9. References
Abrams, M. D. (2003). Where has all the white oak gone?. BioScience  53, 927−939.
Addington, R. N., Donovan, L. A., Mitchell, R. J., et al. (2006). Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant, Cell & Environment  29, 535−545.
Ambrose, A. R., Sillett, S. C., & Dawson, T. E. (2009). Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant, Cell & Environment  32,743−757.
Anderegg, W. R. (2015). Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist  205, 1008−1014.
Awad, H., Barigah, T., Badel, E., Cochard, H., & Herbette, S. (2010). Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiologia Plantarum  139, 280−288.
Bahari, Z. A., Pallardy, S. G., & Parker, W. C. (1985). Photosynthesis, water relations, and drought adaptation in six woody species of oak-hickory forests in central Missouri. Forest Science  31, 557−569.
Beikircher, B., & Mayr, S. (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology  29, 765−775.
Bond, B. J., & Kavanagh, K. L. (1999). Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiology  19, 503−510.
Buckley, T. N. (2005). The control of stomata by water balance. New phytologist 168, 275−292.
Burgess, S. S., Pittermann, J., & Dawson, T. E. (2006). Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant, Cell & Environment  29, 229−239.
Charra-Vaskou, K., Charrier, G., Wortemann, R., et al. (2012). Drought and frost resistance of trees: a comparison of four species at different sites and altitudes. Annals of Forest Science  69, 325−333.
Choat, B., Jansen, S., Brodribb, T. J., et al. (2012). Global convergence in the vulnerability of forests to drought. Nature  491, 752−755.
Clinton, B. D., Boring, L. R., & Swank, W. T. (1993). Canopy gap characteristics and drought influences in oak forests of the Coweeta Basin. Ecology  74, 1551−1558.
Cochard, H., & Tyree, M. T. (1990). Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiology  6, 393−407.
Cochard, H., Herbette, S., Barigah, T., et al. (2010). Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant, Cell & Environment  33, 1543−1552.
Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change  2, 45−65.
Davis, S. D., Sperry, J. S., & Hacke, U. G. (1999). The relationship between xylem conduit diameter and cavitation caused by freezing. American journal of botany  86, 1367−1372.
Delzon, S., & Cochard, H. (2014). Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytologist  203, 355−358.
Dey, D. C. (2014). Sustaining oak forests in eastern North America: regeneration and recruitment, the pillars of sustainability. Forest Science  60, 926−942.
Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biology  17, 3312−3326.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees  15, 204−214.
Domec, J. C., & Johnson, D. M. (2012). Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree physiology  32, 245−248.
Domec, J. C., Ogée, J., Noormets, A., et al. (2012). Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Tree Physiology  32, 707−723.
Durante, M., Maseda, P. H., & Fernández, R. J. (2011). Xylem efficiency vs. safety: Acclimation to drought of seedling root anatomy for six Patagonian shrub species. Journal of arid environments  75, 397−402.
Elliott, K. J., & Swank, W. T. (1994). Impacts of drought on tree mortality and growth in a mixed hardwood forest. Journal of Vegetation Science  5, 229−236.
Fei, S., Kong, N., Steiner, K. C., et al. (2011). Change in oak abundance in the eastern United States from 1980 to 2008. Forest Ecology and Management  262, 1370−1377.
Flory, S. L., & Clay, K. (2010). Non-native grass invasion suppresses forest succession. Oecologia  164, 1029−1038.
Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2017). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Tree physiology  37,441−455.
Gea-Izquierdo, G., Fonti, P., Cherubini, P., et al. (2012). Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiology  32, 401−413.
Gu, L., Pallardy, S. G., Hosman, K. P., & Sun, Y. (2015). Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US forest. Biogeosciences 12, 2831−2845.
Gu, L., Pallardy, S. G., Yang, B., et al. (2016). Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central US forest. Journal of Geophysical Research: Biogeosciences  121, 1884−1902.
Herbette, S., Wortemann, R., Awad, H., et al. (2010). Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability. Tree physiology  30, 1448−1455.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., & Cochard, H. (2018). Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends in Plant Science  23, 112−120.
Johnson, D. M., Wortemann, R., McCulloh, K. A., et al. (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree physiology  36,983−993.
Kannenberg, S. A., & Phillips, R. P. (2020). Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiology 40, 259−271.
Kennedy, D., Swenson, S., Oleson, K. W., et al. (2019). Implementing plant hydraulics in the community land model, version 5. Journal of Advances in Modeling Earth Systems  11,485−513.
Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional ecology  28,1313−1320.
Klein, T., Zeppel, M. J., Anderegg, W. R., et al . (2018). Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecological research  33, 839−855.
Köcher, P., Horna, V., & Leuschner, C. (2013). Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree physiology  33, 817−832.
Lamy, J. B., Delzon, S., Bouche, P. S., et al . (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist 201,874−886.
Loewenstein, N. J., & Pallardy, S. G. (1998). Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiology  18, 431−439.
Macalady, A. K., & Bugmann, H. (2014). Growth-mortality relationships in piñon pine (Pinus edulis) during severe droughts of the past century: shifting processes in space and time. PloS one  9,e92770.
Maherali, H., & DeLucia, E. H. (2000). Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiology 20, 859−867.
Maherali, H., Moura, C. F., Caldeira, M. C., et al . (2006). Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell & Environment  29, 571−583.
Martin-StPaul, N. K., Longepierre, D., Huc, R., et al . (2014). How reliable are methods to assess xylem vulnerability to cavitation? The issue of ‘open vessel’artifact in oaks. Tree physiology  34, 894−905.
Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., et al. (2009). Hydraulic adjustment of Scots pine across Europe. New Phytologist  184, 353−364.
Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., et al. (2014). A new look at water transport regulation in plants. New phytologist  204, 105−115.
Martínez‐Vilalta, J., & Garcia‐Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell & Environment  40, 962−976.
Matheny, A. M., Bohrer, G., Garrity, S. R., et al. (2015). Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere  6, 1−13.
Matheny, A. M., Fiorella, R. P., Bohrer, G., et al. (2017). Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology 10, e1815.
McDowell, N., Barnard, H., Bond, B., et al. (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia  132, 12−20.
McDowell, N., Pockman, W. T., Allen, C. D., et al. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New phytologist  178, 719−739.
McEwan, R. W., Dyer, J. M., & Pederson, N. (2011). Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 34,244−256.
Meddens, A. J., Hicke, J. A., Macalady, A. K., et al. (2015). Patterns and causes of observed piñon pine mortality in the southwestern United States. New Phytologist  206, 91−97.
Meier, I. C., & Leuschner, C. (2008). Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree physiology  28, 297−309.
Meinzer, F. C., Campanello, P. I., Domec, J. C., et al. (2008). Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiology  28, 1609−1617.
Meinzer, F. C., & McCulloh, K. A. (2013). Xylem recovery from drought-induced embolism: where is the hydraulic point of no return?. Tree physiology  33, 331−334.
Meinzer, F. C., Woodruff, D. R., Marias, D. E., et al. (2014). Dynamics of leaf water relations components in co‐occurring iso‐and anisohydric conifer species. Plant, Cell & Environment  37, 2577−2586.
Meinzer, F. C., Woodruff, D. R., Marias, et al. (2016). Mapping ‘hydroscapes’ along the iso‐to anisohydric continuum of stomatal regulation of plant water status. Ecology letters  19,1343−1352.
Meinzer, F. C., Smith, D. D., Woodruff, D. R., et al. (2017). Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Plant, cell & environment  40, 1618−1628.
Mirfenderesgi, G., Matheny, A. M., & Bohrer, G. (2019). Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology  12, e2041.
Naudts, K., Ryder, J., McGrath, M. J., et al. (2015). A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geoscientific Model Development  8, 2035−2065.
Novick, K., Oren, R., Stoy, P., et al. (2009). The relationship between reference canopy conductance and simplified hydraulic architecture. Advances in Water Resources  32, 809−819.
Novick, K. A., Ficklin, D. L., Stoy, P. C., et al. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature climate change  6, 1023−1027.
Novick, K. A., Konings, A. G., & Gentine, P. (2019). Beyond soil water potential: An expanded view on isohydricity including land–atmosphere interactions and phenology. Plant, cell & environment  42, 1802−1815.
Ogasa, M., Miki, N. H., Murakami, Y., & Yoshikawa, K. (2013). Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree physiology 33, 335−344.
Oishi, A. C., Oren, R., Novick, K. A., et al. (2010). Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. Ecosystems  13, 421−436.
Oishi, A. C., Miniat, C. F., Novick, K. A., et al. (2018). Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agricultural and forest meteorology  252, 269−282.
Olivier, M. D., Robert, S., & Fournier, R. A. (2016). Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. Forest Ecology and Management374, 20−32.
Pan, Y., Chen, J. M., Birdsey, R., et al. (2011). Age structure and disturbance legacy of North American forests. Biogeosciences8, 715−732.
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of xylem sap flow in non‐, diffuse‐and ring‐porous tree species. Plant, Cell & Environment  19, 983−990.
Plaut, J. A., Yepez, E. A., Hill, J., et al. (2012). Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant, Cell & Environment  35,1601−1617.
Roman, D. T., Novick, K. A., Brzostek, E. R., et al. (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia  179, 641−654.
Scholz, F. G., Phillips, N. G., Bucci, S. J., et al. (2011). Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In Size-and age-related changes in tree structure and function  (pp. 341−361). Springer, Dordrecht.
Scholz, A., Klepsch, M., Karimi, Z., & Jansen, S. (2013). How to quantify conduits in wood?. Frontiers in plant science  4, 56.
Schweingruber, F. H. (2007). Preparation of wood and herb samples for microscopic analysis. Wood Structure and Environment , 3-5. Springer, Berlin, Heidelberg.
Schultz, H. R. (2003). Differences in hydraulic architecture account for near‐isohydric and anisohydric behaviour of two field‐grown Vitis vinifera L. cultivars during drought. Plant, Cell & Environment  26, 1393−1405.
Skelton, R. P., West, A. G., & Dawson, T. E. (2015). Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences  112, 5744−5749.
Skelton, R. P., Dawson, T. E., Thompson, S. E., et al. (2018). Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiology  177, 1066−1077.
Sperry, J. S., & Saliendra, N. Z. (1994). Intra‐and inter‐plant variation in xylem cavitation in Betula occidentalis. Plant, Cell & Environment 17, 1233−1241.
Sperry, J. S., Hacke, U. G., Oren, R., & Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. Plant, cell & environment  25, 251−263.
Sperry, J. S., & Love, D. M. (2015). What plant hydraulics can tell us about responses to climate‐change droughts. New Phytologist  207, 14−27.
Swank, W. T., & Webster, J. R. (Eds.). (2014). Long-term response of a forest watershed ecosystem: Clearcutting in the southern Appalachians . Oxford University Press, New York.
Taneda, H., & Sperry, J. S. (2008). A case-study of water transport in co-occurring ring-versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree physiology  28, 1641−1651.
Tardieu, F., & Simonneau, T. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of experimental botany 49, 419−432.
Thomsen, J. E., Bohrer, G., Matheny, A. M., et al. (2013). Contrasting hydraulic strategies during dry soil conditions in Quercus rubra and Acer rubrum in a sandy site in Michigan. Forests  4, 1106−1120.
Torres‐Ruiz, J. M., Cochard, H., Mayr, S., et al. (2014). Vulnerability to cavitation in Olea europaea current‐year shoots: further evidence of an open‐vessel artifact associated with centrifuge and air‐injection techniques. Physiologia Plantarum  152,465−474.
Trifilò, P., Kiorapostolou, N., Petruzzellis, F., et al. (2019). Hydraulic recovery from xylem embolism in excised branches of twelve woody species: Relationships with parenchyma cells and non-structural carbohydrates. Plant Physiology and Biochemistry  139,513−520.
Trabucco, A., & Zomer, R. J. (2009). Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information .
Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation science  9, 289−308.
Tyree, M. T., & Sperry, J. S. (1989). Vulnerability of xylem to cavitation and embolism. Annual review of plant biology  40, 19−36.
Tyree, M. T., & Zimmermann, M. H. (2013). Xylem structure and the ascent of sap . Springer, Berlin, Germany
Vose, J. M., & Elliott, K. J. (2016). Oak, fire, and global change in the eastern USA: What might the future hold?. Fire Ecology  12, 160−179.
Wolfe, B. T., Sperry, J. S., & Kursar, T. A. (2016). Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. New Phytologist  212,1007−1018.
Wood, J. D., Knapp, B. O., Muzika, R. M., et al. (2018). The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environmental Research Letters  13, 015004.
Wortemann, R., Herbette, S., Barigah, T. S., et al. (2011). Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree physiology  31,1175−1182.
Yi, K., Dragoni, D., Phillips, R. P., Roman, D. T., & Novick, K. A. (2017). Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Tree physiology  37, 1379−1392.
Zeppel, M. J., Anderegg, W. R., Adams, H. D., et al. (2019). Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecology and evolution  9, 5348−5361.