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Abstract13

Projections of future climate risks can vary considerably from one source to another,14

posing considerable communication and decision-analytical challenges. One such chal-15

lenge is how to present trade-offs under deep uncertainty in a salient and interpretable16

manner. Some common approaches include analyzing a small subset of projections or17

invoking Laplace’s principle of insufficient reason to justify a simple average. These18

approaches can underestimate risks, hide deep uncertainties, and provide little in-19

sight into which assumptions drive decision-relevant outcomes. Here we introduce20

and demonstrate a transparent Bayesian framework for synthesizing deep uncertain-21

ties to inform climate risk management. The first step of this workflow is to generate22

an ensemble of simulations representing possible futures and analyze them through23

standard exploratory modeling techniques. Next, a small set of probability distribu-24

tions representing subjective beliefs about the likelihood of possible futures is used25

to weight the scenarios. Finally, these weights are used to compute and characterize26

trade-offs, conduct robustness checks, and reveal implicit assumptions. We demon-27

strate the framework through a didactic case study analyzing how high to elevate a28

house to manage coastal flood risks.29

Plain Language Summary30

What are sound strategies to manage risks driven by climatic changes? Address-31

ing this question is complicated by the large uncertainties surrounding projections of32

the coupled natural-human systems that influence projections of climate risk. These33

uncertainties often arise from choices experts have to make, for example about how to34

formulate scientific models of future water levels. Different experts can disagree about35

these choices, leading to different plausible projections. Analyzing decisions in such36

a situation of deep uncertainty poses nontrivial challenges. At one extreme, picking37

a single representative projection can lead to under-estimation of risk and poor deci-38

sions. At the other extreme, communicating results separately for each projection can39

overwhelm decision-makers. To make matters worse, typical approaches to this prob-40

lem are mostly silent on what assumptions make a difference for the decisions at hand.41

We develop and demonstrate a framework to address these challenges. The framework42

provides a transparent approach to (i) combine a large number of deeply uncertain43

projections to a more understandable and smaller samples and (ii) provide insights as44

to how assumptions and modeling choices made by experts influence decisions. We45

demonstrate the approach with a relatively simple example question of how high to46

elevate a house in the face of deeply uncertain projections of future water levels.47

1 Introduction48

Many critical infrastructure services around the world are aging (e.g., M. Ho et49

al., 2017). Moreover, changes in regulations, finance, patterns of population and in-50

frastructure use, and the climate system challenge the ability of critical infrastructures51

to meet design objectives (Doss-Gollin et al., 2021, 2020; Chester et al., 2020). The52

need to upgrade and expand infrastructure motivates the question: for which possible53

futures should infrastructure systems and components be designed? The answer to this54

question depends in part on values: intrinsic trade-offs between safety, performance,55

cost, and other objectives depend on context and stakeholder preferences (Keller et56

al., 2021) and are often regulated by statute or industry guidelines (Bruneau et al.,57

2017). For example, hospitals and critical infrastructure are generally designed to a58

higher standard of risk protection than ordinary buildings (American Society of Civil59

Engineers, 2013). At the same time, performance depends upon future conditions, and60

so decisions about which scenario to design for are necessarily subject to implicit or61

explicit assumptions about the likelihood or possibility of different futures.62
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1.1 Current practice63

Current practice in engineering, infrastructure design, and local governance relies64

heavily on standards that specify particular design events or conditions that build-65

ings and infrastructure should safely withstand (American Society of Civil Engineers,66

2013; Bruneau et al., 2017). These are often, though not always, informed by prob-67

abilistic analysis of relevant data. For example, the Federal Emergency Management68

Agency (FEMA), local governments, and engineering consultants produce local flood-69

plain maps in many communities. These trigger specific floodplain regulations, such70

as a requirement for homes in the 100-year floodplain with federally backed mortgages71

to be covered by flood insurance (Kousky & Kunreuther, 2014). Additionally, local72

building codes (based on guidance such as American Society of Civil Engineers (2006)73

or The Federal Emergency Management Agency (2011)) may require new construction74

in flood zones to be elevated freeboard above a nominal base flood elevation (BFE).75

Probabilistic analysis also informs the design of large-scale infrastructure.in particu76

For example, some levees in the Netherlands are designed for a nominal annual failure77

probability of 1/4000 (Eijgenraam et al., 2014), while a seawall proposed as part of a $2978

billion coastal protection project for Galveston Bay was designed by setting the nomi-79

nal annual probability of overtopping to 1% (United States Army Corps of Engineers,80

Galveston District & Texas General Land Office, 2021, Appendix D., p. 2-59).81

There are many advantages to standards-based design. In particular, these82

heuristics are scalable and explainable, they reduce the complexity of design analysis,83

and they are fair in at least a procedural sense. However, reliance on these heuristics84

also faces limitations. In particular, this sort of one-size-fits-all guidance may not be85

an efficient or desirable way to balance tradeoffs between metrics of stakeholder values86

such as sense of place, distributive justice, economic efficiency, and safety (Keller et87

al., 2021). This has motivated economically informed approaches, like risk-based de-88

sign and cost benefit analysis (Eijgenraam et al., 2014; van Dantzig, 1956; Xian et al.,89

2017), that place “a strong emphasis upon a proportionate response to risk, so that90

the amount invested in risk reduction is in proportion to the magnitude of the risk91

and the cost-effectiveness with which that risk may be reduced” (Merz et al., 2010).92

These quantitative cost-benefit analyses also rely on probabilistic descriptions of rel-93

evant hazard, and can be particularly sensitive to representation of tail probabilities94

(Merz et al., 2022; Wong et al., 2018; Garner & Keller, 2018).95

The approaches currently used to estimate the probability density functions96

(PDFs) of climate hazards used in standard-setting and decision-making emphasize97

nominally objective methods that can be applied consistently across locations. For98

example, United States Geological Survey (USGS) Bulletin 17C specifies procedures99

for estimating flood frequency (England et al., 2019) and the National Oceanic and100

Atmospheric Administration (NOAA) Atlas 14 provides estimates of the intensity,101

duration, and frequency of extreme rainfall (Perica et al., 2018). Among several sta-102

tistical assumptions these analyses make that have been recently called into question103

is stationarity (the assumption that past and future hazard come from the same PDF;104

see Merz et al., 2014, for a review). For example, clear trends in extreme rainfall are105

apparent across much of southeastern Texas (Fagnant et al., 2020; Nielsen-Gammon,106

2020), and trends in many other hazards for other locations are consistent with ob-107

servations (see International Panel on Climate Change, 2022, for a comprehensive108

summary). While some methods have been proposed for incorporating trends into109

these analyses (see Salas et al., 2018, for a review), these assume specific forms of110

nonstationarity which may not fully represent physical processes or true levels of un-111

certainty (Doss-Gollin et al., 2019; Montanari & Koutsoyiannis, 2014; Serinaldi &112

Kilsby, 2015). Ultimately, the difficulty of incorporating nonstationarity into existing113

frameworks has led to continued reliance on stationarity despite recognition of the114
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associated limitations as discussed in p. 2 of England et al. (2019) and p. A.4-42 of115

Perica et al. (2018).116

1.2 Emerging paradigms117

Projecting nonstationary hazard is difficult because many future hazards depend118

on human decisions (e.g., future greenhouse gas emissions) or on physical processes119

that are poorly constrained by existing data (e.g., collapse of the West Antarctic ice120

sheet; DeConto & Pollard, 2016). In other words, they are deeply uncertain (Keller121

et al., 2021; Walker et al., 2013; Lempert, 2002; Haasnoot et al., 2021). These deeply122

uncertain nonstationary hazards challenge not only the existing stationary estimates123

but, more fundamentally, the premise that objective estimates of future hazard exist124

and can be estimated empirically.125

Recognizing the challenges of decision making under deep uncertainty (DMDU),126

many frameworks for identifying robust decisions have been proposed. Most emphasize127

the use of models in an exploratory (“what-if”) framework to learn about interactions128

between decisions and system dynamics (Bankes, 1993). For example, robust deci-129

sion making (Lempert et al., 2003) evaluates models over large ensembles of possible130

futures to assess the performance of different policies under each, then applies statis-131

tical analysis to identify the conditions under which particular policies perform well132

or poorly. When the decision space is complex, many analyses use policy search (of-133

ten using multiobjective optimization tools) to identify promising actions (Kasprzyk134

et al., 2013, 2012; Hadka et al., 2015). In addition, many studies formally quantify135

robustness to deep uncertainties (Herman et al., 2015; McPhail et al., 2019) and use136

this as a criterion for policy comparison.137

Although these DMDU methods have proven valuable in a wide range of settings,138

they still require necessarily subjective assessments about the likelihood of future con-139

ditions. Even exploratory models require the analyst to choose which uncertainties140

are considered and how they are sampled. When analyses use metrics that integrate141

performance over many possible futures, whether to compute sensitivities, estimate ex-142

pectations, or compute robustness metrics, they necessarily make assumptions about143

the likelihood of different futures. For example, uniform priors are often justified by144

deferring to Laplace’s principle of insufficient reason (see Stigler, 1986, p. 135), but145

even this choice makes strong assumptions that are sensitive to factors such as param-146

eterization (Gelman et al., 2014, p.54). While one interpretation of deep uncertainty147

is that that specifying a joint PDF over inputs is inappropriate, assumptions about148

the ranges and independence of parameters to sample are just as subjective as the149

choice of probability distribution (Schneider, 2002; Quinn et al., 2020) and can often150

be interpreted as a specific choice of probability distribution (we revisit this point in151

section 2.2). This motivates the development of decision analytic frameworks that152

draw from the strengths of DMDU methods such as exploratory modeling, vulnerabil-153

ity assessment, robustness checks, and iterative stakeholder critique, but that embrace154

the reality that assumptions about the future are inescapable.155

1.3 Research gaps and objectives156

We are motivated by parallels between decision making under deep uncertainty157

and the statistical problem of model selection. Oreskes et al. (1994) argues that be-158

cause natural systems are never closed and model results are never unique, validation159

and verification of models representing these systems is necessarily qualitative and160

subjective. In the literature on decision making under deep uncertainty, this has led161

to recognition of the need to develop strategies that are robust to model imperfections.162

There are parallels to this challenge in the Bayesian literature on model selection, par-163

ticularly in the “M-open” case in which there is no “true” model to identify and all164
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models are imperfect representations of reality. This is a theoretical contrast to the165

“M-closed” case in which the data are assumed to come from a “true” model which is a166

member of the finite set of candidate models available to the analyst (Bernardo, 1994).167

Commonly used classical methods for model selection implicitly assume M-closed case168

and are defined by their ability to asymptotically identify the true model from a set169

of candidate models. By contrast, model selection in the M-open case emphasizes a170

subjective view of the modeling process, for which probability offers a self-consistent171

language with which to reason about the unknown rather than a statement of objective172

truth (see Gelman and Shalizi (2013), Ramsey (2016), or Jaynes (2003) for a discus-173

sion of Bayesian philosophy and Piironen and Vehtari (2017) for a technical discussion174

of methods for model selection). From a practical perspective, model selection in the175

M-open case emphasizes building models iteratively, simulating the consequences of176

these models, and subsequently using these simulations to critique and improve them177

until an acceptable model (in the analyst’s subjective judgement) is reached (Gelman178

et al., 2020).179

In this paper we offer a first conceptual step towards bridging the fields of DMDU180

and Bayesian model building. We consider a didactic case study of whether to elevate181

a hypothetical house, and if so how high, as a specific example of a decision problem182

subject to both shallow (storm surge) and deep (sea level rise (SLR)) uncertainties.183

Prior studies have found that floodproofing and building-scale vulnerability reduction184

measures, including house elevation, can effectively reduce local flood damages in many185

contexts (de Moel et al., 2014; de Ruig et al., 2020; Kreibich et al., 2005; Slotter et al.,186

2020; Rözer et al., 2016; Mobley et al., 2020; Aerts, 2018), and both local building codes187

(American Society of Civil Engineers, 2013; Bruneau et al., 2017; American Society188

of Civil Engineers, 2006) and federal policy (The Federal Emergency Management189

Agency, 2011) require elevation in some cases. Guidance for homeowners, notably190

from FEMA, recommends elevating to the BFE (typically the 100 year flood) plus191

a freeboard (The Federal Emergency Management Agency, 2014; ASCE, 2015; The192

Federal Emergency Management Agency, 2014) but recent research has demonstrated193

that neglecting uncertainty in the cost-benefit analysis can lead to poor decisions194

(Zarekarizi et al., 2020). Focusing on deep uncertainty in SLR over the 70 year design195

life of a hypothetical house, we seek to answer the research question “how can deep196

uncertainties be transparently synthesized for decision analysis?”197

We proceed as follows. In section 2 we present three formal decision analytic198

frameworks for analyzing an ensemble of SLR simulations, building through existing199

approaches for exploratory modeling (section 2.1) and scenario analysis (section 2.2)200

towards a formal Bayesian method for transparently synthesizing deep uncertainty201

through subjective prior beliefs (section 2.3). In section 3 we describe the case study202

in detail. Next in section 4 we present results for each of the three decision lenses203

and discuss the advantages and limitations of each theoretical approach. In section 5204

we discuss limitations of the study and future research needs. Finally in section 6 we205

discuss key findings and implications for policy and practice.206

2 Decision analytic framework207

In this section we outline our framework for decision analysis under deep uncer-208

tainty, maintaining a high level of generality. In the next we discuss application to209

the house elevation case study.210

Following fig. 1, we consider using J states of the world (SOWs), s = {s1, s2, . . . , sJ},211

to evaluate I candidate decisions, x = {x1, x2, . . . , xI}. For each scenario sj ∈ s and212

decision xi ∈ x we use a system model f (comprised of multiple components) to cal-213

culate a set of metrics describing the performance of decision xi on SOW sj , which214

we denote uij = f(xi, sj). While we assume for simplicity that the decision space215
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III. Synthesize

II. Condition
I. Explore

Multiple models
M = {M1, . . . ,MK}
for p(Ω|Mk)

(d)

Candidate decisions
x = {x1, x2, . . . , xI}

(a)

Many possible futures
s = {s1, . . . , sJ}
where sj ∈ Ω

(b)

System model
uij = f(xi, sj)

(c)

Weights
w = {w1, . . . , wJ}
where wj ∈ (0, 1)

(f)

Conditional
distribution
over outcomes
p(u|xi,Mk)

(e)

Figure 1. Outline of the proposed decision-analytic framework. In section 2.1 we use an ex-
ploratory framework to quantify the performance (c) of candidate decisions (a) under a large
ensemble of possible futures (b). In section 2.2 we illustrate the “multiple PDF problem” by
creating probability distributions over outcomes (e) that are conditional upon specific models
describing the likelihood of different futures (d). In our case study, these are RCP scenarios and
physical models of sea level rise. Finally in section 2.3 we propose a subjective Bayesian frame-
work for synthesizing across deep uncertainties by re-weighting sampled futures (f).

is known and finite, this approach could be coupled to a policy search model that216

proposes candidate decisions.217

2.1 Explore218

A first analytical step is to use the model in an “exploratory” mode. Exploratory219

modeling is averse to making explicit assumptions about the likelihood of different220

SOWs and instead seeks to generate new knowledge (Bankes, 1993) by systematically221

exploring a large number of possible futures, emphasizing interactions between different222

uncertainties (Reed et al., 2022). Exploratory modeling is often paired with analyses223

that identify relevant scenarios (Lamontagne et al., 2018; Groves & Lempert, 2007) or224

summarize a system’s response to forcing (Poff et al., 2015; Steinschneider et al., 2015;225

Sriver et al., 2018). Despite the aversion to strong assumptions about the likelihood226

of different futures, subjective modeling decisions such as the choice of system model,227

the set of candidate decisions, the criteria used to assess outcomes, and the choice of228

how to sample SOWs can strongly influence results (Quinn et al., 2020).229
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2.2 Condition230

Although exploratory modeling is a useful framework for understanding systems,231

there are many questions that it cannot answer. For example, answering questions like232

“what is the 95th percentile of metric u under decision x” or “which decision mini-233

mizes expected damages” or “what is the probability of exceeding a critical threshold”234

requires constructing estimators for the probability distribution over outcomes (see235

Schneider, 2002, for a general discussion).236

One way to interpret an ensemble of SOWs is as independent and identically dis-237

tributed (IID) draws from some true data generating process. This commonly arises238

when a single deep uncertainty (e.g., an emissions pathway) is used as an input for a239

fully probabilistic model; we call this scenario-conditional probabilistic analysis. We240

add this concept to our framework with boxes (d) and (e) of fig. 1, denoting the partic-241

ular scenario (i.e., the assumed input) Mk. If the SOWs are drawn IID from Mk, the242

set of outcomes ui,j can be interpreted as IID draws from the conditional distribution243

over outcomes, p(u|xi,Mk), allowing estimation of descriptive metrics. This approach244

allows for quantification of uncertainty within models of deeply uncertain processes,245

but can only qualitatively characterize uncertainty between models (Wong & Keller,246

2017; Ruckert et al., 2019; Sharma et al., 2021).247

We can also use this approach to understand DMDU methods that sample a set248

of parameters from fixed ranges. For example, Sriver et al. (2018) sample parameters249

describing the rate of SLR across a range of values to inform coastal adaptation. Sim-250

ilarly, Trindade et al. (2020) checks the performance of candidate decisions against an251

ensemble of synthetic time series of streamflow, water demand, and other parameters252

by sampling parameters that transform the available data over a plausible range (i.e.,253

robustness metrics; see McPhail et al., 2019; Herman et al., 2015, for details). Since254

sampling over a range is equivalent to sampling from a Uniform distribution, this as-255

sumption is equivalent to assuming the true inputs to come from independent Uniform256

distributions (one for each parameter) bounded by the plausible range.257

Our primary concern is not that subjective assumptions about the likelihood of258

different futures are wrong – this is, almost surely, inevitable – but that when these259

assumptions are opaque and presented without critique or validation they may lead to260

inscrutable decision processes and suboptimal decisions.261

2.3 Synthesize262

As discussed in the previous subsection, estimating the expectation of arbitrary
functions under uncertainty is a critical component of decision making under uncer-
tainty. If the SOWs are drawn IID from the true distribution, then the expected value
of some function f , E[f(s)], can be readily estimated as 1

N

∑N
j=1 f(sj). However, this

is often not the case; for example, a fixed set of simulations may be available for anal-
ysis or low-probability but high-impact regions of the parameter space may have been
sampled. In this case, the formula must be adjusted to

E[f(s)] ≈ 1

N

N∑
i=j

wjf(sj), (1)

where the wj are suitably chosen weights such that their sum is equal to 1.263

The challenge then becomes to suitably estimate the wj . Paralleling joint proba-264

bility methods for statistical analysis of tropical cyclones, we use a grid-based approach265

(Johnson et al., 2013; Resio, 2007; Toro et al., 2010). First, we project the SOWs s ∈ Ω266

onto a low-dimensional representation, which we denote {ψ1, ψ2, . . . , ψJ} ∈ Ψ. Then,267

we partition the parameter space into a region corresponding to each SOW and inte-268

grating the PDF pbelief over each region.269
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Figure 2. Schematic of SOW weighting scheme defined in eq. (2). This method is illustrated
for a hypothetical target distribution (dark red line) and J = 4 samples ψ1, ψ2, ψ3, ψ4 (blue dots).
As shown in eq. (2), the weights wj (orange vertical lines) are calculated based on the cumula-
tive distribution function of the target distribution at the halfway points 1

2
[ψj + ψj+1] (vertical

dashed lines).

We present here the case where the ψj are one-dimensional; extensions to higher
dimensions are possible. We first sort the ψj from least to greatest so that ψj−1 ≤ ψj ,
(j ̸= 1). Defining Fbelief(s) to be the cumulative distribution corresponding to pbelief ,
we calculate weights as

wj =


Fbelief

(
1
2 [ψ1 + ψ2]

)
j = 1

Fbelief

(
1
2 [ψj + ψj+1]

)
− Fbelief

(
1
2 [ψj−1 + ψj ]

)
1 < j < J

1− Fbelief

(
1
2 [ψJ−1 + ψJ ]

)
j = J.

(2)

This step is illustrated in fig. 2. Diagnostic checks, such as examining the histogram270

of weights (not shown), may be valuable protections against degeneracy.271

The aim of this re-weighting framework is to integrate an ensemble of SOWs used272

for exploratory modeling into formal decision analysis, even when the SOWs deliber-273

ately over- or under-sample some regions of the parameter space. As in section 2.2,274

we must condition on a model: where the analysis of section 2.2 conditions upon deep275

uncertainties, the approach outlined in this subsection synthesizes across them. We276

reiterate that stakeholders and experts will not, in general, agree on pbelief because277

there is not, even conceptually, an objectively correct choice (Oreskes et al., 1994;278

Walker et al., 2013). However, we posit that since we cannot be “right,” it is valuable279

to maximize the transparency of our implicit probabilistic assumptions, and suggest280

that writing down an explicit model for pbelief supports this aim.281

3 Demonstrating the concept with a case study282

To illustrate the proposed decision analytic framework, we model a one-time de-283

cision of whether to elevate a house, and if so by how much (fig. 3). Following the284

approach outlined in Zarekarizi et al. (2020), we focus on a case study of a hypothetical285

house in Norfolk, VA. For interpretability, we focus on deep uncertainty in mean rela-286

tive sea level (MSL) and approximate other model parameters as shallow uncertainties287

as shown in table 1. We use the notation developed in the previous section to describe288

the case study. Specifically,289
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Table 1. Summary of parameters, their notation, and how their uncertainty is represented.
Symbols describing the decision-analytic framework are described in fig. 1.

Name Symbol Uncertainty

MSL y(t) Deeply uncertain: four physical models × four RCP sce-
narios

Storm surge y′(t) Probabilistic: Bayesian inference on a stationary GEV
model

Annual maximum flood y(t) Deterministic: y(t) = y(t) + y′(t)

Discount rate ρ Determinitic: 2.5% per year
Depth-damage D(h− y) Deterministic: based on HAZUS model (see Zarekarizi et

al., 2020)
Elevation cost C(∆h) Deterministic: a piecewise linear model following

Zarekarizi et al. (2020)
Initial height h0 Deterministic: 1 ft below the BFE, unless otherwise noted
House floor area – Deterministic: 1500 ft2

Structural value – Deterministic: $200 000

House lifespan T Deterministic: 70 years

1. The decision vector x is comprised of discrete possible house heightenings (∆h);290

we consider ∆h = {0 ft, 0.25 ft, . . . , 12 ft}.291

2. The SOWs describe annual time series of MSL over the T = 70 year house292

lifetime so s ∈ RT293

3. The system model f quantifies up-front costs and lifetime expected damages,294

given a decision xi and SOW sj , by integrating economic and engineering dam-295

age models over a probability distribution for storm surge.296

In the remainder of this section we describe data sources and treatment of SLR (sec-297

tion 3.1), storm surge (section 3.2), damages and metrics (section 3.3), and finally the298

subjective priors pbelief used to apply the re-weighting method described in section 2.3299

to this case study (section 3.4).300

3.1 Sea level rise301

We analyze simulations of MSL at Sewells Point, VA from four probabilistic302

physical models using data published in Ruckert et al. (2019). The four models con-303

sidered are (i) the BRICK model (version 0.2) with slow (“BRICK Slow”) and (ii) fast304

(“BRICK Fast”) ice sheet dynamics (Wong et al., 2017), (iii) the Kopp et al. (2014)305

model (“K14”), and (iv) the DeConto and Pollard (2016) model (“DP16”). The Kopp306

et al. (2014) and DeConto and Pollard (2016) models have a ten year time step, which307

we linearly interpolate onto a one year time step for consistency. These four models308

represent physical processes, particularly of ice sheet dynamics, in different ways, lead-309

ing to diverging sensitivity of MSL to forcing. For a discussion of these model outputs310

we refer the reader to Ruckert et al. (2019).311

Estimates of nonstationary MSL also depend on anthropogenic forcing, which is312

itself deeply uncertain (E. Ho et al., 2019; Srikrishnan et al., 2022). To sample this313

uncertainty, we use simulations from each physical model under four RCP scenarios,314

yielding sixteen time-varying distributions of MSL.315

The choices of physical model and RCP scenario jointly determine future MSL316

p(y|t). Figure 4(a) shows the time-varying 90% credible intervals of MSL for three317

representative models. The divergence between the the best-case (blue) and worst-318
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Uncertainties

Engineering
and economic

models

Storm surge

Relationships

Sea level

Levers
How high
to elevate?

Metrics

Up-front
(construction)

cost

Lifetime
expected
damagesRCP scenario

(4 Scenarios)

Ice sheet
dynamics
(4 Models)

Figure 3. Conceptual diagram of the considered example. A state of the world (SOW) con-
sists of a description of the uncertain factors (red). We model a problem with a single lever
(yellow), which is how high to elevate a house (∆h). For each SOW (red) and each value of ∆h,
the system model (blue) is used to calculate performance metrics (gray). We also compute a
third metric, expected lifetime costs, which is the sum of up-front costs and lifetime expected
damages.

Figure 4. Projections of future mean sea level depend strongly on the choices of physical
model and forcing. (A): 90% confidence intervals for mean sea level at Sewells Point, VA as a
function of time for a representative subset of three probabilistic models (out of sixteen). (B):
probability distribution of MSL at Sewells Point, VA in the year 2100 for each probabilistic
model considered.
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Figure 5. Annual maximum storm surges (after subtracting mean relative sea level) at Sewells
Point, VA from the freely available NOAA tides and currents data archive (National Oceano-
graphic and Atmospheric Administration, 2022). (A): time series of historic storms. Red (yellow)
arrows denote notable tropical cyclones (Nor’easters). (B): return periods. Dots indicate observed
values; their x-value is their plotting position using the Weibull formula (eq. S5). Gray lines show
the 50, 80, and 95% posterior confidence intervals from the Bayesian GEV fit (section 3.2).

case (red) models is small in the early 21st century and increases rapidly thereafter.319

Figure 4(b) shows the PDFs of mean sea level in 2100 (dashed vertical line in panel (a))320

under each of the sixteen models considered. We return in section 4.2 to the challenge321

of decision making under multiple PDFs.322

3.2 Storm surges323

Following prior work (e.g., Garner & Keller, 2018; Sriver et al., 2018), we model324

annual maximum floods y(t) as the sum of sea level y(t), described in the previous325

subsection, and annual maximum storm surges y′(t), neglecting hydrodynamic effects.326

We use data on storm surge at Sewells Point, VA (gauge 8638610) from the327

NOAA tides and currents data archive (National Oceanographic and Atmospheric328

Administration, 2022). Hourly recordings of water level are available from 1928 to the329

present; we use data from the period January 1, 1928 to December 31, 2021. For each330

calendar year we first remove the annual mean, then calculate the maximum water331

level. We refer this time series of annual maximum storm surges as y′(t). We display332

this time series of annual maxima storm surges in fig. 5(a). The largest recorded surge333

was the Chesapeake-Potomac hurricane of 1933, which caused a surge of over 7 ft at334

this gauge, but other hurricanes and Nor’easters have caused surges above 6 ft.335

We model future storm surge using a stationary GEV model:

y′(t) ∼ GEV(µ, σ, ξ), (3)

where y′(t) is the storm surge (above MSL) in year t and a GEV distribution with336

location, shape, and scale parameters µ, σ, and ξ, respectively, has the probability337

density function given in eq. (S1). This model assumes stationarity, neglecting any338

potential time dependence.339

Our approach to model assessment is based on the concept of principled workflow
design for model building and checking (see Gelman et al., 2020, for details). One
model choice, analogous to the choice of statistical distribution or the assumption of
stationarity, is the choice of how to represent prior information. We include two forms
of prior information. First, we constrain the shape parameter to be positive, ξ > 0, to
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reflect knowledge about the support of y′, which for a variable distributed according
to eq. (S1) is:

supp y′ =

{
ξ < 0 : y′ ∈ (−∞, µ− σ/ξ)

ξ > 0 : y′ ∈ (µ− σ/ξ, ∞).

Since storm surges cannot be negative, only the latter is physically defensible, justifying340

our choice to constrain the shape parameter to be positive. Second, we add weakly341

informative priors. Rather than applying prior information directly over the joint342

distribution of the parameters {µ, σ, ξ}, we instead apply a prior over extreme quantiles343

of the distribution, as in Coles and Tawn (1996). Specifically, we apply Inverse Gamma344

priors over the 2, 10, 100, and 500 year return levels, with means of 4 ft, 6 ft, 10 ft and345

15 ft and standard deviations of 1.5 ft, 1.75 ft, 2.25 ft and 2.75 ft, respectively. The346

parameters of the Inverse Gamma distribution can be calculated from these moments347

(see eq. S3). These means and standard deviations were chosen to represent plausible348

physical ranges (fig. S4).349

For inference, we draw 10 000 samples from the posterior distribution p(µ, σ, ξ|y′)350

using Hamiltonian Markov Chain Monte Carlo (Betancourt, 2018; Hoffman & Gelman,351

2011) implemented in the Turing package of the Julia programming language (Perkel,352

2019; Ge et al., 2018; Tarek et al., 2020; Besançon et al., 2021; Bezanson et al.,353

2012). Diagnostics suggest (though cannot guarantee) convergence (see table S1). We354

evaluate the model’s fit using posterior predictive checks (see Gelman et al., 2020,355

section 2.4 and references therein). Using the lag 1 and 2 partial autocorrelations,356

sample maximum, sample minimum, sample median, and Mann-Kendall test value as357

Bayesian test statistics, we find that draws from the posterior predictive distribution358

match the observed test statistics credibly (fig. S9) although panels (a) and (b) suggest359

the possibility of temporal structure not captured by our stationary IID model. Future360

efforts could represent this structure by conditioning the parameters of the distribution361

on relevant climate indices (as in Wong, 2018; Farnham et al., 2018, 2017; Ossandón362

et al., 2021).363

Other model validations lend confidence to the stationary GEV model selected.364

For example, fig. 5(b) shows the estimated return periods for these storm surges; the365

estimated return period (shading) matches the the empirical plotting position (dots)366

and a positive control test (fig. S6) validates the model’s ability to recover known367

parameter values.368

3.3 Damages and metrics369

The system model (“relationships” in fig. 3) is comprised of two key pieces. The370

first is a fragility model that estimates the expected flood damages for a particular year371

(“expected annual damages”), given the elevation of the house and the mean sea level372

for that year. The second model converts a time series of annual expected damages373

into lifetime expected damages.374

We define expected annual damages in year t as the expectation of the damage
function with respect to storm surge. This expectation depends on the house’s height
(h = h0+∆h) where h0 is the initial height relative to the gauge and ∆h is the amount
by which the house is elevated. The expected annual damage is thus

EAD(t) = E[D(h− y(t))] =

∫
y′
p(y′)D(h− (y(t) + y′)) dy′ , (4)

where D(h − y) is a deterministic function specifying damage as a function of flood375

depth (relative to the house). Following Zarekarizi et al. (2020), we use the Hazard U.S.376

(HAZUS) depth-damage curves provided by FEMA; this depth-damage relationship377

is shown in fig. S1. For comparison, fig. S1 also shows the “Europa” depth-damage378

relationship developed by the Joint Research Center of the European Commission’s379
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science and knowledge service (Huizinga & Szewczyk, 2016). Although Zarekarizi et380

al. (2020) demonstrate that the choice of fragility function is important for informing381

house elevation, we use only the HAZUS model for simplicity.382

The expected annual damage is sometimes calculated by assuming analytically383

tractable functional forms for the depth-damage relationship and for the distribution384

of hazard (e.g., van Dantzig, 1956). However, the convolution of the HAZUS depth-385

damage equation with the GEV posterior does not have a tractable analytic solution.386

Instead, we estimate this convolution through a Monte Carlo method (see section S1.2387

for details). Then, because the expectation in eq. (4) depends only on h − y(t), we388

calculate expected annual damages for a wide range of possible heights, then use this389

to train a computationally efficient surrogate model (using linear interpolation; see390

section S1.3).391

The second component of the system model converts a time series of EAD into
lifetime expected damages, which we define as the up-front discounted sum of expected
annual damages:

LED =

tf∑
t=ti

γ(t−ti)EAD(t), (5)

where γ = 1 − ρ (ρ being the discount rate), the initial time ti = 2022, and the end392

time tf = ti + T − 1. Although Zarekarizi et al. (2020) show that uncertainty in393

the discount rate is important for decision support, we use a fixed discount rate (see394

table 1) for the purposes of this didactic study. For a more theoretical discussion see395

Arrow et al. (2013).396

To assess the performance of a given decision for a specific SOW (“Metrics” in397

fig. 3), we calculate the following metrics for each decision-SOW combination:398

1. “Up-front cost” is the cost of elevating a house. Following Zarekarizi et al.399

(2020), we use estimates of construction cost from the Coastal Louisiana Risk400

Assessment (Fischbach et al., 2012). We normalize this cost by house value; this401

cost curve is shown in fig. S3.402

2. “Lifetime expected damages” is calculated following eq. (5).403

3. “Expected lifetime costs” is the sum of lifetime expected damages and up-front404

costs.405

3.4 Prior over sea level rise406

We construct three probabilistic models for pbelief(ψ), which represents the amount407

of SLR from 2022 to 2100.408

We use a Gamma distribution for all three priors, parameterized following eq. (S4).409

Table 2 specifies the parameters of these distributions, as well as some quantiles of the410

distributions. Their PDFs are also plotted in fig. 8(A).411

We developed these priors for didactic purposes, to illustrate a range of possi-412

ble beliefs. We can compare them, for example, with analysis published by NOAA,413

which project 1.94 ft, 2.62 ft, 4.27 ft, 5.25 ft and 6.89 ft for the low, intermediate, low414

intermediate, intermediate high, and high scenarios, respectively (Sweet et al., 2022,415

table. 2.4). We can also compare to the analyses of Sriver et al. (2018) which uses a416

rescaled Beta distribution with bounds of 0.83 ft to 8.2 ft and a most plausible estimate417

of 3.1 ft. Our samples bound all of these estimates.418
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Table 2. Subjective priors over SLR from 2022 to 2100, i.e. pbelief(ψ). The name of the distri-
bution, the parameters of the Gamma distribution with shape α and scale θ, and the 2.5, 25, 50,
75, and 97.5th percentiles (values in ft).

Name Parameters Percentiles (in ft)
α θ 2.5 25.0 50.0 75.0 97.5

Slow SLR 1.75 0.50 0.08 0.39 0.72 1.19 2.57
Uncertain SLR 1.75 1.25 0.21 0.98 1.79 2.97 6.41
Rapid SLR 3.50 1.25 1.06 2.66 3.97 5.65 10.01

4 Results and discussion419

We illustrate our approach to synthesizing uncertainties by sequentially analyzing420

the house elevation problem through the lenses of exploratory modeling (section 4.1),421

scenario-conditional analysis (section 4.2), and finally the proposed synthesis method422

(section 4.3).423

4.1 Exploratory modeling424

We begin by using our model in an “exploratory” mode with an aim of learning425

about interactions between system dynamics and decisions.426

One application of exploratory analysis is to reveal the range and variation in427

outcomes, conditional on taking a particular decision. Figure 6 shows the dependence428

of expected lifetime costs (damages plus up-front costs; y-axis) as a function of SLR429

over the house lifetime (x-axis), height increase (∆h; columns), and initial elevation430

(h0; rows). The outcomes with lowest total lifetime costs arise when the house is not431

elevated (∆h = 0) and SLR is minimal (bottom left corners). The outcomes with432

highest total lifetime costs arise when the house is elevated only slightly and SLR is433

rapid. As ∆h increases, the best-case scenario becomes more expensive because up-434

front costs increase, but worst-case scenarios become less expensive because even if435

SLR is substantial, damages will be negligible.436

This analysis answers “what-if” questions like “given h0 and ∆h, what is the437

range of total costs a homeowner could face if SLR over the house lifetime is 1 ft438

or 10 ft.” For some decision-makers, contextualizing this information against a few439

scenarios of SLR (e.g., those of Sweet et al., 2022) may prove sufficient for decision440

making. However, this analysis does not shed light on cost-benefit analyses or return441

periods, nor does it permit quantitative comparison against other possible decisions442

unless strong implicit assumptions are made.443

4.2 Scenario-conditional optimization444

We now turn to the scenario-conditional analysis described in section 2.2. Whereas445

the exploratory analysis of the previous subsection interpreted each time series of fu-446

ture sea level as a sample from the space of possible futures, we can also interpret each447

SOW as a draw from one of the sixteen models of SLR shown in fig. 4. As discussed448

in section 2.2, this allows a formal estimation of decision metrics, conditional on the449

chosen scenario.450

This probabilistic interpretation allows us to compute, for example, expected451

values. For example, fig. 7(a) plots the expected total lifetime cost as a function452

of ∆h for the sixteen models considered (we highlight three representative models).453
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Figure 6. Scenario maps show the dependence of expected lifetime cost (damages plus up-
front cost) as a function of mean relative sea level (MSL) in 2100 for several values of initial
height (h0) and house elevation (∆h). Colors indicate the number of states of the world (SOWs)
of falling within each box. The lowest-cost outcomes occur when exposure is low (h0 is large and
sea level rise (SLR) is minimal) and the house is not elevated (no up-front cost). The highest-cost
outcomes arise when exposure is high (h0 is small and SLR is rapid) and investment is inad-
equate. In all cases, elevating the house reduces the variance in total lifetime cost. Values are
sensitive to model constants; see table 1.
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Figure 7. Each probabilistic model or scenario leads to a different estimate of the Pareto fron-
tier. For emphasis, we highlight three representative models: the Brick Slow model (Wong et al.,
2017) under RCP 2.6, the K14 (Kopp et al., 2014) model under RCP 6.0 and the DP16 model
(DeConto & Pollard, 2016; Kopp et al., 2017) under RCP 8.5. (A): trade-off between up-front
cost (which is a monotonic function of height increase) and expected lifetime costs. (B): trade-off
between up-front cost and lifetime expected damages (eq. 5). Light gray lines show estimates for
all 16 models (four RCP scenarios times four physical parameterizations) considered. Colored
lines highlight three representative models for emphasis. The gray arrows indicate the direction
of preference.

Similarly, fig. 7(b) plots the lifetime expected damages as a function of ∆h. For small454

∆h, expected costs are low under optimistic models (e.g., RCP 2.6 with slow ice sheet455

dynamics; red lines) and high under pessimistic models (e.g., RCP8.5 with the DP16456

model; blue lines). For example, under the most pessimistic model (blue line), the cost-457

minimizing height increase is 6 ft, which incurs an up-front cost of 73% of the house458

value but reduces lifetime expected damages by over 150% of house value. Under the459

most optimistic model (gray line), the cost-minimizing decision is to not elevate, as460

elevating 6 ft incurs the same up-front cost yet reduces lifetime expected damages by461

less than 50% of house value.462

This approach is, in a sense, another form of exploratory modeling: instead of463

considering a very large ensemble of SOWs, we consider a much smaller set of prob-464

abilistic models. This approach is attractive because it allows modelers to focus on465

their domain expertise (e.g., the response of ice sheets and global sea levels to a par-466

ticular climate future). However, conditioning simulations on a set of climate futures467

and physical models presents what we term “the multiple PDF problem” because it468

leaves decision makers with many PDFs to choose from and hence many trade-off469

curves to navigate. The multiple PDF problem has also been shown in other contexts.470

For example, Sharma et al. (2021) model the reliability of stormwater infrastructure471

under different climate models and downscaling methods, finding diverging estimates472

of future rainfall hazard, even under a single RCP scenario. Similarly, Wong and473

Keller (2017) construct 18 probability distribution functions for future flood risk in474

New Orleans, considering multiple models for ice sheet dynamics and storm surge and475

multiple RCP scenarios. As a last example, Haasnoot et al. (2021) identify global476

adaptation needs for different SLR scenarios. Although this scenario-conditional anal-477

ysis is appropriate for understanding differences between models, its key limitation478
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Figure 8. Impact of subjective priors for local sea level on implicit weight given to each RCP
scenario and physical model. We develop three distributions (“subjective priors”) representing
plausible probabilistic beliefs about MSL at Sewells Point, VA in 2100, relative to the present.
The PDFs of these subjective priors are shown in panel (A). In panels (B-C) we show the rela-
tionship between these subjective priors and the 16 probabilistic models (four RCP scenarios and
four physical representations) available. Specifically, (B-C) show the average weight given to each
model by each of the subjective priors.

is that it places the burden for deciding which model to design for onto the479

end user.480

4.3 Synthesizing deep uncertainties for decision analysis481

The proposed approach can help overcome the limitations of scenario-conditional482

analysis. We illustrate how the re-weighting method described in section 2.3 can help483

to shed light on climate risk management under deep uncertainty. We present results484

using each of the models for pbelief outlined in section 3.4. These three distributions485

are shown in fig. 8(A).486

One application of this method is to diagnose which assumptions different pbelief487

are consistent with. Figure 8(B-D) shows the total weight that each prior assigns to488

SOWs generated by each RCP scenario and physical model. For example, the rapid489

SLR scenario (green line in fig. 8) places most weight on the DP16 model, and particu-490

larly on RCP 8.5 which by some accounts is unlikely given current policy (Hausfather491

& Peters, 2020; Srikrishnan et al., 2022). Conversely, the slow SLR scenario (red line)492

places most weight on the BRICK models, particularly RCP 2.6 (also unlikely given493

current policy; Hausfather & Peters, 2020; Srikrishnan et al., 2022)) and RCP 4.5.494
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Figure 9. As fig. 7, but with Pareto frontiers for the full distribution of outcomes using the
three models of pbelief (colors).

The uncertain SLR scenario (blue line) allocates approximately equal weight across495

models.496

This method can also be used to calculate expectations, allowing us to revisit497

the trade-off diagrams of fig. 7. Figure 9 shows the total lifetime cost (panel A) and498

lifetime expected damages (panel B) under each model. Notably, they give different499

guidance. Under an assumption of rapid SLR, elevating the house by approximately500

6 ft costs 73% of house value and reduces damages by over 100% of house value, yielding501

a benefit to cost ratio of approximately 1.25. Under an assumption of slow SLR, the502

same decision reduces damages only by 50% of house value, yielding a benefit to cost503

ratio of approximately 0.7. Under the intermediate / uncertain SLR assumption, the504

expected lifetime costs are similar for elevating or not elevating the house, and thus505

the benefit to cost ratio is nearly 1. Under all assumptions, elevating by only a few506

feet is impractical because it involves paying the large fixed costs of elevation (fig. S3)507

but offers relatively little flood reduction.508

5 Discussion and research needs509

Several limitations to our study merit further discussion. The first category has510

to do with limitations of the underlying method proposed for reweighting SOWs. For511

example, we develop a subjective prior belief pbelief(Ψ) over MSL in the year 2100.512

Although this is a low-dimensional representation of the full time series, it is not a513

sufficient statistic; prior studies have shown that using Approximate Bayesian Com-514

putation to calibrate models on low dimensional statistics using that are not sufficient515

statistics can lead to biased posterior estimates (Csilléry et al., 2010; Marjoram &516

Tavaré, 2006). Although we are not performing calibration here, and this is thus not517

a direct concern, time series with the same MSL in 2100 may differ in other ways, and518

experts may have prior information about the likelihood of these differences not repre-519

sented in our model. A related concern is that we developed our three distributions for520

pbelief(Ψ) in an ad hoc fashion that may not represent well-calibrated beliefs. Although521

this is appropriate for our didactic illustration, recent advances in Bayesian elicitation522

of expert opinion (see Mikkola et al., 2021, and references therein) can be applied to523

improve decision making in real world case studies. More fundamentally, our method524

assumes that there exists an expert capable of integrating over the many processes that525
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drive SLR, from global greenhouse gas emissions to the global carbon cycle to climate526

sensitivity and ice sheet response (Morgan, 2014). An alternative approach would be527

to build a probabilistic model for each of these steps, and to use each as an input to528

the next to develop a fully probabilistic model for SLR. Yet while some progress has529

been made developing probabilistic models for specific elements of this model chain530

(e.g., Srikrishnan et al., 2022; Wong et al., 2017), this remains a computational and531

conceptual challenge. Finally, while our aim in this paper has been to demonstrate532

the value of integrating Bayesian workflow (Gelman et al., 2020) into DMDU, further533

work is needed to improve this integration.534

The second category of limitations has to do with the case study and our interpre-535

tation of the house elevation decision problem. This problem intersects with decisions536

about where to live and how to manage household finances, both of which are highly537

complex. One extension of our analysis would be to consider additional decision ob-538

jectives. In particular, we hypothesize that incorporating improved representations539

of risk aversion into decision support may substantially improve their usability. One540

could also extend the analysis to consider additional sources of uncertainty such as541

depth-damage relationships (Rözer et al., 2019; Nofal et al., 2020), the cost of elevat-542

ing a house, the house lifespan, the effective discount rate, and value of the land on543

which the house is built (Zarekarizi et al., 2020, provides a framework for addressing544

some of these). Finally, while here we consider the decision to be a one-time decision,545

one could also frame this as problem a sequential decision. The analysis of sequen-546

tial decision problems applies tools from control theory and reinforcement learning547

to identify policies that map “triggers” (i.e., state variables) to decisions (Herman et548

al., 2020). Yet although framing the decision through a sequential lens can increase549

adaptability and improve outcomes (Fletcher et al., 2017; Garner & Keller, 2018), the550

optimized policy rules are necessarily sensitive to the characterization of uncertainty,551

and thus the problem of synthesizing across deep uncertainties remains (Herman et552

al., 2020).553

These limitations motivate several directions for future research. From a method-554

ological perspective, developing model chains that capture uncertainties in global en-555

ergy and economic pathways, global climate sensitivity, and local hazard response556

(see fig. 1 of Moss & Schneider, 2000) offers a principled framework for fully proba-557

bilistic estimation of local hazard, subject to (still necessarily subjective) priors over558

key parameters. From a decision support perspective, improved understanding of the559

conditions under which household-scale strategies for flood risk management, like ele-560

vation, achieve relevant objectives could support improved resilience and adaptation.561

Additionally, since developing bespoke analyses for each house may be impractical,562

identifying decision rules that are applicable across different house characteristics may563

improve useability.564

6 Conclusions565

This study develops a framework designed to increase the transparency of quan-566

titative decision analysis under deep uncertainty. We develop a framework capable567

of blending iterative, stakeholder-driven exploratory modeling with subjective prob-568

abilistic expert assessment. Such an approach is urgently needed given that deeply569

uncertain nonstationarity hazards pose a fundamental challenge to classical methods570

of hazard estimation. We use a didactic case study of house elevation in the coastal571

zone to illustrate a method for transparently synthesizing across deep uncertainties.572

The proposed scenario weighting framework can be applied to inform critical573

challenges in climate risk management. An obvious area of application is to the design574

of infrastructure. For example, much of the stormwater infrastructure in the United575

States is inadequate for current and anticipated future climates (Lopez-Cantu & Sama-576
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ras, 2018). Yet upgrading this infrastructure is costly and subject to large uncertainties577

between rainfall models (Sharma et al., 2021) and RCP scenarios. Similarly, decisions578

like levee heightening (Garner & Keller, 2018; Oddo et al., 2017; van Dantzig, 1956)579

and sea wall design (as discussed in the Introduction) are subject to deep uncertainties580

in sea level rise. Investments in water resources planning and management depend on581

assumptions of future water demand, availability, and technologies (Trindade et al.,582

2019). And analyses of climate change mitigation options, such as estimates of the583

social cost of pollutants (Errickson et al., 2021) or cost-minimizing energy transition584

pathways, are conditional on probabilistic models for inputs like technology prices and585

population.586

Of course, all models are ultimately wrong (Box, 1976). Thus seeking decisions587

that perform well across a range of assumptions, and improving the decision space588

through robust design and flexibility, can improve outcomes. Yet whenever decisions589

are compared quantitatively, assumptions about the probability of different possible590

futures are necessarily made. We call for researchers studying climate risk management591

to make these implicit assumptions explicit, and we suggest that coordinated guidance592

can help practitioners determine better design criteria.593
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