REFERENCES
Aigner, T. B., DeSimone, E., & Scheibel, T. (2018). Biomedical Applications of Recombinant Silk-Based Materials. Adv Mater, 30 (19), e1704636. doi:10.1002/adma.201704636
Asakura, T., Isozaki, M., Saotome, T., Tatematsu, K.-i., Sezutsu, H., Kuwabara, N., & Nakazawa, Y. (2014). Recombinant silk fibroin incorporated cell-adhesive sequences produced by transgenic silkworm as a possible candidate for use in vascular graft. J. Mater. Chem. B, 2 (42), 7375-7383. doi:10.1039/c4tb01301h
Asakura, T., & Kaplan, D. L. (1994). Silk Production and Processing. In C. J. Arntzen (Ed.), Encyclopedia of Agricultural Science (Vol. 4, pp. 1): Academic Press Inc.
Asakura, T., Ohgo, K., Ishida, T., Taddei, P., Monti, P., & Kishore, R. (2005). Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study.Biomacromolecules, 6 (1), 468-474. doi:10.1021/bm049487k
Asakura, T., Tanaka, T., & Tanaka, R. (2019). Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts.ACS Biomaterials Science & Engineering, 5 (11), 5561-5577. doi:10.1021/acsbiomaterials.8b01482
Asakura, T., & Yao, J. (2002). 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Sci, 11 (11), 2706-2713. doi:10.1110/ps.0221702
Brandt, E. G., & Lyubartsev, A. P. (2015). Molecular Dynamics Simulations of Adsorption of Amino Acid Side Chain Analogues and a Titanium Binding Peptide on the TiO2 (100) Surface. The Journal of Physical Chemistry C, 119 (32), 18126-18139. doi:10.1021/acs.jpcc.5b02670
Brunette, D. M., Tengvall, P., Textor, M., & Thomsen, P. (2001).Titanium in Medicin . Berlin: Springer Verlag Berlin Heidelberg.
Couble, P., Chevillard, M., Moine, A., Ravel-Chapuis, P., & Prudhomme, J. C. (1985). Structural organization of the P25 gene of Bombyx mori and comparative analysis of its 5’ flanking DNA with that of the fibroin gene. Nucleic Acids Res, 13 (5), 1801-1814. doi:10.1093/nar/13.5.1801
Geng, H., Yuan, Y., Adayi, A., Zhang, X., Song, X., Gong, L., . . . Gao, P. (2018). Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants.Mater Sci Eng C Mater Biol Appl, 82 , 141-154. doi:10.1016/j.msec.2017.08.062
Hayashi, T., Sano, K., Shiba, K., Iwahori, K., Yamashita, I., & Hara, M. (2009). Critical amino acid residues for the specific binding of the Ti-recognizing recombinant ferritin with oxide surfaces of titanium and silicon. Langmuir, 25 (18), 10901-10906. doi:10.1021/la901242q
Horn, C., Schmid, B. G., Pogoda, F. S., & Wimmer, E. A. (2002). Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol, 32 (10), 1221-1235. doi:10.1016/s0965-1748(02)00085-1
Iizuka, T., Sezutsu, H., Tatematsu, K.-i., Kobayashi, I., Yonemura, N., Uchino, K., . . . Tamura, T. (2013). Colored Fluorescent Silk Made by Transgenic Silkworms. Advanced Functional Materials, 23 (42), 5232-5239. doi:10.1002/adfm.201300365
Ikemi, M., Kikuchi, T., Matsumura, S., Shiba, K., Sato, S., & Fujita, M. (2010). Peptide-coated, self-assembled M12L24 coordination spheres and their immobilization onto an inorganic surface. Chemical Science, 1 (1), 68-71. doi:10.1039/C0SC00198H
Inoue, S., Tanaka, K., Arisaka, F., Kimura, S., Ohtomo, K., & Mizuno, S. (2000). Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem, 275 (51), 40517-40528. doi:10.1074/jbc.M006897200
Kashiwagi, K., Tsuji, T., & Shiba, K. (2009). Directional BMP-2 for functionalization of titanium surfaces. Biomaterials, 30 (6), 1166-1175. doi:10.1016/j.biomaterials.2008.10.040
Koeppel, A., & Holland, C. (2017). Progress and Trends in Artificial Silk Spinning: A Systematic Review. ACS Biomaterials Science & Engineering, 3 (3), 226-237. doi:10.1021/acsbiomaterials.6b00669
Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y., . . . Han, M.-Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46 , 86-110. doi:10.1016/j.progpolymsci.2015.02.001
Kojima, K., Kuwana, Y., Sezutsu, H., Kobayashi, I., Uchino, K., Tamura, T., & Tamada, Y. (2007). A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem, 71 (12), 2943-2951. doi:10.1271/bbb.70353
Kokubun, K., Kashiwagi, K., Yoshinari, M., Inoue, T., & Shiba, K. (2008). Motif-programmed artificial extracellular matrix.Biomacromolecules, 9 (11), 3098-3105. doi:10.1021/bm800638z
Kokubun, K., Matsumura, S., Yudasaka, M., Iijima, S., & Shiba, K. (2018). Immobilization of a carbon nanomaterial-based localized drug-release system using a bispecific material-binding peptide.Int J Nanomedicine, 13 , 1643-1652. doi:10.2147/IJN.S155913
Nagano, A., Tanioka, Y., Sakurai, N., Sezutsu, H., Kuboyama, N., Kiba, H., . . . Asakura, T. (2011). Regeneration of the femoral epicondyle on calcium-binding silk scaffolds developed using transgenic silk fibroin produced by transgenic silkworm. Acta Biomater, 7 (3), 1192-1201. doi:10.1016/j.actbio.2010.10.032
Nishida, H., Kajisa, T., Miyazawa, Y., Tabuse, Y., Yoda, T., Takeyama, H., . . . Sakata, T. (2015). Self-oriented immobilization of DNA polymerase tagged by titanium-binding peptide motif. Langmuir, 31 (2), 732-740. doi:10.1021/la503094k
Pagel, M., Hassert, R., John, T., Braun, K., Wiessler, M., Abel, B., & Beck-Sickinger, A. G. (2016). Multifunctional Coating Improves Cell Adhesion on Titanium by using Cooperatively Acting Peptides. Angew Chem Int Ed Engl, 55 (15), 4826-4830. doi:10.1002/anie.201511781
Prince, J. T., McGrath, K. P., DiGirolamo, C. M., & Kaplan, D. L. (1995). Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry, 34 (34), 10879-10885. doi:10.1021/bi00034a022
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Sano, K., Ajima, K., Iwahori, K., Yudasaka, M., Iijima, S., Yamashita, I., & Shiba, K. (2005). Endowing a Ferritin-Like Cage Protein with High Affinity and Selectivity for Certain Inorganic Materials. Small, 1 (8-9), 826 - 832.
Sano, K., Sasaki, H., & Shiba, K. (2005). Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1).Langmuir, 21 (7), 3090-3095.
Sano, K., & Shiba, K. (2003). A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc, 125 (47), 14234-14235. doi:10.1021/ja038414q
Saotome, T., Hayashi, H., Tanaka, R., Kinugasa, A., Uesugi, S., Tatematsu, K.-i., . . . Asakura, T. (2015). Introduction of VEGF or RGD sequences improves revascularization properties of Bombyx mori silk fibroin produced by transgenic silkworm. Journal of Materials Chemistry B, 3 (35), 7109-7116. doi:10.1039/C5TB00939A
Schneider, J., & Ciacchi, L. C. (2012). Specific material recognition by small peptides mediated by the interfacial solvent structure.Journal of the American Chemical Society, 134 (4), 2407-2413. doi:10.1021/ja210744g
Schuler, M., Owen, G. R., Hamilton, D. W., de Wild, M., Textor, M., Brunette, D. M., & Tosatti, S. G. (2006). Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials, 27 (21), 4003-4015. doi:10.1016/j.biomaterials.2006.03.009
Scott, J. K., & Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science, 249 (4967), 386-390.
Shiba, K. (2010). Natural and artificial peptide motifs: their origins and the application of motif-programming. Chem Soc Rev, 39 (1), 117-126. doi:10.1039/b719081f
Skelton, A. A., Liang, T., & Walsh, T. R. (2009). Interplay of sequence, conformation, and binding at the Peptide-titania interface as mediated by water. ACS Appl Mater Interfaces, 1 (7), 1482-1491. doi:10.1021/am9001666
Strydom, D. J., Haylett, T., & Stead, R. H. (1977). The amino-terminal sequence of silk fibroin peptide CP - a reinvestigation. Biochem Biophys Res Commun, 79 (3), 932-938. doi:10.1016/0006-291x(77)91200-1
Suzuki, Y., Aoki, A., Nakazawa, Y., Knight, D. P., & Asakura, T. (2010). Structural Analysis of the Synthetic Peptide (Ala-Gly-Ser-Gly-Ala-Gly)5, a Model for the Crystalline Domain of Bombyx mori Silk Fibroin, Studied with 13C CP/MAS NMR, REDOR, and Statistical Mechanical Calculations. Macromolecules, 43 (22), 9434-9440. doi:10.1021/ma1018878
Suzuki, Y., Shindo, H., & Asakura, T. (2016). Structure and Dynamic Properties of a Ti-Binding Peptide Bound to TiO2 Nanoparticles As Accessed by (1)H NMR Spectroscopy. J Phys Chem B, 120 (20), 4600-4607. doi:10.1021/acs.jpcb.6b03260
Takei, F., Kikuchi, Y., Kikuchi, A., Mizuno, S., & Shimura, K. (1987). Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells.J Cell Biol, 105 (1), 175-180. doi:10.1083/jcb.105.1.175
Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., . . . Couble, P. (2000). Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol, 18 (1), 81-84. doi:10.1038/71978
Tanaka, K., Kajiyama, N., Ishikura, K., Waga, S., Kikuchi, A., Ohtomo, K., . . . Mizuno, S. (1999). Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta, 1432 (1), 92-103. doi:10.1016/s0167-4838(99)00088-6
Tanaka, K., Mori, K., & Mizuno, S. (1993). Immunological identification of the major disulfide-linked light component of silk fibroin. J Biochem, 114 (1), 1-4. doi:10.1093/oxfordjournals.jbchem.a124122
Teule, F., Miao, Y. G., Sohn, B. H., Kim, Y. S., Hull, J. J., Fraser, M. J., Jr., . . . Jarvis, D. L. (2012). Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A, 109 (3), 923-928. doi:10.1073/pnas.1109420109
Thurber, A. E., Omenetto, F. G., & Kaplan, D. L. (2015). In vivo bioresponses to silk proteins. Biomaterials, 71 , 145-157. doi:10.1016/j.biomaterials.2015.08.039
Tsuji, T., Oaki, Y., Yoshinari, M., Kato, T., & Shiba, K. (2010). Motif-programmed artificial proteins mediated nucleation of octacalcium phosphate on titanium substrates. Chemical communications, 46 (36), 6675-6677. doi:10.1039/c0cc01512a
Velema, J., & Kaplan, D. (2006). Biopolymer-based biomaterials as scaffolds for tissue engineering. Adv Biochem Eng Biotechnol, 102 , 187-238. doi:10.1007/10_013
Vepari, C., & Kaplan, D. L. (2007). Silk as a Biomaterial. Prog Polym Sci, 32 (8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013
Vidal, G., Blanchi, T., Mieszawska, A. J., Calabrese, R., Rossi, C., Vigneron, P., . . . Egles, C. (2013). Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides.Acta Biomater, 9 (1), 4935-4943. doi:10.1016/j.actbio.2012.09.003
Wishart, D. S. (2011). Interpreting protein chemical shift data.Prog Nucl Magn Reson Spectrosc, 58 (1-2), 62-87. doi:10.1016/j.pnmrs.2010.07.004
Yanagisawa, S., Zhu, Z., Kobayashi, I., Uchino, K., Tamada, Y., Tamura, T., & Asakura, T. (2007). Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms.Biomacromolecules, 8 (11), 3487-3492. doi:10.1021/bm700646f
Yang, M., & Asakura, T. (2005). Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J Biochem, 137 (6), 721-729. doi:10.1093/jb/mvi090
Yang, M., Kawamura, J., Zhu, Z., Yamauchi, K., & Asakura, T. (2009). Development of silk-like materials based on Bombyx mori and Nephila clavipes dragline silk fibroins. Polymer, 50 (1), 117-124. doi:10.1016/j.polymer.2008.10.008
Yang, M., Muto, T., Knight, D., Collins, A. M., & Asakura, T. (2008). Synthesis and characterization of silklike materials containing the calcium-binding sequence from calbindin D9k or the shell nacreous matrix protein MSI60. Biomacromolecules, 9 (1), 416-420. doi:10.1021/bm700665m
Yang, M., Tanaka, C., Yamauchi, K., Ohgo, K., Kurokawa, M., & Asakura, T. (2008). Silklike materials constructed from sequences of Bombyx mori silk fibroin, fibronectin, and elastin. J Biomed Mater Res A, 84 (2), 353-363. doi:10.1002/jbm.a.31348
Yang, M., Yamauchi, K., Kurokawa, M., & Asakura, T. (2007). Design of silk-like biomaterials inspired by mussel-adhesive protein. Tissue Eng, 13 (12), 2941-2947. doi:10.1089/ten.2006.0448
Yao, J., Ohgo, K., Sugino, R., Kishore, R., & Asakura, T. (2004). Structural analysis of Bombyx mori silk fibroin peptides with formic acid treatment using high-resolution solid-state 13C NMR spectroscopy.Biomacromolecules, 5 (5), 1763-1769. doi:10.1021/bm049831d
Yoshinari, M., Kato, T., Matsuzaka, K., Hayakawa, T., & Shiba, K. (2010). Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling, 26 (1), 103-110. doi:10.1080/08927010903216572
Zhang, F., Zhang, Z., Zhu, X., Kang, E. T., & Neoh, K. G. (2008). Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials, 29 (36), 4751-4759. doi:10.1016/j.biomaterials.2008.08.043
Zhou, C. Z., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. G., & Janin, J. (2001). Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins, 44 (2), 119-122. doi:10.1002/prot.1078
Zhou, C. Z., Confalonieri, F., Medina, N., Zivanovic, Y., Esnault, C., Yang, T., . . . Li, Z. G. (2000). Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res, 28 (12), 2413-2419. doi:10.1093/nar/28.12.2413