Reference
1. Li Y, Wei X, Chen L, and Shi J. Electrocatalytic Hydrogen Production Trilogy. Angew. Chem. Int. Ed. 2021; 60 (36): 19550-19571.
2. Kou T, Wang S, and Li Y. Perspective on High-Rate Alkaline Water Splitting. ACS Mater. Lett. 2021; 3 (2): 224-234.
3. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, and Jaramillo TF. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017; 355 (6321): eaad4998
4. Hsu S-H, Hung S-F, Wang H-Y, Xiao F-X, Zhang L, Yang H, Chen HM, Lee J-M, and Liu B. Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods. 2018; 2 (5): 1800001.
5. Jothi VR, Karuppasamy K, Maiyalagan T, Rajan H, Jung CY, and Yi SC. Corrosion and Alloy Engineering in Rational Design of High Current Density Electrodes for Efficient Water Splitting. Adv. Energy Mater. 2020; 10 (24): 1904020.
6. Caban-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC, Tsai ML, He JH, and Jin S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015; 14 (12): 1245-51.
7. Lu X and Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015; 6: 6616.
8. Jeon D, Park J, Shin C, Kim H, Jang J-W, Lee DW, and Ryu J. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 2020; 6: eaaz3944
9. Wang JG, Shi L, Su Y, Liu L, Yang Z, Huang R, Xie J, Tian Y, and Li D. In-situ plasmonic tracking oxygen evolution reveals multistage oxygen diffusion and accumulating inhibition. Nat. Commun. 2021; 12 (1): 2164.
10. Angulo A, van der Linde P, Gardeniers H, Modestino M, and Fernández Rivas D. Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors. Joule. 2020; 4 (3): 555-579.
11. Wang L, Huang X, Jiang S, Li M, Zhang K, Yan Y, Zhang H, and Xue JM. Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics. ACS Appl. Mater. Interfaces. 2017; 9 (46): 40281-40289.
12. Beck VA, Ivanovskaya AN, Chandrasekaran S, Forien JB, Baker SE, Duoss EB, and Worsley MA. Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures. Proc. Natl. Acad. Sci. U. S. A. 2021; 118 (32).
13. Yang W and Chen S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 2020; 393.
14. Bae M, Kang Y, Lee DW, Jeon D, and Ryu J. Superaerophobic Polyethyleneimine Hydrogels for Improving Electrochemical Hydrogen Production by Promoting Bubble Detachment. Adv. Energy Mater. 2022; 12 (29): 2201452-9.
15. Shen J, Li J, Li B, Zheng Y, Bao X, Guo J, Guo Y, Lai C, Lei W, Wang S, and Shao H. Ambient Fast Synthesis of Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation. Energy Environ. Mater. 2022.
16. Guo Y, Yao Z, Shang C, and Wang E. Amorphous Co2B Grown on CoSe2 Nanosheets as a Hybrid Catalyst for Efficient Overall Water Splitting in Alkaline Medium. ACS Appl. Mater. Interfaces. 2017; 9 (45): 39312-39317.
17. Chang S, Zhang Y, Zhang B, Cao X, Zhang L, Huang X, Lu W, Ong CYA, Yuan S, Li C, Huang Y, Zeng K, Li L, Yan W, and Ding J. Conductivity Modulation of 3D‐Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh‐Current Oxygen Evolution. Adv. Energy Mater. 2021; 11 (28): 2100968.
18. Li Y, Zhang H, Xu T, Lu Z, Wu X, Wan P, Sun X, and Jiang L. Under-Water Superaerophobic Pine-Shaped Pt Nanoarray Electrode for Ultrahigh-Performance Hydrogen Evolution. Adv. Funct. Mater. 2015; 25 (11): 1737-1744.
19. Ge K, Zeng Y, Dong G, Zhao L, Wang Z, and Huang M. 3D self-standing grass-like cobalt phosphide vesicles-decorated nanocones grown on Ni-foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy. 2019; 44 (26): 13490-13501.
20. Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, Wang X, Wang H, Wang J, Luo J, Lei X, and Jiang L. Ultrahigh hydrogen evolution performance of under-water ”superaerophobic” MoS(2) nanostructured electrodes. Adv. Mater. 2014; 26 (17): 2683-7, 2615.
21. Lu Z, Sun M, Xu T, Li Y, Xu W, Chang Z, Ding Y, Sun X, and Jiang L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015; 27 (14): 2361-6.
22. Liu Y, Pan L-m, Liu H, Chen T, Yin S, and Liu M. Effects of magnetic field on water electrolysis using foam electrodes. Int. J. Hydrogen Energy. 2019; 44 (3): 1352-1358.
23. Swiegers GF, Terrett RNL, Tsekouras G, Tsuzuki T, Pace RJ, and Stranger R. The prospects of developing a highly energy-efficient water electrolyser by eliminating or mitigating bubble effects. Sustainable Energy Fuels. 2021; 5 (5): 1280-1310.
24. Wang M, Wang Z, Gong X, and Guo Z. The intensification technologies to water electrolysis for hydrogen production – A review. Renewable Sustainable Energy Rev. 2014; 29: 573-588.
25. Darband GB, Aliofkhazraei M, and Shanmugam S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renewable Sustainable Energy Rev. 2019; 114.
26. Chen J, Fan S, Chen Y, Wang Y, Bai K, Mai Z, and Xiao Z. Electrocatalytic Composite Membrane with Deep-Permeation Nano Structure Fabricated by Flowing Synthesis for Enhanced Catalysis. J. Membr. Sci. 2021; 636: 119616-10.
27. Vedharathinam V, Qi Z, Horwood C, Bourcier B, Stadermann M, Biener J, and Biener M. Using a 3D Porous Flow-Through Electrode Geometry for High-Rate Electrochemical Reduction of CO2 to CO in Ionic Liquid. ACS Catal. 2019; 9 (12): 10605-10611.
28. Buffa A, Erel Y, and Mandler D. Carbon Nanotube Based Flow-Through Electrochemical Cell for Electroanalysis. Anal. Chem. 2016; 88 (22): 11007-11015.
29. Chen Y, Fan S, Qiu B, Chen J, Mai Z, Wang Y, Bai K, and Xiao Z. Cu-Ag Bimetallic Core-shell Nanoparticles in Pores of a Membrane Microreactor for Enhanced Synergistic Catalysis. ACS Appl. Mater. Interfaces. 2021; 13 (21): 24795-24803.
30. Chen Y, Fan S, Chen J, Deng L, and Xiao Z. Catalytic Membrane Nanoreactor with Cu-Agx Bimetallic Nanoparticles Immobilized in Membrane Pores for Enhanced Catalytic Performance. ACS Appl. Mater. Interfaces. 2022; 14 (7): 9106-9115.
31. Sun H, Xu X, Yan Z, Chen X, Jiao L, Cheng F, and Chen J. Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A. 2018; 6 (44): 22062-22069.