9. References
Abrams, M. D. (2003). Where has all the white oak
gone?. BioScience 53, 927−939.
Addington, R. N., Donovan, L. A., Mitchell, R. J., et al. (2006).
Adjustments in hydraulic architecture of Pinus palustris maintain
similar stomatal conductance in xeric and mesic habitats. Plant,
Cell & Environment 29, 535−545.
Ambrose, A. R., Sillett, S. C., & Dawson, T. E. (2009). Effects of tree
height on branch hydraulics, leaf structure and gas exchange in
California redwoods. Plant, Cell & Environment 32,743−757.
Anderegg, W. R. (2015). Spatial and temporal variation in plant
hydraulic traits and their relevance for climate change impacts on
vegetation. New Phytologist 205, 1008−1014.
Awad, H., Barigah, T., Badel, E., Cochard, H., & Herbette, S. (2010).
Poplar vulnerability to xylem cavitation acclimates to drier soil
conditions. Physiologia Plantarum 139, 280−288.
Bahari, Z. A., Pallardy, S. G., & Parker, W. C. (1985). Photosynthesis,
water relations, and drought adaptation in six woody species of
oak-hickory forests in central Missouri. Forest
Science 31, 557−569.
Beikircher, B., & Mayr, S. (2009). Intraspecific differences in drought
tolerance and acclimation in hydraulics of Ligustrum vulgare and
Viburnum lantana. Tree Physiology 29, 765−775.
Bond, B. J., & Kavanagh, K. L. (1999). Stomatal behavior of four woody
species in relation to leaf-specific hydraulic conductance and threshold
water potential. Tree Physiology 19, 503−510.
Buckley, T. N. (2005). The control of stomata by water
balance. New phytologist 168, 275−292.
Burgess, S. S., Pittermann, J., & Dawson, T. E. (2006). Hydraulic
efficiency and safety of branch xylem increases with height in Sequoia
sempervirens (D. Don) crowns. Plant, Cell &
Environment 29, 229−239.
Charra-Vaskou, K., Charrier, G., Wortemann, R., et al. (2012).
Drought and frost resistance of trees: a comparison of four species at
different sites and altitudes. Annals of Forest
Science 69, 325−333.
Choat, B., Jansen, S., Brodribb, T. J., et al. (2012). Global
convergence in the vulnerability of forests to
drought. Nature 491, 752−755.
Clinton, B. D., Boring, L. R., & Swank, W. T. (1993). Canopy gap
characteristics and drought influences in oak forests of the Coweeta
Basin. Ecology 74, 1551−1558.
Cochard, H., & Tyree, M. T. (1990). Xylem dysfunction in Quercus:
vessel sizes, tyloses, cavitation and seasonal changes in
embolism. Tree Physiology 6, 393−407.
Cochard, H., Herbette, S., Barigah, T., et al. (2010). Does
sample length influence the shape of xylem embolism vulnerability
curves? A test with the Cavitron spinning technique. Plant, Cell
& Environment 33, 1543−1552.
Dai, A. (2011). Drought under global warming: a review. Wiley
Interdisciplinary Reviews: Climate Change 2, 45−65.
Davis, S. D., Sperry, J. S., & Hacke, U. G. (1999). The relationship
between xylem conduit diameter and cavitation caused by
freezing. American journal of botany 86, 1367−1372.
Delzon, S., & Cochard, H. (2014). Recent advances in tree hydraulics
highlight the ecological significance of the hydraulic safety
margin. New Phytologist 203, 355−358.
Dey, D. C. (2014). Sustaining oak forests in eastern North America:
regeneration and recruitment, the pillars of
sustainability. Forest Science 60, 926−942.
Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the eastern
and central United States: patterns and drivers. Global Change
Biology 17, 3312−3326.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage
capacity in bole xylem segments of mature and young Douglas-fir
trees. Trees 15, 204−214.
Domec, J. C., & Johnson, D. M. (2012). Does homeostasis or disturbance
of homeostasis in minimum leaf water potential explain the isohydric
versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree
physiology 32, 245−248.
Domec, J. C., Ogée, J., Noormets, A., et al. (2012). Interactive
effects of nocturnal transpiration and climate change on the root
hydraulic redistribution and carbon and water budgets of southern United
States pine plantations. Tree Physiology 32, 707−723.
Durante, M., Maseda, P. H., & Fernández, R. J. (2011). Xylem efficiency
vs. safety: Acclimation to drought of seedling root anatomy for six
Patagonian shrub species. Journal of arid
environments 75, 397−402.
Elliott, K. J., & Swank, W. T. (1994). Impacts of drought on tree
mortality and growth in a mixed hardwood forest. Journal of
Vegetation Science 5, 229−236.
Fei, S., Kong, N., Steiner, K. C., et al. (2011). Change in oak
abundance in the eastern United States from 1980 to 2008. Forest
Ecology and Management 262, 1370−1377.
Flory, S. L., & Clay, K. (2010). Non-native grass invasion suppresses
forest succession. Oecologia 164, 1029−1038.
Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2017).
Isohydric species are not necessarily more carbon limited than
anisohydric species during drought. Tree physiology 37,441−455.
Gea-Izquierdo, G., Fonti, P., Cherubini, P., et al. (2012). Xylem
hydraulic adjustment and growth response of Quercus canariensis Willd.
to climatic variability. Tree Physiology 32, 401−413.
Gu, L., Pallardy, S. G., Hosman, K. P., & Sun, Y. (2015).
Drought-influenced mortality of tree species with different predawn leaf
water dynamics in a decade-long study of a central US
forest. Biogeosciences 12, 2831−2845.
Gu, L., Pallardy, S. G., Yang, B., et al. (2016). Testing a land
model in ecosystem functional space via a comparison of observed and
modeled ecosystem flux responses to precipitation regimes and associated
stresses in a Central US forest. Journal of Geophysical Research:
Biogeosciences 121, 1884−1902.
Herbette, S., Wortemann, R., Awad, H., et al. (2010). Insights
into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic
and environmental sources of variability. Tree
physiology 30, 1448−1455.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., & Cochard, H. (2018).
Iso/anisohydry: a plant–environment interaction rather than a simple
hydraulic trait. Trends in Plant Science 23, 112−120.
Johnson, D. M., Wortemann, R., McCulloh, K. A., et al. (2016). A
test of the hydraulic vulnerability segmentation hypothesis in
angiosperm and conifer tree species. Tree physiology 36,983−993.
Kannenberg, S. A., & Phillips, R. P. (2020). Non-structural
carbohydrate pools not linked to hydraulic strategies or carbon supply
in tree saplings during severe drought and subsequent
recovery. Tree Physiology 40, 259−271.
Kennedy, D., Swenson, S., Oleson, K. W., et al. (2019).
Implementing plant hydraulics in the community land model, version
5. Journal of Advances in Modeling Earth Systems 11,485−513.
Klein, T. (2014). The variability of stomatal sensitivity to leaf water
potential across tree species indicates a continuum between isohydric
and anisohydric behaviours. Functional ecology 28,1313−1320.
Klein, T., Zeppel, M. J., Anderegg, W. R., et al . (2018). Xylem
embolism refilling and resilience against drought-induced mortality in
woody plants: processes and trade-offs. Ecological
research 33, 839−855.
Köcher, P., Horna, V., & Leuschner, C. (2013). Stem water storage in
five coexisting temperate broad-leaved tree species: significance,
temporal dynamics and dependence on tree functional traits. Tree
physiology 33, 817−832.
Lamy, J. B., Delzon, S., Bouche, P. S., et al . (2014). Limited
genetic variability and phenotypic plasticity detected for cavitation
resistance in a Mediterranean pine. New Phytologist 201,874−886.
Loewenstein, N. J., & Pallardy, S. G. (1998). Drought tolerance, xylem
sap abscisic acid and stomatal conductance during soil drying: a
comparison of canopy trees of three temperate deciduous
angiosperms. Tree Physiology 18, 431−439.
Macalady, A. K., & Bugmann, H. (2014). Growth-mortality relationships
in piñon pine (Pinus edulis) during severe droughts of the past century:
shifting processes in space and time. PloS one 9,e92770.
Maherali, H., & DeLucia, E. H. (2000). Xylem conductivity and
vulnerability to cavitation of ponderosa pine growing in contrasting
climates. Tree Physiology 20, 859−867.
Maherali, H., Moura, C. F., Caldeira, M. C., et al . (2006).
Functional coordination between leaf gas exchange and vulnerability to
xylem cavitation in temperate forest trees. Plant, Cell &
Environment 29, 571−583.
Martin-StPaul, N. K., Longepierre, D., Huc, R., et al . (2014).
How reliable are methods to assess xylem vulnerability to cavitation?
The issue of ‘open vessel’artifact in oaks. Tree
physiology 34, 894−905.
Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., et al. (2009).
Hydraulic adjustment of Scots pine across Europe. New
Phytologist 184, 353−364.
Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., et al. (2014). A
new look at water transport regulation in plants. New
phytologist 204, 105−115.
Martínez‐Vilalta, J., & Garcia‐Forner, N. (2017). Water potential
regulation, stomatal behaviour and hydraulic transport under drought:
deconstructing the iso/anisohydric concept. Plant, Cell &
Environment 40, 962−976.
Matheny, A. M., Bohrer, G., Garrity, S. R., et al. (2015).
Observations of stem water storage in trees of opposing hydraulic
strategies. Ecosphere 6, 1−13.
Matheny, A. M., Fiorella, R. P., Bohrer, G., et al. (2017).
Contrasting strategies of hydraulic control in two codominant temperate
tree species. Ecohydrology 10, e1815.
McDowell, N., Barnard, H., Bond, B., et al. (2002). The
relationship between tree height and leaf area: sapwood area
ratio. Oecologia 132, 12−20.
McDowell, N., Pockman, W. T., Allen, C. D., et al. (2008).
Mechanisms of plant survival and mortality during drought: why do some
plants survive while others succumb to drought?. New
phytologist 178, 719−739.
McEwan, R. W., Dyer, J. M., & Pederson, N. (2011). Multiple interacting
ecosystem drivers: toward an encompassing hypothesis of oak forest
dynamics across eastern North America. Ecography 34,244−256.
Meddens, A. J., Hicke, J. A., Macalady, A. K., et al. (2015).
Patterns and causes of observed piñon pine mortality in the southwestern
United States. New Phytologist 206, 91−97.
Meier, I. C., & Leuschner, C. (2008). Genotypic variation and
phenotypic plasticity in the drought response of fine roots of European
beech. Tree physiology 28, 297−309.
Meinzer, F. C., Campanello, P. I., Domec, J. C., et al. (2008).
Constraints on physiological function associated with branch
architecture and wood density in tropical forest trees. Tree
Physiology 28, 1609−1617.
Meinzer, F. C., & McCulloh, K. A. (2013). Xylem recovery from
drought-induced embolism: where is the hydraulic point of no
return?. Tree physiology 33, 331−334.
Meinzer, F. C., Woodruff, D. R., Marias, D. E., et al. (2014).
Dynamics of leaf water relations components in co‐occurring iso‐and
anisohydric conifer species. Plant, Cell &
Environment 37, 2577−2586.
Meinzer, F. C., Woodruff, D. R., Marias, et al. (2016). Mapping
‘hydroscapes’ along the iso‐to anisohydric continuum of stomatal
regulation of plant water status. Ecology letters 19,1343−1352.
Meinzer, F. C., Smith, D. D., Woodruff, D. R., et al. (2017).
Stomatal kinetics and photosynthetic gas exchange along a continuum of
isohydric to anisohydric regulation of plant water status. Plant,
cell & environment 40, 1618−1628.
Mirfenderesgi, G., Matheny, A. M., & Bohrer, G. (2019). Hydrodynamic
trait coordination and cost–benefit trade‐offs throughout the
isohydric–anisohydric continuum in
trees. Ecohydrology 12, e2041.
Naudts, K., Ryder, J., McGrath, M. J., et al. (2015). A
vertically discretised canopy description for ORCHIDEE (SVN r2290) and
the modifications to the energy, water and carbon
fluxes. Geoscientific Model Development 8, 2035−2065.
Novick, K., Oren, R., Stoy, P., et al. (2009). The relationship
between reference canopy conductance and simplified hydraulic
architecture. Advances in Water Resources 32, 809−819.
Novick, K. A., Ficklin, D. L., Stoy, P. C., et al. (2016). The
increasing importance of atmospheric demand for ecosystem water and
carbon fluxes. Nature climate change 6, 1023−1027.
Novick, K. A., Konings, A. G., & Gentine, P. (2019). Beyond soil water
potential: An expanded view on isohydricity including land–atmosphere
interactions and phenology. Plant, cell &
environment 42, 1802−1815.
Ogasa, M., Miki, N. H., Murakami, Y., & Yoshikawa, K. (2013). Recovery
performance in xylem hydraulic conductivity is correlated with
cavitation resistance for temperate deciduous tree species. Tree
physiology 33, 335−344.
Oishi, A. C., Oren, R., Novick, K. A., et al. (2010). Interannual
invariability of forest evapotranspiration and its consequence to water
flow downstream. Ecosystems 13, 421−436.
Oishi, A. C., Miniat, C. F., Novick, K. A., et al. (2018). Warmer
temperatures reduce net carbon uptake, but do not affect water use, in a
mature southern Appalachian forest. Agricultural and forest
meteorology 252, 269−282.
Olivier, M. D., Robert, S., & Fournier, R. A. (2016). Response of sugar
maple (Acer saccharum, Marsh.) tree crown structure to competition in
pure versus mixed stands. Forest Ecology and Management374, 20−32.
Pan, Y., Chen, J. M., Birdsey, R., et al. (2011). Age structure
and disturbance legacy of North American forests. Biogeosciences8, 715−732.
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of
xylem sap flow in non‐, diffuse‐and ring‐porous tree
species. Plant, Cell & Environment 19, 983−990.
Plaut, J. A., Yepez, E. A., Hill, J., et al. (2012). Hydraulic
limits preceding mortality in a piñon–juniper woodland under
experimental drought. Plant, Cell & Environment 35,1601−1617.
Roman, D. T., Novick, K. A., Brzostek, E. R., et al. (2015). The
role of isohydric and anisohydric species in determining ecosystem-scale
response to severe drought. Oecologia 179, 641−654.
Scholz, F. G., Phillips, N. G., Bucci, S. J., et al. (2011).
Hydraulic capacitance: biophysics and functional significance of
internal water sources in relation to tree size. In Size-and
age-related changes in tree structure and function (pp. 341−361).
Springer, Dordrecht.
Scholz, A., Klepsch, M., Karimi, Z., & Jansen, S. (2013). How to
quantify conduits in wood?. Frontiers in plant
science 4, 56.
Schweingruber, F. H. (2007). Preparation of wood and herb samples for
microscopic analysis. Wood Structure and Environment , 3-5.
Springer, Berlin, Heidelberg.
Schultz, H. R. (2003). Differences in hydraulic architecture account for
near‐isohydric and anisohydric behaviour of two field‐grown Vitis
vinifera L. cultivars during drought. Plant, Cell &
Environment 26, 1393−1405.
Skelton, R. P., West, A. G., & Dawson, T. E. (2015). Predicting plant
vulnerability to drought in biodiverse regions using functional
traits. Proceedings of the National Academy of
Sciences 112, 5744−5749.
Skelton, R. P., Dawson, T. E., Thompson, S. E., et al. (2018).
Low vulnerability to xylem embolism in leaves and stems of North
American oaks. Plant Physiology 177, 1066−1077.
Sperry, J. S., & Saliendra, N. Z. (1994). Intra‐and inter‐plant
variation in xylem cavitation in Betula occidentalis. Plant, Cell
& Environment 17, 1233−1241.
Sperry, J. S., Hacke, U. G., Oren, R., & Comstock, J. P. (2002). Water
deficits and hydraulic limits to leaf water supply. Plant, cell &
environment 25, 251−263.
Sperry, J. S., & Love, D. M. (2015). What plant hydraulics can tell us
about responses to climate‐change droughts. New
Phytologist 207, 14−27.
Swank, W. T., & Webster, J. R. (Eds.). (2014). Long-term response
of a forest watershed ecosystem: Clearcutting in the southern
Appalachians . Oxford University Press, New York.
Taneda, H., & Sperry, J. S. (2008). A case-study of water transport in
co-occurring ring-versus diffuse-porous trees: contrasts in
water-status, conducting capacity, cavitation and vessel
refilling. Tree physiology 28, 1641−1651.
Tardieu, F., & Simonneau, T. (1998). Variability among species of
stomatal control under fluctuating soil water status and evaporative
demand: modelling isohydric and anisohydric behaviours. Journal of
experimental botany 49, 419−432.
Thomsen, J. E., Bohrer, G., Matheny, A. M., et al. (2013).
Contrasting hydraulic strategies during dry soil conditions in Quercus
rubra and Acer rubrum in a sandy site in
Michigan. Forests 4, 1106−1120.
Torres‐Ruiz, J. M., Cochard, H., Mayr, S., et al. (2014).
Vulnerability to cavitation in Olea europaea current‐year shoots:
further evidence of an open‐vessel artifact associated with centrifuge
and air‐injection techniques. Physiologia Plantarum 152,465−474.
Trifilò, P., Kiorapostolou, N., Petruzzellis, F., et al. (2019).
Hydraulic recovery from xylem embolism in excised branches of twelve
woody species: Relationships with parenchyma cells and non-structural
carbohydrates. Plant Physiology and Biochemistry 139,513−520.
Trabucco, A., & Zomer, R. J. (2009). Global aridity index
(global-aridity) and global potential evapo-transpiration (global-PET)
geospatial database. CGIAR Consortium for Spatial Information .
Turner, N. C. (1988). Measurement of plant water status by the pressure
chamber technique. Irrigation science 9, 289−308.
Tyree, M. T., & Sperry, J. S. (1989). Vulnerability of xylem to
cavitation and embolism. Annual review of plant
biology 40, 19−36.
Tyree, M. T., & Zimmermann, M. H. (2013). Xylem structure and the
ascent of sap . Springer, Berlin, Germany
Vose, J. M., & Elliott, K. J. (2016). Oak, fire, and global change in
the eastern USA: What might the future hold?. Fire
Ecology 12, 160−179.
Wolfe, B. T., Sperry, J. S., & Kursar, T. A. (2016). Does leaf shedding
protect stems from cavitation during seasonal droughts? A test of the
hydraulic fuse hypothesis. New Phytologist 212,1007−1018.
Wood, J. D., Knapp, B. O., Muzika, R. M., et al. (2018). The
importance of drought–pathogen interactions in driving oak mortality
events in the Ozark Border Region. Environmental Research
Letters 13, 015004.
Wortemann, R., Herbette, S., Barigah, T. S., et al. (2011).
Genotypic variability and phenotypic plasticity of cavitation resistance
in Fagus sylvatica L. across Europe. Tree physiology 31,1175−1182.
Yi, K., Dragoni, D., Phillips, R. P., Roman, D. T., & Novick, K. A.
(2017). Dynamics of stem water uptake among isohydric and anisohydric
species experiencing a severe drought. Tree
physiology 37, 1379−1392.
Zeppel, M. J., Anderegg, W. R., Adams, H. D., et al. (2019).
Embolism recovery strategies and nocturnal water loss across species
influenced by biogeographic origin. Ecology and
evolution 9, 5348−5361.