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Abstract13

Projections of nonstationary climate risks can vary considerably from one source to an-14

other, posing considerable communication and decision-analytical challenges. One such15

challenge is how to present trade-offs under deep uncertainty in a salient and interpretable16

manner. Some common approaches include analyzing a small subset of projections or17

treating all considered projections as equally likely. These approaches can underestimate18

risks, hide deep uncertainties, and are mostly silent on which assumptions drive decision-19

relevant outcomes. Here we introduce and demonstrate a transparent Bayesian frame-20

work for synthesizing deep uncertainties to inform climate risk management. The first21

step of this workflow is to generate an ensemble of simulations representing possible fu-22

tures and analyze them through standard exploratory modeling techniques. Next, a small23

set of probability distributions representing subjective beliefs about the likelihood of pos-24

sible futures is used to weight the scenarios. Finally, these weights are used to compute25

and characterize trade-offs, conduct robustness checks, and reveal implicit assumptions.26

We demonstrate the framework through a didactic case study analyzing how high to el-27

evate a house to manage coastal flood risks.28

Plain Language Summary29

Identifying sound strategies to manage risks driven by climatic changes is a com-30

plex task given the large uncertainties surrounding projections of coupled natural-human31

systems. These uncertainties often arise from choices experts have to make, for exam-32

ple about how to formulate scientific models of future water levels. Different experts can33

disagree about these choices, leading to different projections. Analyzing decisions in such34

a situation of deep uncertainty poses nontrivial challenges. For example, picking a sin-35

gle representative projection can under-estimate risk and result in poor decisions. Sim-36

ilarly, communicating results separately for each projection can overwhelm decision-makers.37

To make matters worse, typical approaches to this problem are mostly silent on what38

assumptions make a difference for the decisions at hand. We develop and demonstrate39

a framework to address these challenges. The framework provides a transparent approach40

to (i) combine a large number of deeply uncertain projections to a more interpretable41

sample set and (ii) provide insights about which assumptions and modeling choices in-42

fluence decisions. We demonstrate the approach with a relatively simple example ques-43

tion of how high to elevate a house in the face of deeply uncertain projections of future44

water levels.45
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1 Introduction46

Aging infrastructure and changes in regulations, finance, patterns of population and47

infrastructure use, and climate challenge the ability of critical infrastructures to meet48

design objectives (Doss-Gollin et al., 2021, 2020; Chester et al., 2020; Tye & Giovannet-49

tone, 2021; M. Ho et al., 2017). To achieve acceptable performance with reasonable plan-50

ning efforts, current practice in engineering, infrastructure design, and regulation relies51

heavily on standards that specify design events or conditions that buildings and infras-52

tructure should safely withstand (Bruneau et al., 2017). For example, the Federal Emer-53

gency Management Agency (FEMA), local governments, and engineering consultants pro-54

duce local floodplain maps in many communities. Buildings in the designated floodplain55

are subject to specific regulations, such as flood insurance requirements as an eligibil-56

ity requirement for federally backed mortgages (Kousky & Kunreuther, 2014) or min-57

imum elevations for new construction (American Society of Civil Engineers, 2006; The58

Federal Emergency Management Agency, 2011). Although this paper focuses on flood-59

ing, similar approaches inform mitigation strategies for a wide range of other hazards60

(American Society of Civil Engineers, 2013).61

Standards-based risk management frameworks have many advantages, including62

scalability, explainability, and simplicity. However, the choice of standard is a complex63

design and policy choice. Risk-based design and cost benefit analysis (Eijgenraam et al.,64

2014; van Dantzig, 1956; Xian et al., 2017) offer a quantitative framework for compar-65

ing possible standards by emphasizing “a proportionate response to risk, so that the amount66

invested in risk reduction is in proportion to the magnitude of the risk and the cost-effectiveness67

with which that risk may be reduced” (Merz et al., 2010). This provides a formal ba-68

sis for choices such as protecting hospitals and critical infrastructure to a higher degree69

than ordinary buildings (American Society of Civil Engineers, 2013). However, these meth-70

ods are silent on how standards should balance trade-offs, not only between cost and per-71

formance but also between other stakeholder values such as sense of place, distributive72

justice, and safety (Keller et al., 2021; Helgeson et al., 2022; Quinn et al., 2017; Bessette73

et al., 2017; Vezér et al., 2018).74

Moreover, estimates of performance trade-offs require implicit or explicit assump-75

tions about the likelihood of different possible futures. Current practice emphasizes nom-76

inally objective methods that can be applied consistently across locations. For example,77

the United States Geological Survey (USGS) Bulletin 17C specifies procedures for es-78

timating flood frequency (England et al., 2019). Similarly, the National Oceanic and At-79

mospheric Administration (NOAA) Atlas 14 provides estimates of the intensity, dura-80

tion, and frequency of extreme rainfall (Perica et al., 2018; National Weather Service &81

Office of Water Prediction, 2022). One statistical assumption these analyses make is sta-82

tionarity (the assumption that past and future hazard come from the same probability83

density function (PDF)), but global climate change and local environmental changes have84

cast scrutiny on this assumption (Merz et al., 2014; Milly et al., 2008; Doss-Gollin et al.,85

2019). While some methods have been proposed for incorporating nonstationarity into86

risk analyses (see Salas et al., 2018, for a review), these assume specific forms of a trend87

which may not adequately represent physical processes or sample only a subset of un-88

certainties (Doss-Gollin et al., 2019; Montanari & Koutsoyiannis, 2014; Serinaldi & Kilsby,89

2015). At least in part because of the challenges associated with developing objective meth-90

ods to select from diverging projections of future hazard, official guidance continues to91

rely on the stationarity assumption (England et al., 2019; Perica et al., 2018).92

The limitations of objectivist approaches to projecting risk extend beyond estimat-93

ing nonstationary climate hazards. Human-natural systems are never closed and model94

results are never unique, and thus validation and verification of models representing these95

systems is necessarily qualitative and subjective (Oreskes et al., 1994). In other words,96

no model exists that could represent the full truth, and the future is thus deeply uncer-97

tain (Keller et al., 2021; Walker et al., 2013; Lempert, 2002; Haasnoot et al., 2021). Con-98
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sequently, a growing literature on decision making under deep uncertainty (DMDU) em-99

phasizes the value of identifying decisions that are robust, in some sense, to deep uncer-100

tainties (Moody & Brown, 2013; Herman et al., 2015; McPhail et al., 2019; Borgomeo101

et al., 2018). Within this literature has emerged a debate regarding the value and use102

of probabilistic information (see Taner et al., 2019, and references therein). On the one103

hand, scholars have pointed out that predictions are inherently unreliable, and represent-104

ing deep uncertainties through probability distributions frequently over-estimates pre-105

dictive skill (Groves & Lempert, 2007; Lempert & Schlesinger, 2000). On the other, as-106

sessments of which decisions are robust depend on subjective choices about how to de-107

fine robustness and how to sample uncertainties (McPhail et al., 2019; Quinn et al., 2020;108

Schneider, 2002, 2001; Reis & Shortridge, 2020).109

In this paper we offer a conceptual step towards bridging this divide by present-110

ing a framework that is designed to combine the strengths of both approaches. In the111

first step, exploratory or bottom-up modeling is used to build insight and identify po-112

tential system vulnerabilities (Moallemi, Kwakkel, et al., 2020; Bankes, 1993; Brown et113

al., 2012). In the second step, we integrate exploratory ensembles of deep uncertainties114

into a single probabilistic representation (we refer to this as “synthesizing” deep uncer-115

tainties) to formally estimate performance metrics and trade-offs using subjective prob-116

ability distributions. Drawing from the literature on building predictive models when117

all models are wrong (Box, 1976; Gelman & Shalizi, 2013; Piironen & Vehtari, 2017), we118

interpret these probability distributions not as statements of fact, but rather as a self-119

consistent framework for reasoning about how different assumptions lead to different in-120

ferences. An advantage of our approach is that it facilitates computationally efficient anal-121

ysis of how alternative probabilistic models would affect estimated performance metrics122

and trade-offs.123

We illustrate our approach through a didactic case study of whether to elevate a124

hypothetical house, and if so how high. Prior studies have found that floodproofing and125

building-scale vulnerability reduction measures, including house elevation, can effectively126

reduce local flood damages in many contexts (de Moel et al., 2014; de Ruig et al., 2020;127

Kreibich et al., 2005; Slotter et al., 2020; Rözer et al., 2016; Mobley et al., 2020; Aerts,128

2018), and both local building codes (American Society of Civil Engineers, 2013; Bruneau129

et al., 2017; American Society of Civil Engineers, 2006) and federal policy (The Federal130

Emergency Management Agency, 2011) require elevation in some cases. Guidance for131

homeowners, notably from FEMA, recommends elevating to the base flood elevation (BFE)132

(typically the 100 year flood) plus a freeboard (The Federal Emergency Management Agency,133

2014; ASCE, 2015; The Federal Emergency Management Agency, 2014) but recent re-134

search has demonstrated that neglecting uncertainty in the cost-benefit analysis can lead135

to poor decisions (Zarekarizi et al., 2020). Focusing on deep uncertainty in sea level rise136

(SLR) over the 70 year design life of a hypothetical house, we seek to answer the research137

question “how can decision analysis transparently synthesize deep uncertainties?” To shed138

light on this question in a single paper, we necessarily are silent on key issues that would139

be relevant to real-world decision-makers including alternative decision levers, the po-140

tential for adaptive decision rules, and rival problem framings.141

We proceed as follows. In section 2 we present three formal decision analytic frame-142

works for analyzing an ensemble of SLR simulations, building through existing approaches143

for exploratory modeling scenario analysis to identify a need for synthesizing across sce-144

narios. We present a formal framework for transparently synthesizing deep uncertain-145

ties in section 3. In section 4 we describe the didactic case study. Next, in section 5, we146

present results for each of the three decision lenses and discuss the advantages and lim-147

itations of each theoretical approach. In section 6 we discuss limitations of the study and148

future research needs. Finally in section 7 we discuss key findings and implications for149

policy and practice.150
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2 Conceptual framework151

In this section we introduce a conceptual framework and notation for decision anal-152

ysis under deep uncertainty. Many bottom-up exploratory modeling frameworks used153

in climate risk management and related fields use a system model (f in fig. 1) to char-154

acterize the system’s response to a wide range of plausible futures, often called states155

of the world (SOWs) (s in fig. 1). This analysis is often used to explore vulnerabilities156

and build knowledge about the system (Bankes, 1993), and in general exploratory mod-157

eling frameworks aim to avoid making explicit judgments about the relative likelihood158

of different futures.159

However, as discussed in section 1, estimates of trade-offs between desired perfor-160

mance metrics (e.g., cost and reliability) depend on probabilistic models of uncertainty.161

In this paper we present a method for integrating the SOWs used in exploratory mod-162

eling into a formal decision analytic framework using a subjective probability distribu-163

tion over the space of possible futures, which is used to infer implicit weights over the164

SOWs. This approach is particularly suited for problems where the SOWs are generated165

from or conditioned on specific scenarios (e.g., representative concentration pathway (RCP)166

scenarios) or where there are multiple models of the underlying processes (e.g., multi-167

ple parameterizations of the response of local sea levels to global temperature), which168

can lead to the “multiple PDF problem” (discussed in section 2.2). A motivating advan-169

tage is that it makes assumptions about the likelihoods of different SOWs transparent170

to decision-makers.171

2.1 Exploratory modeling172

A first analytical step is to use the model in an “exploratory” mode. Exploratory173

modeling strives to avoid making explicit assumptions about the likelihood of different174

SOWs and instead seeks to generate new knowledge (Bankes, 1993) by systematically175

exploring a large number of possible futures, emphasizing interactions between differ-176

ent uncertainties (Reed et al., 2022). Exploratory modeling is often paired with anal-177

yses that identify relevant scenarios (Lamontagne et al., 2018; Groves & Lempert, 2007)178

or summarize a system’s response to forcing (Poff et al., 2015; Steinschneider et al., 2015;179

Sriver et al., 2018). Despite the aversion to strong assumptions about the likelihood of180

different futures, subjective modeling decisions such as the choice of system model, the181

set of candidate decisions, the criteria used to assess outcomes, and the choice of how182

to sample SOWs can strongly influence results (Quinn et al., 2020, 2017; Moallemi, Zare,183

et al., 2020).184

2.2 Scenario-conditional probabilistic analysis185

Although exploratory modeling is a useful framework for understanding systems,186

there are many questions that it cannot answer. For example, answering questions like187

“what is the 95th percentile of metric u under decision x” or “what is the probability188

of exceeding a critical threshold” requires an implicit or explicit probability distribution189

over outcomes (see Schneider, 2002, for a general discussion).190

One way to interpret an ensemble of SOWs is as iid draws from some probabilis-191

tic data generating process. This commonly arises when a single deep uncertainty (e.g.,192

an emissions pathway) is used as an input for a stochastic model. To clarify language,193

we draw a distinction between a SOW, which is a single realization of a possible future,194

and a probabilistic scenario, which we define loosely as a set of assumptions for which195

probabilistic projections (i.e., SOWs) are available or can be simulated. For example,196

in the case study described in section 4.1 we use four physical models of the processes197

relevant to SLR and four RCP scenarios to generate a total of 16 probabilistic scenar-198

ios.199
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III. Synthesize

II. Condition
I. Explore

Probabilistic scenarios
M = {M1, . . . ,MK}
for p(s|Mk)

(d)

Candidate decisions
x = {x1, x2, . . . , xI}

(a)

Many possible futures
s = {s1, . . . , sJ}
where sj ∈ Ω

(b)

System model
uij = f(xi, sj)

(c)

Weights
w = {w1, . . . , wJ}
where

∑J
j=1 wj = 1

(f)

Conditional
distribution
over outcomes
p(u|xi,Mk)

(e)

Figure 1. Outline of the proposed decision-analytic framework. In section 2.1 we use an ex-
ploratory framework to quantify the performance of candidate decisions under a large ensemble
of possible futures. In section 2.2 we illustrate the “multiple PDF problem” by creating proba-
bility distributions over outcomes that are conditional upon specific probabilistic scenarios. In
our case study, these scenarios correspond to combinations of emissions pathways with physical
models for sea level rise. Then in section 2.3 we describe the need for synthesizing insight across
scenarios. Finally in section 3 we provide a formal framework for doing so.
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We illustrate this distinction in boxes (d) and (e) of fig. 1, denoting the particu-200

lar scenario Mk. We assume that each scenario is probabilistic, that is that SOWs are201

drawn independent and identically distributed (IID) from Mk, the set of outcomes ui,j202

can be interpreted as IID draws from the conditional distribution over outcomes, p(u|xi,Mk).203

This “scenario-conditional” probabilistic interpretation of SOWs allows for fully prob-204

abilistic quantification of uncertainty and optimization, conditional on a particular sce-205

nario. For example, S. Fletcher, Lickley, and Strzepek (2019) uses stochastic dynamic206

programming to quantify the value of flexibility in water resources planning. However,207

only a single RCP scenario (RCP 8.5) is used. While the analysis could be repeated for208

other RCP scenarios, the scenario-conditional analysis framework only qualitatively char-209

acterize uncertainty between scenarios (Wong & Keller, 2017; Ruckert et al., 2019; Sharma210

et al., 2021).211

We can also apply this theoretical lens to examine the approach, common in DMDU212

applications, of sampling parameters from a set of fixed ranges. The scenario in this case213

is thus the choice of bounds on the parameters; it is consistent with our above defini-214

tion of a probabilistic scenario because SOWs can be sampled using probabilistic meth-215

ods. For example, Sriver et al. (2018) sample parameters describing the rate of SLR across216

a range of values to inform coastal adaptation. Similarly, Trindade et al. (2020) checks217

the performance of candidate decisions against an ensemble of synthetic time series of218

streamflow, water demand, and other parameters by sampling parameters that trans-219

form the available data over a plausible range. Analyses that use this methodology are220

implicitly assuming a single probabilistic model in which different variables are drawn221

from independent Uniform distributions. Many limitations of Uniform and other non-222

informative priors have been documented in the literature, including (i) that they can223

induce unrealistic implicit priors over functions of parameters and (ii) results are sen-224

sitive to the parameterization of a given process (Seaman et al., 2012). Yet while replac-225

ing Uniform distributions with alternatives such as maximum-entropy distributions can226

address some of these challenges (e.g., Gupta et al., 2022), subjective modeling choices227

remain necessary. Our primary concern here is not that these subjective modeling as-228

sumptions are wrong – this is, almost surely, inevitable – but that when these assump-229

tions are opaque and presented without critique or validation (see Gelman et al., 2020,230

regarding the importance of iterative critique) they may lead to inscrutable decision pro-231

cesses and poor decisions.232

2.3 Synthesizing deep uncertainties for decision analysis233

Scenario-conditional probabilistic analysis allows for uncertainty quantification and234

optimization, and is valuable in many contexts. However, scenarios are often explicitly235

provided without probabilities or likelihoods (e.g., the shared socio-economic pathways236

van Vuuren et al., 2008). Thus, any such analysis is silent on the question of how to com-237

bine information across different scenarios. We term this the “multiple PDF problem”.238

Decision making around the multiple PDF problem is susceptible to the cognitive biases239

that interfere with decision-making under uncertainty more generally (Tversky & Kah-240

neman, 1974; Morgan, 1990; Srikrishnan et al., 2022). For example, while many anal-241

yses treat all scenarios as equally likely, this is often inconsistent with available infor-242

mation and can lead to poor decisions and outcomes (Wigley & Raper, 2001; E. Ho et243

al., 2019; Hausfather & Peters, 2020). Other analyses suggest using the worst-case sce-244

nario as a conservative measure. However, this approach is also problematic, since (i)245

there are no fundamental limits on what constitutes a worst-case scenario and (ii) im-246

proving performance under unlikely worst-case scenarios may lead to substantially im-247

paired performance under more likely scenarios, which may or may not be acceptable248

to relevant stakeholders. There is thus a critical need for synthesizing insights across mul-249

tiple probabilistic scenarios.250
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3 Re-weighting SOWs to synthesize across scenarios251

In this section we provide a formal method for integrating exploratory ensembles252

of deep uncertainties into a single probabilistic representation. Our objective is to de-253

velop a framework that (i) is conceptually and practically amenable to exploratory mod-254

eling; (ii) makes subjective modeling choices explicit and transparent; and (iii) allows de-255

cision analysts to estimate a probability distribution over outcomes.256

A particular need is to estimate the expectation of functions over SOWs (i.e., box
e in fig. 1). If the J SOWs are drawn IID from some distribution that credibly represents
the true likelihood of different futures then the expected value of such a function, f(s),
can be readily approximated using the Monte Carlo estimate E[f(s)] ≈ 1

N

∑N
j=1 f(sj).

However, this is often not the case. For example, in section 4 we will consider decision
analysis where the SOWs are sampled from multiple physical models and RCP scenar-
ios, considering that not all RCP scenarios are equally likely and that not all physical
models are equally skillful. In this case, the formula may be adjusted to a weighted Monte
Carlo estimate:

E[f(s)] ≈
N∑
i=j

wjf(sj), (1)

where
∑J
j=1 wj = 1.257

The challenge then becomes to suitably estimate the wj . Many such methods ex-258

ist; drawing from joint probability methods for statistical analysis of tropical cyclones,259

we employ a grid-based approach (Johnson et al., 2013; Resio, 2007; Toro et al., 2010).260

First, we project the SOWs s ∈ Ω onto a low-dimensional representation, which we de-261

note {ψ1, ψ2, . . . , ψJ} ∈ Ψ. Then, we partition the parameter space into a region cor-262

responding to each SOW and integrating the probability p(ψ) over each region.263

Implementing this approach requires choosing a probability distribution for this264

low-dimensional representation of the SOWs, p(ψ), reflecting subjective belief about the265

SOWs. We denote this pbelief(ψ) to emphasize that it represents a subjective belief about266

the SOWs, rather than an objectively verifiable choice. In general we do not expect that267

stakeholders and experts will agree on pbelief because there is not, even conceptually, an268

objectively correct choice (Oreskes et al., 1994; Walker et al., 2013). However, we posit269

that since we cannot be “right,” it is valuable to maximize the transparency of our im-270

plicit probabilistic assumptions, and suggest that writing down an explicit model for pbelief271

supports this aim. Choices for pbelief can be drawn from many sources, including expert272

elicitation or results of previous analyses. These models can be interpreted as prior be-273

liefs about SLR that could be incorporated into a Bayesian analysis as additional data274

is collected in the future, and thus can draw from literature on Bayesian prior selection275

and prior predictive checks (Gelman et al., 2020).276

We present here the case where the ψj are one-dimensional; extensions to higher
dimensions are possible. We first sort the ψj from least to greatest so that ψj−1 ≤ ψj ,
(j ̸= 1). Defining a cumulative distribution function Fbelief(ψ) =

∫ ψ
−∞ pbelief(ψ

′) dψ′,
we calculate weights as

wj =


Fbelief

(
ψ1+ψ2

2

)
j = 1

Fbelief

(
ψj+ψj+1

2

)
− Fbelief

(
ψj−1+ψj

2

)
1 < j < J

1− Fbelief

(
ψJ−1+ψJ

2

)
j = J.

(2)

This step is illustrated in fig. 2. By the definition of cumulative distribution functions,277

Fbelief(b)−Fbelief(a) =
∫ b
a
pbelief(ψ

′) dψ′. Diagnostic checks, such as examining the his-278

togram of weights to (not shown), may be useful protections against degeneracy.279
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Figure 2. Schematic of SOW re-weighting scheme defined in eq. (2). This method is illus-
trated for a hypothetical target distribution (dark red line) and J = 4 samples ψ1, ψ2, ψ3, ψ4

(blue dots). As shown in eq. (2), the weights wj (orange vertical lines) are calculated based on
the cumulative distribution function of the target distribution at the halfway points 1

2
[ψj + ψj+1]

(vertical dashed lines).

The aim of this re-weighting framework is to integrate an ensemble of SOWs used280

for exploratory modeling into formal decision analysis, even when the SOWs deliberately281

over- or under-sample some regions of the parameter space. As in section 2.2, we must282

condition on a model: where the analysis of section 2.2 conditions upon deep uncertain-283

ties, the approach outlined in this subsection synthesizes across them. Considering mul-284

tiple probabilistic models for pbelief can also be useful for understanding the sensitivity285

of the decision to the choice of pbelief . Further, the sensitivity, or lack thereof, of differ-286

ent objectives to the choice of pbelief may be useful for identifying future research needs.287

4 Demonstrating the concept with a case study288

To illustrate the proposed decision analytic framework, we model a one-time de-289

cision of whether to elevate a house, and if so by how much (fig. 3). Following the ap-290

proach outlined in Zarekarizi et al. (2020), we focus on a case study of a hypothetical house291

in Norfolk, VA. For interpretability, we focus on deep uncertainty in mean relative sea292

level (MSL) and treat storm surge and other model parameters as shallow uncertainties293

as shown in table 1. We use the notation developed in the previous section to describe294

the case study. Specifically,295

1. The decision vector x is comprised of discrete possible house heightenings (∆h);296

we consider ∆h = {0 ft, 0.25 ft, . . . , 12 ft}.297

2. The SOWs describe annual time series of MSL over the T = 70 year house life-298

time so s ∈ RT299

3. The system model f quantifies up-front costs (the cost of elevating) and lifetime300

expected damages (the structural cost of experiencing floods), given a decision xi301

and SOW sj , by integrating economic and engineering damage models over a prob-302

ability distribution for storm surge. We elaborate upon these metrics in section 4.3.303

In the remainder of this section we describe data sources and treatment of SLR (section 4.1),304

storm surge (section 4.2), damages and metrics (section 4.3), and finally the subjective305
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Table 1. Summary of parameters, their notation, and how their uncertainty is represented.
Symbols describing the decision-analytic framework are described in fig. 1.

Name Symbol Uncertainty

MSL y(t) Deeply uncertain: four physical models × four RCP sce-
narios

Storm surge y′(t) Probabilistic: Bayesian inference on a stationary GEV
model

Annual maximum flood y(t) Deterministic: y(t) = y(t) + y′(t)

Discount rate ρ Determinitic: 2.5% per year
Depth-damage D(h− y) Deterministic: based on HAZUS model (see Zarekarizi et

al., 2020)
Elevation cost C(∆h) Deterministic: a piecewise linear model following

Zarekarizi et al. (2020)
Initial height h0 Deterministic: 1 ft below the BFE, unless otherwise noted
House floor area – Deterministic: 1500 ft2

Structural value – Deterministic: $200 000

House lifespan T Deterministic: 70 years

probabilistic models pbelief used to apply the re-weighting method described in section 2.3306

to this case study (section 4.4).307

4.1 Sea level rise308

We analyze simulations of MSL at Sewells Point, VA from four probabilistic phys-309

ical models using data published in Ruckert et al. (2019). The four physical process mod-310

els considered are (i) the BRICK model (version 0.2) with slow (“BRICK Slow”) and (ii)311

fast (“BRICK Fast”) ice sheet dynamics (Wong et al., 2017), (iii) the Kopp et al. (2014)312

model (“K14”), and (iv) the DeConto and Pollard (2016) model (“DP16”). The Kopp313

et al. (2014) and DeConto and Pollard (2016) models have a ten year time step, which314

we linearly interpolate onto a one year time step for consistency. Estimates of nonsta-315

tionary MSL also depend on anthropogenic forcing, which is itself deeply uncertain (E. Ho316

et al., 2019; Srikrishnan et al., 2022). To sample this uncertainty, we use simulations from317

each physical model under four RCP scenarios, yielding sixteen time-varying probabilis-318

tic scenarios of MSL.319

The choices of physical model and RCP scenario jointly determine future MSL p(y|t).320

Figure 4(a) shows the time-varying 90% credible intervals of MSL for three representa-321

tive models. The divergence between the the best-case (blue) and worst-case (red) mod-322

els is small in the early 21st century and increases rapidly thereafter. Figure 4(b) shows323

the PDFs of mean sea level in 2100 (dashed vertical line in panel (a)) under each of the324

sixteen probabilistic scenarios considered. The stark differences between different sce-325

narios of SLR arise primarily from different representations of Antarctic Ice Sheet con-326

tributions to global SLR and statistical calibration methodologies. For a more detailed327

discussion we refer the reader to Ruckert et al. (2019). We return in section 5.2 to the328

challenge of decision making given multiple scenarios.329

4.2 Storm surges330

Following prior work (e.g., Garner & Keller, 2018; Sriver et al., 2018), we model331

annual maximum floods y(t) as the sum of sea level y(t), described in the previous sub-332

section, and annual maximum storm surges y′(t), neglecting any potential hydrodynamic333

interactions.334
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Uncertainties

Engineering
and economic

models

Storm surge

Relationships

Sea level

Lever
How high
to elevate?

Metrics

Up-front
(construction)

cost

Lifetime
expected
damagesRCP scenario

(4 Scenarios)

Ice sheet
dynamics
(4 Models)

Figure 3. Conceptual diagram of the considered example. A state of the world (SOW) con-
sists of a description of the uncertain factors (red). We model a problem with a single lever
(yellow), which is how high to elevate a house (∆h). For each SOW (red) and each value of ∆h,
the system model (blue) is used to calculate performance metrics (gray). We also compute a
third metric, expected lifetime costs, which is the sum of up-front costs and lifetime expected
damages.

Figure 4. Projections of future mean sea level depend strongly on the choices of physical
model and forcing. (A): 90% confidence intervals for mean sea level at Sewells Point, VA as a
function of time for a representative subset of three probabilistic models (out of sixteen). (B):
probability distribution of MSL at Sewells Point, VA in the year 2100 for each probabilistic
model considered.
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Figure 5. Annual maximum storm surges (after subtracting mean relative sea level) at Sewells
Point, VA from the freely available NOAA tides and currents data archive (National Oceano-
graphic and Atmospheric Administration, 2022). (A): time series of historic storms. Red (yellow)
arrows denote notable tropical cyclones (Nor’easters). (B): return periods. Dots indicate observed
values; their x-value is their plotting position using the Weibull formula (eq. S5). Gray lines show
the 50, 80, and 95% posterior confidence intervals from the Bayesian GEV fit (section 4.2).

We use data on storm surge at Sewells Point, VA (gauge 8638610) from the NOAA335

tides and currents data archive (National Oceanographic and Atmospheric Administra-336

tion, 2022). Hourly recordings of water level are available from 1928 to the present; we337

use data from the period January 1, 1928 to December 31, 2021. For each calendar year338

we first remove the annual mean, then calculate the maximum water level. We refer this339

time series of annual maximum storm surges as y′(t). We display this time series of an-340

nual maxima storm surges in fig. 5(a). The largest recorded surge was the Chesapeake-341

Potomac hurricane of 1933, which caused a surge of over 7 ft at this gauge, but other hur-342

ricanes and Nor’easters have caused surges above 6 ft.343

We model future storm surge using a stationary GEV model:

y′(t) ∼ GEV(µ, σ, ξ), (3)

where y′(t) is the storm surge (above MSL) in year t and a GEV distribution with lo-344

cation, shape, and scale parameters µ, σ, and ξ, respectively, has the probability den-345

sity function given in eq. (S1). This model assumes stationarity, neglecting any poten-346

tial time dependence.347

Our approach to model assessment is based on the concept of principled workflow
design for model building and checking (see Gelman et al., 2020, for details). One model
choice, analogous to the choice of statistical distribution or the assumption of station-
arity, is the choice of how to represent prior information. We include two forms of prior
information. First, we constrain the shape parameter to be positive, ξ > 0, to reflect
knowledge about the support of y′, which for a variable distributed according to eq. S1
is:

supp y′ =

{
ξ < 0 : y′ ∈ (−∞, µ− σ/ξ)

ξ > 0 : y′ ∈ (µ− σ/ξ, ∞).

Since storm surges cannot be negative, only the latter is physically defensible, justify-348

ing our choice to constrain the shape parameter to be positive. Second, we add weakly349

informative priors. Rather than applying prior information directly over the joint dis-350

tribution of the parameters {µ, σ, ξ}, we instead apply a prior over extreme quantiles of351

the distribution, as in Coles and Tawn (1996). Specifically, we apply Inverse Gamma pri-352

ors over the 2, 10, 100, and 500 year return levels, with means of 4 ft, 6 ft, 10 ft and 15 ft353
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and standard deviations of 1.5 ft, 1.75 ft, 2.25 ft and 2.75 ft, respectively. The parame-354

ters of the Inverse Gamma distribution can be calculated from these moments (see eq. S3).355

These means and standard deviations were chosen to represent plausible physical ranges356

(fig. S4).357

For inference, we draw 10 000 samples from the posterior distribution p(µ, σ, ξ|y′)358

using Hamiltonian Markov Chain Monte Carlo (Betancourt, 2018; Hoffman & Gelman,359

2011) implemented in the Turing package of the Julia programming language (Perkel,360

2019; Ge et al., 2018; Tarek et al., 2020; Besançon et al., 2021; Bezanson et al., 2012).361

Diagnostics suggest (though cannot guarantee) convergence (see table S1). We evalu-362

ate the model’s fit using posterior predictive checks (see Gelman et al., 2020, section 2.4363

and references therein). Using the lag 1 and 2 partial autocorrelations, sample maximum,364

sample minimum, sample median, and Mann-Kendall test value as Bayesian test statis-365

tics, we find that draws from the posterior predictive distribution match the observed366

test statistics credibly (fig. S9) although panels (a) and (b) suggest the possibility of tem-367

poral structure not captured by our stationary IID model. Future efforts could repre-368

sent this structure by conditioning the parameters of the distribution on relevant climate369

indices (as in Wong, 2018; Farnham et al., 2018, 2017; Ossandón et al., 2021).370

Other model validations lend confidence to the stationary GEV model selected. For371

example, fig. 5(b) shows the estimated return periods for these storm surges; the esti-372

mated return period (shading) matches the the empirical plotting position (dots) and373

a positive control test (fig. S6) validates the model’s ability to recover known parame-374

ter values.375

4.3 Damages and metrics376

The system model (“relationships” in fig. 3) is comprised of two key pieces. The377

first is a fragility model that estimates the expected flood damages for a particular year378

(“expected annual damages”), given the elevation of the house and the mean sea level379

for that year. The second model converts a time series of annual expected damages into380

lifetime expected damages.381

We define expected annual damages in year t as the expectation of the damage func-
tion with respect to storm surge. This expectation depends on the house’s height (h =
h0+∆h) where h0 is the initial height relative to the gauge and ∆h is the amount by
which the house is elevated. The expected annual damage is thus

EAD(t) = E[D(h− y(t))] =

∫
y′
p(y′)D(h− (y(t) + y′)) dy′ , (4)

where D(h−y) is a deterministic function specifying damage as a function of flood depth382

(relative to the house) and p(y′) is the probability density of storm surge. Following Zarekarizi383

et al. (2020), we use the Hazard U.S. (HAZUS) depth-damage curves provided by FEMA;384

this depth-damage relationship is shown in fig. S1. For comparison, fig. S1 also shows385

the “Europa” depth-damage relationship developed by the Joint Research Center of the386

European Commission’s science and knowledge service (Huizinga & Szewczyk, 2016). Both387

models show damage increasing with flood depth before reaching an upper limit but dif-388

fer in the value of the upper limit and the rate at which damages approach it. Although389

Zarekarizi et al. (2020) demonstrate that the choice of fragility function is important for390

informing house elevation, we use only the HAZUS model for simplicity.391

The expected annual damage is sometimes calculated by assuming analytically tractable392

functional forms for the depth-damage relationship and for the distribution of hazard393

(e.g., van Dantzig, 1956). However, the convolution of the HAZUS depth-damage equa-394

tion with the GEV posterior does not have a tractable analytic solution. Instead, we es-395

timate this convolution through a Monte Carlo method (see section S1.2 for details). Then,396

because the expectation in eq. (4) depends only on h−y(t), we calculate expected an-397
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nual damages for a wide range of possible heights, then use this to train a computation-398

ally efficient surrogate model (using linear interpolation; see section S1.3).399

The second component of the system model converts a time series of EAD into life-
time expected damages, which we define as the up-front discounted sum of expected an-
nual damages:

LED =

tf∑
t=ti

γ(t−ti)EAD(t), (5)

where γ = 1 − ρ (ρ being the discount rate), the initial time ti = 2022, and the end400

time tf = ti + T − 1. Although Zarekarizi et al. (2020) show that uncertainty in the401

discount rate is important for decision support, we use a fixed discount rate (see table 1)402

for the purposes of this didactic study. For a more theoretical discussion see Arrow et403

al. (2013).404

To assess the performance of a given decision for a specific SOW (“Metrics” in fig. 3),405

we calculate the following metrics for each decision-SOW combination:406

1. “Up-front cost” is the cost of elevating a house. Following Zarekarizi et al. (2020),407

we use estimates of construction cost from the Coastal Louisiana Risk Assessment408

(Fischbach et al., 2012). We normalize this cost by house value; this cost curve409

is shown in fig. S3 and shows a large up-front cost plus a piecewise linear marginal410

cost.411

2. “Lifetime expected damages” is calculated following eq. (5).412

3. “Expected lifetime costs” is the sum of lifetime expected damages and up-front413

costs.414

4.4 Subjective probability distributions for sea level rise415

We construct three probabilistic models for pbelief(ψ), which represents the amount416

of SLR from 2022 to 2100.417

We use a Gamma distribution for all three probability distributions, parameter-418

ized following eq. (S4). The distributions were chosen to be illustrative, rather than to419

reflect any particular scientific consensus. The Gamma distribution is a flexible distri-420

bution that can be used to model skewed, lower-bounded distributions, making it an ap-421

propriate choice for modeling subjective uncertainty about SLR. Table 2 specifies the pa-422

rameters of these distributions, as well as some quantiles of the distributions. Their PDFs423

are also plotted in fig. 8(A).424

Table 2. Subjective probability distributions over SLR from 2022 to 2100, i.e. pbelief(ψ). The
name of the distribution, the parameters of the Gamma distribution with shape α and scale θ,
and the 2.5, 25, 50, 75, and 97.5th percentiles (values in ft).

Name Parameters Percentiles (in ft)
α θ 2.5 25.0 50.0 75.0 97.5

Slow SLR 1.75 0.50 0.08 0.39 0.72 1.19 2.57
Uncertain SLR 1.75 1.25 0.21 0.98 1.79 2.97 6.41
Rapid SLR 3.50 1.25 1.06 2.66 3.97 5.65 10.01

We developed these subjective distributions for didactic purposes, to illustrate a425

range of possible beliefs. We can compare them, for example, with analysis published426

by NOAA, which project 1.94 ft, 2.62 ft, 4.27 ft, 5.25 ft and 6.89 ft for the low, interme-427
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diate, low intermediate, intermediate high, and high scenarios, respectively (Sweet et al.,428

2022, table. 2.4). We can also compare to the analyses of Sriver et al. (2018) which uses429

a rescaled Beta distribution with bounds of 0.83 ft to 8.2 ft and a most plausible estimate430

of 3.1 ft. Our samples bound all of these estimates.431

5 Results and discussion432

We illustrate our approach to synthesizing uncertainties by sequentially analyzing433

the house elevation problem through multiple lenses for DMDU. This allows us to demon-434

strate the advantages and limitations of each approach, and to highlight the value of syn-435

thesizing across multiple scenarios.436

5.1 Exploratory modeling437

We begin by using our model in an “exploratory” mode with an aim of learning438

about interactions between system dynamics and decisions.439

One application of exploratory analysis is to reveal the range and variation in out-440

comes, conditional on taking a particular decision. Figure 6 shows the dependence of ex-441

pected lifetime costs (damages plus up-front costs; y-axis) as a function of SLR over the442

house lifetime (x-axis), height increase (∆h; columns), and initial elevation (h0; rows).443

The outcomes with lowest total lifetime costs arise when the house is not elevated (∆h =444

0) and SLR is minimal (bottom left corners). The outcomes with highest total lifetime445

costs arise when the house is elevated only slightly and SLR is rapid. As ∆h increases,446

the best-case scenario becomes more expensive because up-front costs increase, but worst-447

case scenarios become less expensive because even if SLR is substantial, damages will448

be negligible.449

This analysis answers “what-if” questions like “given h0 and ∆h, what is the range450

of total costs a homeowner could face if SLR over the house lifetime is 1 ft or 10 ft.” For451

some decision-makers, contextualizing this information against a few scenarios of SLR452

(e.g., those of Sweet et al., 2022) may prove sufficient for decision making. However, this453

analysis is silent on how to estimate cost-benefit comparisons, return periods, and other454

trade-offs.455

5.2 Scenario-conditional probabilistic analysis456

We now turn to the scenario-conditional analysis described in section 2.2. Whereas457

the exploratory analysis of the previous subsection interpreted each time series of future458

sea level as a sample from the space of possible futures, we can also interpret each SOW459

as a draw from one of the sixteen probabilistic scenarios of SLR shown in fig. 4. As dis-460

cussed in section 2.2, this allows a formal estimation of decision metrics, conditional on461

the chosen scenario.462

As discussed in section 2.2, this probabilistic interpretation allows us to compute463

expected values of functions. For example, fig. 7(a) plots the expected total lifetime cost464

as a function of ∆h for the sixteen probabilistic scenarios considered (we highlight three465

representative models). This panel shows lifetime expected damages as a function of ∆h,466

shown in fig. 7(b, plus the up-front cost of construction. Because there are high fixed costs467

associated with building (see cost curve in fig. S3), it generally does not make sense to468

raise the house by only a small amount, since this incurs these fixed costs without pro-469

viding substantial damage reduction. Figure 7 shows that estimates of trade-offs between470

up-front cost and expected lifetime costs are highly sensitive to the chosen scenario. For471

small ∆h, expected costs are low under optimistic scenarios (e.g., RCP 2.6 with slow ice472

sheet dynamics; red lines) and high under pessimistic scenarios (e.g., RCP8.5 with the473

DP16 model; blue lines). Estimates of the optimal decision are highly sensitive to the474
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Figure 6. Scenario maps show the dependence of expected lifetime cost (damages plus up-
front cost) as a function of mean relative sea level (MSL) in 2100 for several values of initial
height (h0) and house elevation (∆h). Colors indicate the number of states of the world (SOWs)
of falling within each box. The lowest-cost outcomes occur when exposure is low (h0 is large and
sea level rise (SLR) is minimal) and the house is not elevated (no up-front cost). The highest-cost
outcomes arise when exposure is high (h0 is small and SLR is rapid) and investment is inad-
equate. In all cases, elevating the house reduces the variance in total lifetime cost. Values are
sensitive to model constants; see table 1.
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Figure 7. Each probabilistic model or scenario leads to a different estimate of the Pareto fron-
tier. For emphasis, we highlight three representative models: the Brick Slow model (Wong et al.,
2017) under RCP 2.6, the K14 (Kopp et al., 2014) model under RCP 6.0 and the DP16 model
(DeConto & Pollard, 2016; Kopp et al., 2017) under RCP 8.5. (A): trade-off between up-front
cost (which is a monotonic function of height increase) and expected lifetime costs. (B): trade-off
between up-front cost and lifetime expected damages (eq. 5). Light gray lines show estimates
for all 16 models (four RCP scenarios × four physical process models) considered. Colored lines
highlight three representative models for emphasis. The gray arrows indicate the direction of
preference.

choice of scenario. For example, under the most pessimistic scenario (blue line), the cost-475

minimizing height increase is 6 ft, which incurs an up-front cost of 73% of the house value476

but reduces lifetime expected damages by over 150% of house value. Under the most op-477

timistic scenario (gray line), the cost-minimizing decision is to not elevate, as elevating478

6 ft incurs the same up-front cost yet reduces lifetime expected damages by less than 50%479

of house value.480

This approach is, in a sense, another form of exploratory modeling: instead of con-481

sidering a very large ensemble of SOWs, we consider a much smaller set of probabilis-482

tic scenarios. Scenario-conditional analysis can be attractive because it allows model-483

ers to focus on their domain expertise (e.g., the response of ice sheets and global sea lev-484

els to a particular climate future). However, conditioning simulations on a set of climate485

futures and physical models presents what we term “the multiple PDF problem” because486

it leaves decision makers with many PDFs to choose from and hence many trade-off curves487

to navigate. The multiple PDF problem has also been discussed in other contexts. For488

example, Sharma et al. (2021) model the reliability of stormwater infrastructure under489

different climate models and downscaling methods, finding diverging estimates of future490

rainfall hazard, even under a single RCP scenario. Similarly, Wong and Keller (2017)491

construct 18 probability distribution functions for future flood risk in New Orleans, con-492

sidering multiple models for ice sheet dynamics and storm surge and multiple RCP sce-493

narios. As a last example, Haasnoot et al. (2021) identify global adaptation needs for494

different SLR scenarios. Although this scenario-conditional analysis is appropriate for495

understanding differences between models, its key limitation is that it places the bur-496

den for deciding which probabilistic scenario to design for onto the end user.497

Since not all house owners or contractors have expertise in assessing the relative likeli-498

hood of different climate futures, they may not be well positioned to make this decision.499
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Figure 8. Impact of different subjective probability distributions for local sea level on implicit
weight given to each RCP scenario and physical model. We develop three distributions represent-
ing plausible probabilistic beliefs (pbelief) over MSL at Sewells Point, VA in 2100, relative to the
present. The PDFs of these distributions are shown in panel (A). In panels (B-C) we show the
relationship between these distributions and the 16 probabilistic models (four RCP scenarios and
four physical representations) available. Specifically, (B-C) show the average weight given to each
model by each choice for pbelief .

5.3 Synthesizing deep uncertainties for decision analysis500

The SOW re-weighting framework described in section 3 can help overcome the lim-501

itations of scenario-conditional analysis. In this section we illustrate how this approach502

can help to shed light on climate risk management under deep uncertainty. We present503

results using each of the models for pbelief outlined in section 4.4; these three distribu-504

tions are shown in fig. 8(A).505

One application of this method is to diagnose the assumptions which which differ-506

ent pbelief are consistent. Figure 8(B-D) shows the total weight that each choice of pbelief507

assigns to SOWs generated by each RCP scenario and physical model. Specifically, weights508

are computed as the sum of weights assigned to each SOW sampled from that model.509

For example, the rapid SLR scenario (green line in fig. 8) places most weight on SOWs510

produced by the DP16 model, and particularly on RCP 8.5 which by some accounts is511

unlikely given current policy (Hausfather & Peters, 2020; Srikrishnan et al., 2022). Con-512

versely, the slow SLR scenario (red line) places most weight on the BRICK models, par-513

ticularly RCP 2.6 (also unlikely given current policy; Hausfather & Peters, 2020; Srikr-514

ishnan et al., 2022) and RCP 4.5. The uncertain SLR scenario (blue line) allocates ap-515
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Figure 9. As fig. 7, but with Pareto frontiers for the full distribution of outcomes using the
three models of pbelief (colors).

proximately equal weight across models. Decision analysts can use this approach as a516

diagnostic to understand the assumptions implicit to their choice of pbelief .517

This method can also be used to calculate expectations, allowing us to revisit the518

trade-off diagrams of fig. 7. Figure 9 shows the total lifetime cost (panel A) and lifetime519

expected damages (panel B) under each choice of pbelief . Notably, they give different guid-520

ance. Under an assumption of rapid SLR, elevating the house by approximately 6 ft costs521

73% of house value and reduces damages by over 100% of house value, yielding a ben-522

efit to cost ratio of approximately 1.25. Under an assumption of slow SLR, the same de-523

cision reduces damages only by 50% of house value, yielding a benefit to cost ratio of ap-524

proximately 0.7. Under the intermediate / uncertain SLR assumption, the expected life-525

time costs are similar for elevating or not elevating the house, and thus the benefit to526

cost ratio is nearly 1. Under all assumptions, elevating by only a few feet is impracti-527

cal because it involves paying the large fixed costs of elevation (fig. S3) but offers rel-528

atively little flood reduction. Based on this analysis, we would recommend that the owner529

if this hypothetical home elevate by approximately 4-6ft or not at all. Alternatively, the530

homeowner could choose to defer the decision of whether, and how high, to elevate; our531

analysis did not consider this possibility but there is a rich literature on flexible design532

and engineering options analysis in climate risk analysis (e.g., S. Fletcher, Lickley, & Strzepek,533

2019; S. Fletcher, Strzepek, et al., 2019; Hui et al., 2018; Garner & Keller, 2018; Her-534

man et al., 2020; de Neufville & Smet, 2019).535

6 Limitations and research needs536

Several limitations to our study merit further discussion. The first category has to537

do with limitations of the underlying method proposed for re-weighting SOWs. For ex-538

ample, we develop a subjective probabilistic model pbelief(Ψ) over MSL in the year 2100.539

Although this is a low-dimensional representation of the full time series, it is not a suf-540

ficient statistic. In other words, many possible low-dimensional representations are pos-541

sible and time series with the same MSL in 2100 may differ in other ways. For problems542

with more sources of uncertainty, such as multisector problems, choosing an appropri-543

ate low-dimensional representation may prove challenging. In such settings, diagnostics544

and sensitivity analyses may shed light on the appropriateness of different modeling choices.545

A related concern is that we developed our three distributions for pbelief(Ψ) in an ad hoc546
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fashion that may not represent well-calibrated beliefs. Although this is appropriate for547

our didactic illustration, recent advances in Bayesian elicitation of expert opinion (see548

Mikkola et al., 2021, and references therein) can be applied to improve decision making549

in real world case studies. More fundamentally, our method assumes that there exists550

an expert capable of integrating over the many processes that drive SLR, from global551

greenhouse gas emissions to the global carbon cycle to climate sensitivity and ice sheet552

response (Morgan, 2014). An alternative approach would be to build a probabilistic model553

for each of these steps, and to use each as an input to the next to develop a fully prob-554

abilistic model for SLR. Yet while some progress has been made developing probabilis-555

tic models for specific elements of this model chain (e.g., Srikrishnan et al., 2022; Wong556

et al., 2017), this remains a computational and conceptual challenge.557

The second category of limitations has to do with the case study and our interpre-558

tation of the house elevation decision problem. This problem intersects with decisions559

about where to live and how to manage household finances, both of which are highly com-560

plex. One extension of our analysis would be to consider additional decision objectives.561

In particular, we hypothesize that incorporating improved representations of risk aver-562

sion into decision support may substantially improve their usability. One could also ex-563

tend the analysis to consider additional sources of uncertainty such as depth-damage re-564

lationships (Rözer et al., 2019; Nofal et al., 2020), the cost of elevating a house, the house565

lifespan, the effective discount rate, and value of the land on which the house is built (Zarekarizi566

et al., 2020). Finally, while here we consider the decision to be a one-time decision, one567

could also frame this as a sequential decision problem. The analysis of sequential deci-568

sion problems applies tools from control theory and reinforcement learning to identify569

policies that map “triggers” (i.e., state variables) to decisions (Herman et al., 2020). Yet570

although framing the decision through a sequential lens can increase adaptability and571

improve outcomes (S. M. Fletcher et al., 2017; Garner & Keller, 2018), decisions and out-572

comes remain highly sensitive to the characterization of uncertainty (Herman et al., 2020),573

and thus the problem of synthesizing across deep uncertainties remains relevant.574

These limitations motivate several directions for future research. From a method-575

ological perspective, developing model chains that capture uncertainties in global energy576

and economic pathways, global climate sensitivity, and local hazard response (see fig. 1577

of Moss & Schneider, 2000) offers a principled framework for fully probabilistic estima-578

tion of local hazard, subject to (still necessarily subjective) probabilistic models for key579

parameters. From a decision support perspective, improved understanding of the con-580

ditions under which household-scale strategies for flood risk management, like elevation,581

achieve relevant objectives could support improved resilience and adaptation. Addition-582

ally, since developing bespoke analyses for each house may be impractical, identifying583

decision rules that are applicable across different house characteristics may improve us-584

ability and guidance. Finally, there are many parallels between DMDU and subjective585

Bayesian literature on building predictive models in the “M-closed” case when “all mod-586

els are wrong” (Gelman & Shalizi, 2013; Box, 1976), and thus future work can demon-587

strate how to incorporate techniques from Bayesian workflow (see Gelman et al., 2020)588

into DMDU methodologies.589

7 Conclusions590

This study develops a framework designed to increase the transparency of quan-591

titative decision analysis under deep uncertainty. We develop a framework capable of592

blending iterative, stakeholder-driven exploratory modeling (see, e.g., Helgeson et al.,593

2022) with subjective probabilistic expert assessment. Such an approach is urgently needed594

given that deeply uncertain nonstationarity hazards pose a fundamental challenge to clas-595

sical methods of hazard estimation. We use a didactic case study of house elevation in596

the coastal zone to illustrate a method for transparently synthesizing across deep un-597

certainties.598
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The proposed SOW re-weighting framework can be applied to inform critical chal-599

lenges in climate risk management. An obvious area of application is to the design of600

infrastructure. For example, much of the stormwater infrastructure in the United States601

is inadequate for current and anticipated future climates (Lopez-Cantu & Samaras, 2018).602

Yet upgrading this infrastructure is costly and subject to large uncertainties between rain-603

fall models (Sharma et al., 2021) and RCP scenarios. Similarly, decisions like levee height-604

ening (Garner & Keller, 2018; Oddo et al., 2017; van Dantzig, 1956) and sea wall design605

(United States Army Corps of Engineers, Galveston District & Texas General Land Of-606

fice, 2021, Appendix D., p. 2-59) are subject to deep uncertainties including sea level rise.607

Investments in water resources planning and management also depend on assumptions608

of future water demand, availability, and technologies (Trindade et al., 2019). And anal-609

yses of climate change mitigation options, such as estimates of the social cost of pollu-610

tants (Errickson et al., 2021) or cost-minimizing energy transition pathways, are con-611

ditional on probabilistic models for inputs like technology prices and population.612

Of course, all models are ultimately wrong (Box, 1976). Thus seeking decisions that613

perform well across a range of assumptions, and improving the decision space through614

robust design and flexibility, can improve outcomes. Yet whenever decisions are com-615

pared quantitatively, assumptions about the probability of different possible futures are616

necessarily made. We call for researchers studying climate risk management to make these617

implicit assumptions explicit, and we suggest that coordinated guidance can help prac-618

titioners determine better design criteria.619

8 Open Research620

All code, including source code, is available under the GNU Public License (ver-621

sion 3) at https://github.com/jdossgollin/2022-elevation-robustness. This code622

is written in the open source Julia programming language and detailed instructions for623

reproducing our results are provided. A permanent, citeable archive of the precise ver-624

sion of the codes used in this study is also available on Zenodo at https://doi.org/625
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