9. References
Abrams, M. D. (1990). Adaptations and responses to drought in Quercus species of North America. Tree physiology  7 , 227−238.
Abrams, M. D. (2003). Where has all the white oak gone?. BioScience  53, 927−939.
Addington, R. N., Donovan, L. A., Mitchell, R. J., et al. (2006). Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant, Cell & Environment  29, 535−545.
Alder, N. N., Sperry, J. S., & Pockman, W. T. (1996). Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia  105, 293−301.
Ambrose, A. R., Sillett, S. C., & Dawson, T. E. (2009). Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant, Cell & Environment  32,743−757.
Anderegg, W. R. (2015). Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist  205, 1008−1014.
Au, T. F., Maxwell, J. T., Novick, K. A., et al. (2020). Demographic shifts in eastern US forests increase the impact of late‐season drought on forest growth. Ecography43,1475−1486.
Awad, H., Barigah, T., Badel, E., Cochard, H., & Herbette, S. (2010). Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiologia Plantarum  139, 280−288.
Beikircher, B., & Mayr, S. (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology  29, 765−775.
Bhaskar, R., & Ackerly, D. D. (2006). Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum  127,353−359.
Bond, B. J., & Kavanagh, K. L. (1999). Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiology  19, 503−510.
Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., & Shackel, K. A. (2010). The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant physiology  154, 1088−1095.
Buckley, T. N. (2005). The control of stomata by water balance. New phytologist 168, 275−292.
Burgess, S. S., Pittermann, J., & Dawson, T. E. (2006). Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant, Cell & Environment  29, 229−239.
Cavender-Bares, J., & Bazzaz, F. A. (2000). Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia  124, 8−18.
Cavender-Bares, J. (2016). Diversity, distribution and ecosystem services of the North American oaks. International oaks  27, 37−48.
Cavender‐Bares, J. (2019). Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221, 669−692.
Charra-Vaskou, K., Charrier, G., Wortemann, R., et al. (2012). Drought and frost resistance of trees: a comparison of four species at different sites and altitudes. Annals of Forest Science  69, 325−333.
Choat, B., Drayton, W. M., Brodersen, C., Matthews, et al.(2010). Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to a long‐vesseled species. Plant, Cell & Environment  33, 1502−1512.
Choat, B., Jansen, S., Brodribb, T. J., et al. (2012). Global convergence in the vulnerability of forests to drought. Nature  491, 752−755.
Cochard, H., & Tyree, M. T. (1990). Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiology  6, 393−407.
Cochard, H., Herbette, S., Barigah, T., et al. (2010). Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant, Cell & Environment  33, 1543−1552.
Cochard, H., Badel, E., Herbette, S., et al. (2013). Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany 64, 4779−4791.
Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change  2, 45−65.
Davis, S. D., Sperry, J. S., & Hacke, U. G. (1999). The relationship between xylem conduit diameter and cavitation caused by freezing. American journal of botany  86, 1367−1372.
Delzon, S., & Cochard, H. (2014). Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytologist  203, 355−358.
Denham, S. O., Oishi, A. C., Miniat, C. F., et al. (2021). Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. Tree Physiology 41 , 944−959.
Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the Eastern and central United States: patterns and drivers. Global Change Biology  17, 3312−3326.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees  15, 204−214.
Domec, J. C., & Johnson, D. M. (2012). Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree physiology  32, 245−248.
Domec, J. C., Ogée, J., Noormets, A., et al. (2012). Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Tree Physiology  32, 707−723.
Durante, M., Maseda, P. H., & Fernández, R. J. (2011). Xylem efficiency vs. safety: Acclimation to drought of seedling root anatomy for six Patagonian shrub species. Journal of arid environments  75, 397−402.
Elliott, K. J., & Swank, W. T. (1994). Impacts of drought on tree mortality and growth in a mixed hardwood forest. Journal of Vegetation Science  5, 229−236.
Elliott, K. J., Miniat, C. F., Pederson, N., & Laseter, S. H. (2015). Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change Biology 21, 4627−4641.
Ewers, B. E., Mackay, D. S., & Samanta, S. (2007). Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiology  27,11−24.
Fei, S., Kong, N., Steiner, K. C., et al. (2011). Change in oak abundance in the Eastern United States from 1980 to 2008. Forest Ecology and Management  262, 1370−1377.
Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes in vapor pressure deficit suggest a continental‐scale drying of the United States atmosphere. Journal of Geophysical Research: Atmospheres  122, 2061−2079.
Flory, S. L., & Clay, K. (2010). Non-native grass invasion suppresses forest succession. Oecologia 164, 1029−1038.
Fontes, C. G., & Cavender-Bares, J. (2020). Toward an integrated view of the ‘elephant’: unlocking the mysteries of water transport and xylem vulnerability in oaks. Tree physiology 40, 1-4.
Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2017). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Tree physiology  37,441−455.
Gea-Izquierdo, G., Fonti, P., Cherubini, P., et al. (2012). Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiology  32, 401−413.
Gu, L., Pallardy, S. G., Hosman, K. P., & Sun, Y. (2015). Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US forest. Biogeosciences 12, 2831−2845.
Gu, L., Pallardy, S. G., Yang, B., et al. (2016). Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central US forest. Journal of Geophysical Research: Biogeosciences  121, 1884−1902.
Herbette, S., Wortemann, R., Awad, H., et al. (2010). Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability. Tree physiology  30, 1448−1455.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., & Cochard, H. (2018). Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends in Plant Science  23, 112−120.
Holtzman, N. M., Anderegg, L. D., Kraatz, S., et al. . (2021). L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences  18, 739−753.
Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest ecology and management  254, 390−406.
Johnson, D. M., Wortemann, R., McCulloh, K. A., et al. (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree physiology  36,983−993.
Johnson, D. M., Domec, J. C., Carter Berry, Z., et al. (2018). Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant, Cell & Environment 41, 576−588.
Kannenberg, S. A., Novick, K. A., & Phillips, R. P. (2019). Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species. New Phytologist  222, 1862−1872.
Kennedy, D., Swenson, S., Oleson, K. W., et al. (2019). Implementing plant hydraulics in the community land model, version 5. Journal of Advances in Modeling Earth Systems  11,485−513.
Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional ecology  28,1313−1320.
Köcher, P., Horna, V., & Leuschner, C. (2013). Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree physiology  33, 817−832.
Konings, A. G., & Gentine, P. (2017). Global variations in ecosystem‐scale isohydricity. Global change biology  23,891−905.
Lamarque, L. J., Corso, D., Torres-Ruiz, J. M., et al. (2018). An inconvenient truth about xylem resistance to embolism in the model species for refilling Laurus nobilis L. Annals of Forest Science75, 1−15.
Lamy, J. B., Delzon, S., Bouche, P. S., et al . (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist 201,874−886.
Lanning, M., Wang, L., Benson, M., et al. (2020). Canopy isotopic investigation reveals different water uptake dynamics of maples and oaks. Phytochemistry  175, 112389.
Leach, J. E., Woodhead, T., & Day, W. (1982). Bias in pressure chamber measurements of leaf water potential. Agricultural Meteorology  27, 257−263.
Li, X., Blackman, C. J., Peters, J. M., et al . (2019). More than iso/anisohydry: hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates. Functional Ecology 33, 1035−1049.
Lobo, A., Torres-Ruiz, J. M., Burlett, R., et al . (2018). Assessing inter-and intraspecific variability of xylem vulnerability to embolism in oaks. Forest ecology and management 424,53−61.
Macalady, A. K., & Bugmann, H. (2014). Growth-mortality relationships in piñon pine (Pinus edulis) during severe droughts of the past century: shifting processes in space and time. PloS one  9,e92770.
Maherali, H., & DeLucia, E. H. (2000). Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiology 20, 859−867.
Maherali, H., Moura, C. F., Caldeira, M. C., et al . (2006). Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell & Environment  29, 571−583.
Martin-StPaul, N. K., Longepierre, D., Huc, R., et al . (2014). How reliable are methods to assess xylem vulnerability to cavitation? The issue of ‘open vessel’artifact in oaks. Tree physiology  34, 894−905.
Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., et al. (2009). Hydraulic adjustment of Scots pine across Europe. New Phytologist  184, 353−364.
Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., et al. (2014). A new look at water transport regulation in plants. New phytologist  204, 105−115.
Martínez‐Vilalta, J., & Garcia‐Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell & Environment  40, 962−976.
Martínez-Vilalta, J., Santiago, L. S., Poyatos, R., et al.(2021). Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytologist , in press.
Matheny, A. M., Bohrer, G., Garrity, S. R., et al. (2015). Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere  6, 1−13.
Matheny, A. M., Fiorella, R. P., Bohrer, G., et al. (2017). Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology 10, e1815.
McDowell, N., Barnard, H., Bond, B., et al. (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia  132, 12−20.
McDowell, N., Pockman, W. T., Allen, C. D., et al. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New phytologist  178, 719−739.
McEwan, R. W., Dyer, J. M., & Pederson, N. (2011). Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 34,244−256.
Meddens, A. J., Hicke, J. A., Macalady, A. K., et al. (2015). Patterns and causes of observed piñon pine mortality in the southwestern United States. New Phytologist  206, 91−97.
Meier, I. C., & Leuschner, C. (2008). Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree physiology  28, 297−309.
Meinzer, F. C., Campanello, P. I., Domec, J. C., et al. (2008). Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiology  28, 1609−1617.
Meinzer, F. C., & McCulloh, K. A. (2013). Xylem recovery from drought-induced embolism: where is the hydraulic point of no return?. Tree physiology  33, 331−334.
Meinzer, F. C., Woodruff, D. R., Eissenstat, D. M., et al . (2013). Above-and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Tree physiology  33, 345−356.
Meinzer, F. C., Woodruff, D. R., Marias, D. E., et al. (2014). Dynamics of leaf water relations components in co‐occurring iso‐and anisohydric conifer species. Plant, Cell & Environment  37, 2577−2586.
Meinzer, F. C., Woodruff, D. R., Marias, et al. (2016). Mapping ‘hydroscapes’ along the iso‐to anisohydric continuum of stomatal regulation of plant water status. Ecology letters  19,1343−1352.
Meinzer, F. C., Smith, D. D., Woodruff, D. R., et al. (2017). Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Plant, cell & environment  40, 1618−1628.
Mirfenderesgi, G., Matheny, A. M., & Bohrer, G. (2019). Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology  12, e2041.
Naudts, K., Ryder, J., McGrath, M. J., et al. (2015). A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geoscientific Model Development  8, 2035−2065.
Novick, K., Oren, R., Stoy, P., et al. (2009). The relationship between reference canopy conductance and simplified hydraulic architecture. Advances in Water Resources  32, 809−819.
Novick, K. A., Ficklin, D. L., Stoy, P. C., et al. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature climate change  6, 1023−1027.
Novick, K. A., Konings, A. G., & Gentine, P. (2019). Beyond soil water potential: An expanded view on isohydricity including land–atmosphere interactions and phenology. Plant, cell & environment  42, 1802−1815.
Ogasa, M., Miki, N. H., Murakami, Y., & Yoshikawa, K. (2013). Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree physiology 33, 335−344.
Oishi, A. C., Oren, R., Novick, K. A., et al. (2010). Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. Ecosystems  13, 421−436.
Oishi, A. C., Miniat, C. F., Novick, K. A., et al. (2018). Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agricultural and forest meteorology  252, 269−282.
Olivier, M. D., Robert, S., & Fournier, R. A. (2016). Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. Forest Ecology and Management374, 20−32.
Pan, Y., Chen, J. M., Birdsey, R., et al. (2011). Age structure and disturbance legacy of North American forests. Biogeosciences8, 715−732.
Peguero-Pina, J. J., Mendoza-Herrer, Ó., Gil-Pelegrín, E., & Sancho-Knapik, D. (2018). Cavitation limits the recovery of gas exchange after severe drought stress in holm oak (Quercus ilex L.). Forests  9 , 443.
Percolla, M. I., Fickle, J. C., Rodríguez-Zaccaro, F. D., et al.(2021). Hydraulic function and conduit structure in the xylem of five oak species. IAWA Journal 1, 1−20.
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of xylem sap flow in non‐, diffuse‐and ring‐porous tree species. Plant, Cell & Environment  19, 983−990.
Plaut, J. A., Yepez, E. A., Hill, J., et al. (2012). Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant, Cell & Environment  35,1601−1617.
Richter, H. (1997). Water relations of plants in the field: some comments on the measurement of selected parameters. Journal of Experimental Botany  48, 1−7.
Roman, D. T., Novick, K. A., Brzostek, E. R., et al. (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia  179, 641−654.
Scholz, A., Klepsch, M., Karimi, Z., & Jansen, S. (2013). How to quantify conduits in wood?. Frontiers in plant science  4, 56.
Schultz, H. R. (2003). Differences in hydraulic architecture account for near‐isohydric and anisohydric behaviour of two field‐grown Vitis vinifera L. cultivars during drought. Plant, Cell & Environment  26, 1393−1405.
Simonin, K. A., Burns, E., Choat, B., et al . (2015). Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf. Journal of Experimental Botany  66, 1303−1315.
Skelton, R. P., West, A. G., & Dawson, T. E. (2015). Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences  112, 5744−5749.
Skelton, R. P., Dawson, T. E., Thompson, S. E., et al. (2018). Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiology  177, 1066−1077.
Skelton, R. P., Anderegg, L. D., Diaz, J., et al. (2021). Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proceedings of the National Academy of Sciences