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Abstract 

Molecular dynamics (MD) simulations are a popular method of studying protein structure and 

function, but are unable to reliably sample all relevant conformational space in reasonable 

computational timescales. A range of enhanced sampling methods are available that can 

improve conformational sampling, but these do not offer a complete solution. We present here 

a proof-of-principle method of combining MD simulation with machine learning to explore 

protein conformational space. An autoencoder is used to map snapshots from MD simulations 

onto the conformational landscape defined by a 2D-RMSD matrix, and we show that we can 

predict, with useful accuracy, conformations that are not present in the training data. This 

method offers a new approach to the prediction of new low energy/physically realistic 

structures of conformationally dynamic proteins and allows an alternative approach to 

enhanced sampling of MD simulations. 
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Introduction 

Molecular dynamics (MD) simulations of proteins are a popular method of studying aspects of 

protein function and dynamics.1 They require input structure(s), which are preferably 

experimentally determined, usually by X-ray crystallography. However, as proteins are often 

highly flexible, they adopt multiple conformations which interconvert over a wide range of 

timescales,2, 3 which can be predominantly longer than the feasible MD simulation length of 

ns-μs. Enhanced sampling methods have been developed to improve the sampling of MD 

simulations,4, 5 but these do not offer a complete solution to the MD sampling problem, partly 

because some knowledge of the system is necessary to define the coordinates (e.g. collective 

variables) along which sampling should be performed.  Machine learning offers an alternative 

approach.  

Machine learning (ML) has been successfully applied to the analysis of the high-dimensional 

data produced by MD simulations6 and in structure prediction where an experimentally derived 

structure or homology model is not available.7 Enhanced sampling techniques that use ML to 

guide the MD simulations (e.g. by identifying collective variables and imposing biasing 

potentials) have also been developed;8-14 a conceptually simpler and more flexible approach is 

to utilise ML for the prediction of new protein conformations based on existing MD 

simulations, as has been recently demonstrated. This approach has recently been demonstrated 

using an autoencoder to encode the structural data into a low-dimensional representation, either 

onto the autoencoder’s default latent vector15 or using the sketch-map algorithm16 to improve 

the interpretability of the low-dimensional representation.17, 18  New structures were then 

predicted by decoding points on the resulting low-dimensional surface.  

Here we employ a related but different approach, to use a simple, pre-defined low-dimensional 

conformational landscape to guide the search rather than use the machine learning algorithm 

define the low-dimensional representation. The aim is not to create a more robust machine 

learning algorithm than those discussed above, but to explore whether a very simple 

representation of a MD-derived conformational landscape can successfully be used to predict 

new, physically plausible conformations. In principle, this approach could then be used with 

an arbitrary representation of the conformational landscape, which can consist of structural 

parameters of choice such as contact matrix, backbone dihedrals (as used in ref 17, 18) or a 

combination of specific parameters. For this proof-of-concept study, an autoencoder was 

trained to map the structures onto a simple conformational landscape, namely the first two 

principal components of a 2D-RMSD matrix (the matrix of RMSD values for every structure 

relative to every other structure), and trained to decode points along this landscape into new 

structures. Two test cases are used, a short homoalanine peptide and the calcium-binding 

protein calmodulin (CaM). We show that it is possible to predict low energy and thus physically 

plausible conformations which were not sampled during the MD simulation(s). 

 

 

Computational Methods. 

Molecular Dynamics Simulations. All simulations were performed in Gromacs 2016.419 

using the Amber FF14SB20 force field. Each system was solvated with a water box at least 13 
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Å larger than the peptide/protein on each axis with counter-ions (if required) generated in 

AmberTools 1621. All calculations used a periodic boundary condition and LINCS constraints 

on all bonds involving hydrogen atoms, the Verlet cut-off scheme with 10 Å cutoffs. Energy 

minimisation was followed by 100 ps of constant volume and 100 ps of constant pressure 

solvent equilibration, using the Parrinello-Rahman pressure coupling with a time constant of 2 

ps, and positional restraints with a force constant of 10 kJ mol-1 nm-2 applied to the 

protein/peptide. Constant pressure was also used for the subsequent unrestrained production 

run.  

Conformational Landscape. Our machine learning algorithm takes a conformational 

landscape in the form of a series of vectors, as input. A simple conformational landscape was 

defined based on the 2D-RMSD matrix: the square matrix where each cell is the pairwise 

RMSD between structures (and the diagonal elements are therefore 0). For m total structures, 

the 2D-RMSD matrix is an m × m matrix, and principal components analysis the results in m 

eigenvectors, or principal components (PCs). We then used the top two PCs (those with the 

largest eigenvalues) to define a 2-dimensional conformational landscape, although the input is 

not limited to 2-dimensional vectors, so a more complex, multidimensional landscape can be 

used by using additional PCs. 

Machine Learning. The protein structures (Cartesian coordinates) were extracted from MD 

simulations using the MDanalysis package.22, 23 The structures were first aligned to the starting 

structure by minimising the RMSD for the same atom selection subsequently used in the ML, 

and the Cartesian coordinates were normalised using MinMax scaling. For the complete set of 

protein structures with coordinates ((𝑥1
1, 𝑦1

1, 𝑧1
1)… (𝑥𝑛

𝑚 , 𝑦𝑛
𝑚, 𝑧𝑛

𝑚)), where n is the number of 

atoms per structure and m is the total number of structures, the normalised coordinates are for 

atom i n structure k are given by:  

 𝑥𝑖
𝑘 ↦

𝑥𝑖
𝑘−min⁡(𝑥)

max(𝑥)−min⁡(𝑥)
 (1) 

Note that we also tried using z-score normalisation, which is suitable for Gaussian distributions, 

but this performed poorly (in terms of the final predictions) as the 2D-RMSD matrix projected 

onto principal components eigenvectors are not normally distributed.  

Our modified autoencoder was built in Python 3.6 using Keras (https://keras.io/), an open-

source deep learning library with a Tensorflow24, 25 backend and the code is available at 

https://github.com/Imay-King/MDMachineLearning. The approach is illustrated in Figure 1. 

First, the algorithm encodes the normalised protein structure ((x1,y1,z1), (x2,y2,z2)… (xn,yn,zn)) 

onto the first two PCs from the 2D-RMSD matrix using a constraint in the training process in 

the form of a mean square error (MSE) loss between the latent vector and pairs of PCs. A 

second MSE loss function is then used to train the decoder to predict a new protein structure 

((x̂1,ŷ1,ẑ1), (x̂2,ŷ2,ẑ2)… (x̂n,ŷn,ẑn )) from the PC values. After the decoder has created a new 

protein structure, the coordinates are de-normalised using the inverse of the MinMax method 

(eq. 1). 

Note that this approach is not limited to the first two PCs from the 2D-RMSD PCA: other 

dimensionality reduction techniques could be employed, and the conformational landscape 
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could be defined using any set of structural parameters of interest. We simply chose the PCA 

approach here as it is a familiar method of analysing protein MD data. 

 

 

Results and Discussion 

Model 1. As a proof of concept, we first attempted to predict structures from a 10 ns MD 

simulation of the simple peptide L-Ala13, with snapshots taken every 2 ps for a total of 5000 

structures. This is a highly flexible peptide, with folding and unfolding of an -helical structure 

observed during the simulation. A maximum heavy-atom RMSD of 7.79 Å was observed 

between any two structures (i.e. from the 2D-RMSD matrix), and a maximum RMSD of 4.85 

Å relative to the average structure (SI Figure S1). Since this is a relatively small system, we 

included all non-hydrogen atoms in the ML (66 atoms, 198 features per conformation). From 

an 80/20 training/testing split of the data, using a 3-layer model we found that the best results 

were obtained with a combination of the Adam optimizer26 and the ReLU activation function27 

for all layers except the last layer of the encoder and the first layer of the decoder, for which 

the sigmoid activation function was used instead. This gave a model that converged reasonably 

quickly with very similar performance for the training and testing sets: the loss (SI Figure S2) 

converged to 5.5×10-3 for the training set and 5.7×10-3 for the testing set. The average RMSD 

(± 1 standard deviation) between the predicted and target structure for the 1000 structures in 

the testing set is 0.73 ± 0.41 Å. 

To further test whether this approach can successfully predict structures that are distinct from 

those in the training set, we repeated the predictions for 7 structures in different regions of the 

PC1/PC2 plot (Figure 1), again using an 80/20 split, but each time excluding any structures 

within ±0.002 along PC1 (34% of the variance) or ±0.003 along PC2 (17% of the variance) 

from the training set. The average RMSD observed for these predicted structures is 1.20 ± 0.31 

Å, compared to 1.00 ± 0.49 Å without any exclusions. The structural features of each 

conformation are predicted successfully (Figure 2) and this simple example therefore 

demonstrates the feasibility of this approach to predicting protein secondary and tertiary 

structural elements from an MD simulation. 

 

Model 2. As a more biochemically relevant example we turned to CaM, which is known to 

adopt  several distinct conformational states.28, 29 We chose yeast CaM in a compact target 

peptide- and Ca2+-bound form (PDB ID: 2LHI) and a less compact Ca2+-bound form (2LHH) 

as the starting points for two MD simulations. Both simulations were carried out without Ca2+ 

or target peptide to encourage significant conformational change during the simulation. Since 

this is a much larger system than the L-Ala13 peptide, we only used the backbone atoms for ML 

and analysis (585 atoms, 1755 data points per protein structure). We ran two 10 ns MD 

simulation starting from each crystal structure, with snapshots taken every 5 ps for a total of 

4000 structures. As can be seen from the PCA and RMSD plots (Figures 3 and S3), the two 

simulations converged to different conformations and the conformational space sampled in 

each simulation does not overlap. Here, the 10 ns simulations do not allow sufficient sampling 
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of the CaM conformational landscape, which highlights the sampling problem with MD 

simulation of proteins. The maximum RMSD between any two structures across both 

simulations (from the 2D-RMSD matrix) is 17.8 Å and the maximum RMSD relative to the 

average structure is 13.6 Å. Using the same 3-layer autoencoder as for Model 1, with an 80/20 

training/testing split, the loss converged to 3.44×10-3 for the training set and 3.39×10-3 for the 

testing set, and for the 800 structures in the testing set the average RMSD between the predicted 

structure and the target was 0.90 ± 0.71 Å, which is similar to that observed for the L-Ala13 

peptide. We also tested the effect of different numbers of layers in the autoencoder (SI Figure 

S4), with very similar results, although the loss convergence was significantly less smooth with 

5 layers.  

As before, we then tested whether our algorithm can predict structures that are distinct from 

those in the training set by repeating the prediction for 7 structures in different regions of the 

PCA plot (Figure 3 a-g). For each of the predicted structures, the training set consisted of the 

MD simulation from which that particular target structure did not originate; i.e. when predicting 

structures taken from the MD1 simulation the model was trained only on structures from MD2, 

and vice versa. We again experimented with the effect of different numbers of layers in the 

autoencoder, and found that overall the 3-layer model performed best (SI Figure S5). For the 7 

predicted structures, the average RMSD relative to the target structures is 1.89 ± 0.81 Å, and 

even for the worst predictions (b and f) the overall gross structural features were successfully 

predicted.  

 

The target CaM structures in Figure 3 are compared to the most similar structure from the 

training set in Table 1. The predicted structures have conformations that are not found in the 

training set, and in each case the RMSD to the target structure is smaller than the minimum 

RMSD to the structures in the training set. The two structures with the biggest improvement (a 

and e) are shown in Figure 4, which illustrates the ability of the autoencoder to predict 

structures that lie significantly outside of the range of the training set. Further, the 7 target 

structures span a range of physiologically-relevant ‘open’ and ‘closed’ conformational states 

that interconvert via a relatively complex series of domain rotations and formation/breaking of 

the central α-helix. It is perhaps then surprising that it is possible to describe this 

conformational space in only two PCs of a PCA analysis. For larger proteins this may not be 

sufficient, but our method is extensible to an arbitrary number of PCs, which would allow more 

complex conformational space to be mapped in higher dimensions.  

Model 2 does not include side chain residues in the autoencoder, which is more 

computationally efficient and also forces the PCA to describe gross tertiary 

structure/conformational space without the added complication of multiple side chain 

conformations. It is possible to include side chains (as was the case in Model 1), but again this 

will likely require the use of more PCs to adequately describe the conformational space of 

interest.  Alternatively, the predicted structures could be used to generate new MD simulation 

input geometries by building in the sidechains using e.g. rotamer libraries,30-33 through partial 

structural alignments with the original MD simulation data, or by using techniques such as 

steered MD34, 35 to rapidly drive the MD simulation to new predicted conformations. 
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We chose to rebuild the sidechains of the predicted CaM structures using the protein sidechain 

prediction algorithm in SCWRL4.36 To benchmark this approach, we initially rebuilt the 

sidechains for structures a-g in Figure 3, which resulted in an average RMSD between the 

rebuilt and original structures of 2.99 ± 0.02 Å (SI Table S1). However, since structures taken 

from an MD simulation are often high-energy structures with non-optimal sidechain-sidechain 

interactions (at 300 K the majority of conformations do not sit at the bottom of the potential 

energy well)  that SCWRL4 is not designed to reproduce, we then energy minimised the 

sidechains of both the original and rebuild structures using the Amber14 force field in Amber 

using implicit solvation (5000 steps of steepest descent with a harmonic constraint of 500 kcal 

mol-1 A-2 on the backbone atoms). This decreased the average RMSD to 1.25 ± 0.80 Å, 

suggesting that this approach is able to rebuild the sidechains and generate structures that are 

physically realistic, with a strong correspondence between the original and rebuilt structures. 

Next, we used our ML approach to predict 99 structures regularly sampled over the PC1/PC2 

plot of the CaM MD simulations (Figure 5), this time combining MD1 and MD2 for training. 

The sidechains of the predicted structures were again built using SCWRL4 and energy 

minimised. 29 of the structures could not be energy minimised due to internal strain or clashes, 

but these lie outside of the conformational landscape covered by the MD simulations (white 

dots in Figure 5). For example, the gap between the two clusters from MD2 (MD2A and MDB 

in Figure 5) suggests that two regions of relatively stable conformations are separated by a 

high-energy, low-population region, and this coincides with a highly strained structure which 

could not be successfully energy minimised. Additionally, the starting structure for MD2 lies 

in the MD2A cluster (see Figure 3), but it converges to the lower-right portion of MD2B 

suggesting that MD2B is a more stable area of the conformational landscape, which is 

consistent with the cluster of low-energy structures around the lower-right portion of MD2B. 

Inspection of the 70 structures that were successfully energy minimised shows that the lower 

energy (more stable) structures tend to overlap with region of the PC1/PC2 conformation space 

that is sampled during one of the MD simulations (Figure 5). This demonstrates that this 

approach can successfully distinguish between relatively low energy and higher energy 

conformations. Predicted structures with relatively low energies (light and dark blue dots in 

Figure 5) that lie outside of regions of conformational space sampled during the MD 

simulations may provide interesting new conformations that could be used as input structures 

for additional simulations, thus enhancing the total conformational space sampled. 

In summary, we have demonstrated a proof-of-principle method of combining MD simulation 

with machine learning to explore protein conformational space. An autoencoder is used to map 

snapshots from MD simulations onto the first two PCs from the 2D-RMSD matrix, and we 

show that we can predict, with useful accuracy, conformations that are not present in the 

training data. It is also straight-forward to assess the relative likelihood of each predicted 

conformation. This method offers a new approach to the prediction of new physically realistic 

structures of conformationally dynamic proteins and allows an alternative approach to 

enhanced sampling of MD simulations, by rapidly generating new structures from which 
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additional, long-scale MD simulations can be initiated for a more efficient search through 

conformational space. 
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Table 1. RMSD (in Å) between target structures and the most similar structure from training 

set and predicted structure  

Target 

Structure 

Lowest RMSD 

from training set 

RMSD to 

predicted 

structure 

a 7.01 1.96 

b 5.08 2.79 

c 4.45 1.93 

d 3.62 0.84 

e 4.89 1.50 

f 3.74 3.05 

g 3.69 1.16 

 

 

 

Figure 1. Modified autoencoder for prediction of protein structure from protein conformational 

landscape. The encoder (blue circles) is trained using a first loss function MSE1 to reproduce 

the conformational landscape defined by the first two principal components (PC1 and PC2) of 

the 2D-RMSD matrix, and the decoder (green) is trained using a second loss function MSE2 to 

predict a protein structure from a pair of (PC1,PC2) values. 
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Figure 2. Structure predictions of the L-Ala13 peptide. Top left: PC2 vs PC1 plot from the 2D 

RMSD matrix (blue circles), with points a-g (black dots) used for testing. The black cross at 

PC1 ≈ 0.018 belongs to the initial, fully helical structure. For each prediction, points within 

(±0.002, ±0.003) of the (PC1,PC2) value were excluded from the training set. Overlays of the 

original structure (green, red and blue atoms) with the predicted structure (light blue) are shown 

for each point (a-g), with the RMSD in Å shown below.  

 

 

 

 

Figure 3. Structure predictions of CaM. Top left: PC2 vs PC1 plot from the 2D RMSD matrix 

constructed from two MD simulations (blue and red circles), with points a-g (black dots) used 

for testing. The black crosses belong to the starting structures for each simulation. For each 

structure, testing only included the MD simulation that the structure was not taken from (MD2 

for a-d, MD1 for e-g). Overlays of the original structure (green) with the predicted structure 

(red) are shown for each point (a-g), with the RMSD in Å shown below. 

 

 



  12  

 

Figure 4. Overlay of the predicted (red) and target (green) structures a and e from Figure 3, 

with the most similar structure from the corresponding training set (blue), and a range of 

structures from the training set (the structrues in Table 1; transparent blue). 

 

 

 

 

Figure 5. (A)  Relative potential energies of predicted CaM conformations (large dots) overlaid 

on the conformational landscape sampled during MD simulations (small grey dots), and (B) 

energy distribution of the structures after energy minimisation of the sidechains. The colours 

of the large dots in A correspond to the coloured areas in B, and the white dots are those 

conformations that did not successfully energy minimise. The grey ovals indicate two distinct 

clusters, MD2A and MD2B, from MD2.  

 

 

  

 

 


