REFERENCES
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Paper presented at the Second International Symposium on Information Theory, Akademiai Kiado, Budapest.
Alonso-Alvarez, C., Bertrand, S., Faivre, B., & Sorci, G. (2007). Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. Functional Ecology, 21 (5), 873-879. doi:10.1111/j.1365-2435.2007.01300.x
Anderson, T. R. (2006). Biology of the ubiquitous house sparrow: from genes to populations . Oxford; New York: Oxford University Press.
Angelier, F., Costantini, D., Blevin, P., & Chastel, O. (2018). Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review. Gen Comp Endocrinol, 256 , 99-111. doi:10.1016/j.ygcen.2017.07.007
Angelier, F., Vleck, C. M., Holberton, R. L., & Marra, P. P. (2015). Bill size correlates with telomere length in male American Redstarts.Journal of Ornithology, 156 (2), 525-531. doi:10.1007/s10336-015-1158-9
Angelier, F., Vleck, C. M., Holberton, R. L., Marra, P. P., & Blount, J. (2013). Telomere length, non‐breeding habitat and return rate in maleAmerican redstarts. Functional Ecology, 27 (2), 342-350. doi:10.1111/1365-2435.12041
Angelier, F., Weimerskirch, H., Barbraud, C., Chastel, O., & Hopkins, W. (2019). Is telomere length a molecular marker of individual quality? Insights from a long-lived bird. Functional Ecology, 33 (6), 1076-1087. doi:10.1111/1365-2435.13307
Araya-Ajoy, Y. G., Ranke, P. S., Kvalnes, T., Ronning, B., Holand, H., Myhre, A. M., . . . Wright, J. (2019). Characterizing morphological (co)variation using structural equation models: Body size, allometric relationships and evolvability in a house sparrow metapopulation.Evolution, 73 (3), 452-466. doi:10.1111/evo.13668
Aviv, A., Anderson, J. J., & Shay, J. W. (2017). Mutations, cancer and the telomere length paradox. Trends Cancer, 3 (4), 253-258. doi:10.1016/j.trecan.2017.02.005
Barrett, E. L., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging Cell, 10 (6), 913-921. doi:10.1111/j.1474-9726.2011.00741.x
Bates, D., Mullen, K. M., Nash, J. C., & Varadhan, R. (2014). minqa: Derivative-free optimization algorithms by quadratic approximation. R package version 1.2.4. Retrieved from https://CRAN.R-project.org/package=minqa
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1), 1-48. doi:10.18637/jss.v067.i01
Bauch, C., Becker, P. H., & Verhulst, S. (2013). Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proc Biol Sci, 280 (1752), 20122540. doi:10.1098/rspb.2012.2540
Bauch, C., Becker, P. H., & Verhulst, S. (2014). Within the genome, long telomeres are more informative than short telomeres with respect to fitness components in a long-lived seabird. Mol Ecol, 23 (2), 300-310. doi:10.1111/mec.12602
Bauch, C., Gatt, M. C., Granadeiro, J. P., Verhulst, S., & Catry, P. (2020). Sex-specific telomere length and dynamics in relation to age and reproductive success in Cory’s shearwaters. Mol Ecol, 29 (7), 1344-1357. doi:10.1111/mec.15399
Blackburn, E. H. (1991). Structure and function of telomeres.Nature, 350 (6319), 569-573. doi:10.1038/350569a0
Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 350 (6265), 1193-1198. doi:10.1126/science.aab3389
Blanckenhorn, W. U. (2000). The evolution of body size: What keeps organisms small? The Quarterly Review of Biology, 75 (4), 385-407. doi:10.1086/393620
Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds. Proc Biol Sci, 281 (1785), 20133287. doi:10.1098/rspb.2013.3287
Boonekamp, J. J., Simons, M. J., Hemerik, L., & Verhulst, S. (2013). Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell, 12 (2), 330-332. doi:10.1111/acel.12050
Brooks, M. E., Kristensen, K., Benthem, K. J. v., Magnusson, A., Berg, C. W., Nielsen, A., . . . Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9 (2), 378-400. doi:10.32614/rj-2017-066
Bumpus, H. C., & Eugenics, G. L. f. N. (1899). The elimination of the unfit as illustrated by the introduced sparrow, passer domesticus: (a fourth contribution to the study of variation) : Gin.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference. A practical information-theoretic approach (2 ed.). New York, U.S.A.: Springer-Verlag.
Caprioli, M., Romano, M., Romano, A., Rubolini, D., Motta, R., Folini, M., & Saino, N. (2013). Nestling telomere length does not predict longevity, but covaries with adult body size in wild barn swallows.Biol Lett, 9 (5), 20130340. doi:10.1098/rsbl.2013.0340
Cawthon, R. M. (2002). Telomere measurement by quantitative PCR.Nucleic Acids Research, 30 (10), e47. doi:10.1093/nar/30.10.e47
Cerchiara, J. A., Risques, R. A., Prunkard, D., Smith, J. R., Kane, O. J., & Boersma, P. D. (2017). Telomeres shorten and then lengthen before fledging in Magellanic penguins (Spheniscus magellanicus ).Aging (Albany NY), 9 (2), 487-493. doi:10.18632/aging.101172
Charmantier, A., Kruuk, L. E., Blondel, J., & Lambrechts, M. M. (2004). Testing for microevolution in body size in three blue tit populations.J Evol Biol, 17 (4), 732-743. doi:10.1111/j.1420-9101.2004.00734.x
Chatelain, M., Drobniak, S. M., & Szulkin, M. (2020). The association between stressors and telomeres in non-human vertebrates: a meta-analysis. Ecol Lett, 23 (2), 381-398. doi:10.1111/ele.13426
Cleasby, I. R., Burke, T., Schroeder, J., & Nakagawa, S. (2011). Food supplements increase adult tarsus length, but not growth rate, in an island population of house sparrows (Passer domesticus ).BMC Res Notes, 4 , 431. doi:10.1186/1756-0500-4-431
Cleasby, I. R., Nakagawa, S., Gillespie, D. O. S., & Burke, T. (2010). The influence of sex and body size on nestling survival and recruitment in the house sparrow. Biological Journal of the Linnean Society, 101 (3), 680-688. doi:10.1111/j.1095-8312.2010.01515.x
Conner, J. K. (2003). Artificial selection: A powerful tool for ecologists. Ecology, 84 (7), 1650-1660. doi:10.1890/0012-9658(2003)084[1650:Asaptf]2.0.Co;2
Cordero, P. J., Griffith, S. C., Aparicio, J. M., & Parkin, D. T. (2000). Sexual dimorphism in house sparrow eggs. Behavioral Ecology and Sociobiology, 48 (5), 353-357. doi:10.1007/s002650000252
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34 (2), 187-220. Retrieved from www.jstor.org/stable/2985181
Criscuolo, F., Bize, P., Nasir, L., Metcalfe, N. B., Foote, C. G., Griffiths, K., . . . Monaghan, P. (2009). Real-time quantitative PCR assay for measurement of avian telomeres. Journal of Avian Biology, 40 (3), 342-347. doi:10.1111/j.1600-048X.2008.04623.x
Criscuolo, F., Smith, S., Zahn, S., Heidinger, B. J., & Haussmann, M. F. (2018). Experimental manipulation of telomere length: does it reveal a corner-stone role for telomerase in the natural variability of individual fitness? Philos Trans R Soc Lond B Biol Sci, 373 (1741), 20160440. doi:10.1098/rstb.2016.0440
Criscuolo, F., Sorci, G., Behaim-Delarbre, M., Zahn, S., Faivre, B., & Bertile, F. (2018). Age-related response to an acute innate immune challenge in mice: proteomics reveals a telomere maintenance-related cost. Proc Biol Sci, 285 (1892), 20181877. doi:10.1098/rspb.2018.1877
Debes, P. V., Visse, M., Panda, B., Ilmonen, P., & Vasemagi, A. (2016). Is telomere length a molecular marker of past thermal stress in wild fish? Mol Ecol, 25 (21), 5412-5424. doi:10.1111/mec.13856
Dugdale, H. L., & Richardson, D. S. (2018). Heritability of telomere variation: it is all about the environment! Philos Trans R Soc Lond B Biol Sci, 373 (1741), 20160450. doi:10.1098/rstb.2016.0450
Eastwood, J. R., Hall, M. L., Teunissen, N., Kingma, S. A., Hidalgo Aranzamendi, N., Fan, M., . . . Peters, A. (2019). Early-life telomere length predicts lifespan and lifetime reproductive success in a wild bird. Mol Ecol, 28 (5), 1127-1137. doi:10.1111/mec.15002
Eisenberg, D. T. (2011). An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol, 23 (2), 149-167. doi:10.1002/ajhb.21127
Erten, E. Y., & Kokko, H. (2020). From zygote to a multicellular soma: Body size affects optimal growth strategies under cancer risk.Evolutionary applications, 13 (7), 1593-1604. doi:10.1111/eva.12969
Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M., Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell, 15 (1), 140-148. doi:10.1111/acel.12417
Falconer, D. S., Gauld, I. K., & Roberts, R. C. (1978). Cell numbers and cell sizes in organs of mice selected for large and small body size.Genet Res, 31 (3), 287-301. doi:10.1017/s0016672300018061
Foley, N. M., Petit, E. J., Brazier, T., Finarelli, J. A., Hughes, G. M., Touzalin, F., . . . Teeling, E. C. (2020). Drivers of longitudinal telomere dynamics in a long-lived bat species, Myotis myotis .Mol Ecol, 29 (16), 2963-2977. doi:10.1111/mec.15395
Foote, C. G., Daunt, F., González-Solís, J., Nasir, L., Phillips, R. A., & Monaghan, P. (2011). Individual state and survival prospects: age, sex, and telomere length in a long-lived seabird. Behavioral Ecology, 22 (1), 156-161. doi:10.1093/beheco/arq178
Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution, 64 (7), 1865-1884. doi:10.1111/j.1558-5646.2010.00960.x
Gaillard, J. M., Pontier, D., Allainé, D., Lebreton, J. D., Trouvilliez, J., Clobert, J., & Allaine, D. (1989). An analysis of demographic tactics in birds and mammals. Oikos, 56 (1), 59-76. doi:10.2307/3566088
Geiger, S., Le Vaillant, M., Lebard, T., Reichert, S., Stier, A., Y, L. E. M., & Criscuolo, F. (2012). Catching-up but telomere loss: half-opening the black box of growth and ageing trade-off in wild king penguin chicks. Mol Ecol, 21 (6), 1500-1510. doi:10.1111/j.1365-294X.2011.05331.x
Glomski, C. A., & Pica, A. (2016). The avian erythrocyte: Its phylogenetic odyssey : CRC Press.
Gomes, N. M., Shay, J. W., & Wright, W. E. (2010). Telomere biology in Metazoa. Febs Letters, 584 (17), 3741-3751. doi:10.1016/j.febslet.2010.07.031
Graham, J. L., Bauer, C. M., Heidinger, B. J., Ketterson, E. D., & Greives, T. J. (2019). Early-breeding females experience greater telomere loss. Mol Ecol, 28 (1), 114-126. doi:10.1111/mec.14952
Haldane, J. B. S. (1928). On being the right size. Possible worlds . London: Chatto and Windus.
Hall, M. E., Nasir, L., Daunt, F., Gault, E. A., Croxall, J. P., Wanless, S., & Monaghan, P. (2004). Telomere loss in relation to age and early environment in long-lived birds. Proc Biol Sci, 271 (1548), 1571-1576. doi:10.1098/rspb.2004.2768
Hallett, T. B., Coulson, T., Pilkington, J. G., Clutton-Brock, T. H., Pemberton, J. M., & Grenfell, B. T. (2004). Why large-scale climate indices seem to predict ecological processes better than local weather.Nature, 430 (6995), 71-75. doi:10.1038/nature02708
Hatakeyama, H., Yamazaki, H., Nakamura, K., Izumiyama-Shimomura, N., Aida, J., Suzuki, H., . . . Ishikawa, N. (2016). Telomere attrition and restoration in the normal teleost Oryzias latipes are linked to growth rate and telomerase activity at each life stage. Aging (Albany NY), 8 (1), 62-76. doi:10.18632/aging.100873
Haussmann, M. F., Longenecker, A. S., Marchetto, N. M., Juliano, S. A., & Bowden, R. M. (2012). Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length.Proc Biol Sci, 279 (1732), 1447-1456. doi:10.1098/rspb.2011.1913
Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C., & Vleck, C. M. (2007). Telomerase activity is maintained throughout the lifespan of long-lived birds. Experimental gerontology, 42 (7), 610-618. doi:10.1016/j.exger.2007.03.004
Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2012). Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A, 109 (5), 1743-1748. doi:10.1073/pnas.1113306109
Holand, H., Kvalnes, T., Gamelon, M., Tufto, J., Jensen, H., Parn, H., . . . Saether, B. E. (2016). Spatial variation in senescence rates in a bird metapopulation. Oecologia, 181 (3), 865-871. doi:10.1007/s00442-016-3615-4
Hrdličková, R., Nehyba, J., Lim, S. L., Grützner, F., & Bose, H. R., Jr. (2012). Insights into the evolution of mammalian telomerase: platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes. BMC Genomics, 13 , 216-216. doi:10.1186/1471-2164-13-216
Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76 (2), 297-307. doi:10.1093/biomet/76.2.297
Jennings, B. J., Ozanne, S. E., Dorling, M. W., & Hales, C. N. (1999). Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. Febs Letters, 448 (1), 4-8. doi:10.1016/s0014-5793(99)00336-1
Jensen, H., Sæther, B.-E., Ringsby, T. H., Tufto, J., Griffith, S. C., & Ellegren, H. (2004). Lifetime reproductive success in relation to morphology in the house sparrow Passer domesticus . Journal of Animal Ecology, 73 (4), 599-611. doi:10.1111/j.0021-8790.2004.00837.x
Jensen, H., Steinsland, I., Ringsby, T. H., & Saether, B. E. (2008). Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes.Evolution, 62 (6), 1275-1293. doi:10.1111/j.1558-5646.2008.00395.x
Kingsolver, J. G., & Pfennig, D. W. (2004). Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution, 58 (7), 1608-1612. doi:10.1111/j.0014-3820.2004.tb01740.x
Klapper, W., Heidorn, K., Kühne, K., Parwaresch, R., & Guido, K. (1998). Telomerase activity in ‘immortal’ fish. Febs Letters, 434 (3), 409-412. doi:10.1016/s0014-5793(98)01020-5
Klimkiewicz, M. K., & Futcher, A. G. (1987). Longevity records of North American birds: Coerebinae through Estrildidae. Journal of Field Ornithology, 58 (3), 318-333. Retrieved from