs, and other 148 
technical decisions. As scientific analyses are moved to the cloud, it is important that we do not 149 
re-create the same barriers that researchers currently experience with local computer clusters. 150 

Fortunately, there is an ecosystem of tools, organizations, and communities that has 151 
grown around open and vendor-agnostic approaches to research. For example, JupyterHub 152 
provides an easily accessed common data science platform that removes interoperability as a 153 
barrier to collaboration. The computing environment, whether running on local or remote cloud 154 
infrastructure, can be accessed through any browser window. Other tools in the Jupyter 155 
ecosystem (such as JupyterLab and the Jupyter Notebook) provide domain- and vendor-agnostic 156 
interfaces for software development (Kluyver et al., 2016). These tools are already the default for 157 
most data scientists and are rapidly being adopted by others who require computational 158 
notebooks (Perkel, 2018). JupyterHubs can separate and consolidate the maintenance of running 159 
shared infrastructure from the act of doing science.  160 

Managing secure, cost effective access to JupyterHubs for scientists will likely look 161 
different depending on how the research is funded. Some agencies have invested in an agency-162 
managed cloud solution for their researchers (eg. NSF’s JetStream). Institutions like the 163 
Norwegian Institute for Water Research maintain and manage a GCP JupyterHub available to all 164 
of their researchers. To promote open science in the social sciences, the Leibniz Institute for the 165 
Social Sciences provides free persistent JupyterHub environments (https://notebooks.gesis.org/). 166 
Several companies have formed to meet the needs of both industry and science, such as Coiled 167 
(https://coiled.io/), and Saturn (https://www.saturncloud.io/), and the nonprofit International 168 
Interactive Computing Collaboration (https://2i2c.org). These companies make managed cloud 169 
infrastructure accessible for smaller organizations and individuals, ensuring that large institutions 170 
or agency-affiliate researchers aren’t at a ‘cloud’ advantage. The new scientific workflow 171 
(Figure 1) illustrates the shift in how science is accomplished on the cloud, whether the cloud is a 172 
public commercial cloud or national science cloud like JetStream. 173 

5 Putting it all together 174 

Open, cloud-based science is already starting to occur. In this section, we present an 175 
example of a key open source tool that advances science and several science results that do open, 176 
cloud-based science. Advancing reproducibility: The Binder project (https://mybinder.org) 177 
combines open software and cloud computing to advance reproducibility and simplify sharing 178 
among teams. Through a simple web browser window, Binder connects users, in one-click, with 179 
an interactive cloud-based JupyterHub that is running a user-specified collection of 180 
computational notebooks. With over 100,000 weekly users, this project is changing how 181 
scientists share reproducible analyses (Holdgraf, 2020; Text S2). New science: NOAA has 182 
collected over 200 TBs of whale calls using seafloor mounted acoustic recorders. Listening to 183 
the data would take over 19 years.  Researchers developed a convolutional neural network to 184 
automate identification of beluga whale calls (https://github.com/microsoft/belugasounds) 185 
(Zhong et al., 2020). This entire dataset is being analyzed by scientists for the first time to 186 
understand where whales are, how they move, and how changing ocean conditions affect their  187 

https://notebooks.gesis.org/
https://coiled.io/
https://www.saturncloud.io/
https://2i2c.org/
https://mybinder.org/
https://github.com/microsoft/belugasounds
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 188 

Figure 1. Science is changing as data, software, and computers are coming together on the 189 
cloud. Scientists can access massive cloud computing resources through a web browser window, 190 
effectively putting a super-computer into any internet-connected device. 191 

population. Research to operations: Rapid estimation of hurricane strength and heading is critical 192 
to allocating emergency resources. Trained meteorologists estimate hurricane intensity using 193 
satellite imagery matched to known patterns. NASA artificial intelligence experts automated 194 
hurricane classification (http://hurricane.dsig.net/) (Pradhan et al., 2018), reducing the latency in 195 
communicating major threats to the public. Societal impact: Researchers combined NOAA and 196 
USGS open cloud-optimized data, open software, and cloud computing to produce flood risk 197 
scores for over 140 million properties in the U.S. (https://floodfactor.com/) (Kearns et al., 2020). 198 
These scores are easily communicated to and consumed by the American public, enabling 199 
complex science to be translated into simple, practical information products. 200 

6 Challenges 201 

How do we ensure that this new way of doing science does not just swap one system’s 202 
challenges and inequalities for different ones? In some ways, our rush to expand into the cloud is 203 
already experiencing growing pains. In this section we discuss several challenges and provide 204 
additional discussion in Text S3. 205 

The federal agencies that fund science move slowly, and while this provides stability that 206 
gives science a solid foundation, this inertia can also open up gaps in support when there is a 207 
major shift in community needs. For example, cloud-based datasets still require careful data 208 
curation, metadata standards, and data provision from trusted sources. By reducing the barriers to 209 
creating, publishing, accessing and using data, we may increase the potential for inadvertent mis-210 
use by users not familiar with scientific data practices, version controls, and trusted repositories. 211 

http://hurricane.dsig.net/
https://floodfactor.com/
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New approaches to communicating ‘data-best-practices’ and how to identify trusted sources are 212 
already needed because data are already on the cloud. Scientists require more training in 213 
software best practices and in how to share software for reproducible results. Existing data 214 
archives that scientists are already familiar with, along with groups focused on education (eg. 215 
Openscapes, https://www.openscapes.org/ and The Carpentries, https://carpentries.org/), could 216 
play a central role in advancing this data and software literacy, but this will require prioritized 217 
support from agencies.  218 

A central question that must be resolved to realize the vision of a large-scale migration to 219 
cloud-based science is who pays for the cloud computing and does this create incentives that 220 
affect science? Traditionally, the cost of computing infrastructure has been borne primarily by 221 
funding agencies (e.g. NSF, via grants to individual PIs as well as large-scale facilities) and by 222 
research institutions (via institutional support for computing hardware and support staff). As 223 
organizations shift budgets to pay for cloud infrastructure, it raises the question of which services 224 
or infrastructure should be removed from within the university. How can we ensure that cloud 225 
infrastructure is utilized in partnership with local infrastructure, so that their relative strengths are 226 
utilized, rather than an "all or nothing" proposition? Accessing secure, scalable, cloud computing 227 
requires technical expertise and ongoing cost oversight. How do we ensure that access to cloud 228 
computing doesn’t simply replicate a situation where science is restricted to the privileged, well-229 
funded, connected, few? There is also a risk of becoming too dependent on providers of cloud 230 
computing services. Who should be the service providers in this new cloud-native world?  231 
Programs like NSF’s cloud bank (https://www.cloudbank.org/), companies like Coiled, and non-232 
profit organizations like 2i2c can all play the role of an intermediary between the cloud providers 233 
and individual scientists, giving the scientific community greater leverage and control over their 234 
infrastructure choices.  235 

Finally, as we advocate for open science it is important to recognize that openness that 236 
advances science is not a pure product of technology, it is a product of practices, norms, and 237 
community behavior around that technology. Just as new technology requires designing new 238 
workflows, it is important to deliberately design a new community infrastructure that is 239 
welcoming to a more diverse community, strategically directs support and community dynamics 240 
to include marginalized groups, and recognizes how previous power dynamics in science act to 241 
exclude groups from participation. As an example, the Pangeo Project defines itself as a 242 
“community platform”, emphasizing both a focus on cutting edge open science and building 243 
community dynamics that are open, inclusive, deliberate, and that balance power across the 244 
many stakeholders in the ecosystem. Participants are asked to abide by a Code of Conduct (eg. 245 
https://tinyurl.com/pangeoCC; Text S4). How is this work to create inclusive open communities 246 
that advance science prioritized when this work isn’t recognized as a contribution to science in 247 
most academic, commercial, and agency performance or tenure evaluations? 248 

7 Conclusions 249 

"A new generation of information technology tools and services holds the potential of 250 
further revolutionizing scientific practice... These tools and services will have maximum 251 
impact when used within an open science ecosystem" (National Academies of Sciences, 252 
2018) 253 

Data, software, computers. These tools are already being combined to advance science, 254 
but to really enable transformational science, open science has to be the core design principle 255 

https://www.openscapes.org/
https://carpentries.org/
https://www.cloudbank.org/
https://tinyurl.com/pangeoCC
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integrated into all efforts moving forward. Open science is “research conducted openly and 256 
transparently” (National Academies of Sciences, 2018). Open data makes results reproducible. 257 
Open software creates community tools that advance science faster and can reduce the effort to 258 
reproduce and build on results. Open compute means building data science platforms and 259 
software services that have an open infrastructure that is entirely vendor agnostic and is 260 
accessible to anyone.  261 

There is now a rich ecosystem of easily-accessible data, server-side computation, open 262 
source software tools, and one-click-to-compute cloud computing data science platforms that 263 
enable research at a scale and ease unimaginable only a few years ago (Text S5). Practically, for 264 
scientists, the effect of these changes is to vastly shrink the amount of time spent acquiring and 265 
processing data, freeing up more time for science. This shift in paradigm is lowering the 266 
threshold for entry, expanding the science community, and increasing opportunities for 267 
collaboration, while promoting scientific innovation, transparency, and reproducibility. 268 
Communities can work together to reduce barriers and create a powerful force for innovation. 269 
The more diverse the minds working together, the better chance we have to identify and remove 270 
barriers to innovation. Building open science on the cloud creates that same innovative 271 
community but without many of the previous barriers to collaborations.The community is open 272 
and scientists can collaborate with anyone, regardless of their affiliation, nationality, or location. 273 
Potentially,  this transformation may free up researchers' time for science and create a space 274 
where more leaps in our understanding will be common and breakthrough interdisciplinary 275 
collaborations can flourish. Technology can be a two-edged sword, adding new barriers as it 276 
removes older ones. As we move towards this new way to do science, designing our new 277 
playground around open science will enable honest conversations around barriers to participation 278 
in science and help us move forward, both faster and together. 279 
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