
SPATIAL SEGREGATION LIMIT OF COMPETITION SYSTEMS AND1

FREE BOUNDARY PROBLEMS§2

JIAN YANG†‡ AND BENDONG LOU∗3

Abstract. We consider a PDE/ODE system for two pairs of competing species and study the
spatial segregation limit as the interspecific competition rate tends to infinity. We show that
the limiting problem is a one-phase Stefan problem for nonlinear diffusion equations.

1. Introduction4

Let Ω be a bounded domain in RN with smooth boundary. We study the following competition5

system:6

(1.1)



u1t = ∇ ·A1(u1) + f1(x, t, u1, u2)− kp1u1v1, x ∈ Ω, t > 0,
v1t = −kq1u1v1, x ∈ Ω, t > 0,
u2t = ∇ ·A2(u2) + f2(x, t, u1, u2)− kp2u2v2, x ∈ Ω, t > 0,
v2t = −kq2u2v2, x ∈ Ω, t > 0,
Ai(ui) · ν = 0, x ∈ ∂Ω, t > 0, i = 1, 2,
ui(x, 0) = ui0(x), vi(x, 0) = vi0(x), x ∈ Ω, i = 1, 2,

where, for i = 1, 2, Ai(u) := ai∇u + u∇bi for some functions ai and bi, ν denotes the outward7

unit normal vector on the boundary ∂Ω, fi is the growth term of ui, pi and qi are positive8

constants, and the parameter k > 0 denotes the interspecific competition rate.9

This system involves four species (with densities u1, v1, u2 and v2). For i = 1, 2, ui and vi are10

formed to be a competition pair (the competition becomes stronger with the increase of k). ui11

satisfies a PDE while vi satisfies an ODE without diffusion. Moreover, u1 and u2 are coupled12

through the reaction terms f1 and f2. We will show that as k goes to infinity, the habitats of13

ui and vi segregate each other, and the limiting problem is a system of u1 and u2 with Stefan14

free boundary condition, which, as an interesting problem itself, has been extensively studied in15

recent years (see details in section 4). Further background and related problems of the system16

(1.1) can be found in [4, 12, 17, 19] etc..17

Our basic assumptions are as follows:18

(A1) (Coefficients). For i = 1, 2, ai, bi are smooth functions defined in Ω × [0,∞) with λ ≤19

ai ≤ Λ for some constants Λ > λ > 0.20
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(A2) (Source terms). For i = 1, 2, fi ∈ C1
(
Ω × [0,∞)3

)
, f1(x, t, 0, ξ) = f2(x, t, ξ, 0) ≡ 0 and1

fi(x, t, 1, ξ) + ∆bi ≤ 0 for (x, t) ∈ Ω× [0,∞) and ξ ∈ [0, 1].2

(A3) (Initial conditions). For i = 1, 2, (ui0, vi0) ∈ C(Ω) × L∞(Ω). Both of them take values3

in [0, 1] and ui0vi0 = 0 in Ω.4

In section 2 we first present the existence and uniqueness for the solution U := (u1, v1, u2, v2)5

to (1.1) (we also write the solution as U (k) := (u
(k)
1 , v

(k)
1 , u

(k)
2 , v

(k)
2 ) in some places to emphasize6

its dependence on the parameter k), and then give some a priori bounds for the solution. These7

bounds are used in section 3 to show that the solution sequence U (k) converges, as k → ∞,8

to (u∗1, v
∗
1, u
∗
2, v
∗
2). Then we prove that this tetrad is uniquely determined by the unique weak9

solution of a Stefan problem. Finally, we present an explicit form for the Stefan problem,10

which is a one-phase free boundary problem for nonlinear diffusion equations. Summarizing the11

conclusions in sections 2 and 3 we have the following theorem.12

Theorem 1.1. Let T be any positive number. Suppose that U (k) := (u
(k)
1 , v

(k)
1 , u

(k)
2 , v

(k)
2 ) is

the unique solution of (1.1) in QT := Ω × (0, T ]. Then there exists U∗ := (u∗1, v
∗
1, u
∗
2, v
∗
2) with

(u∗i , v
∗
i ) ∈ L2(0, T ;H1(Ω))× L∞(QT ) such that, for i = 1, 2, as k →∞,

u
(k)
i → u∗i strongly in L2(QT ), weakly in L2(0, T ;H1(Ω)) and a.e. in QT ,

v
(k)
i → v∗i weakly in L2(QT ),

and Ωu∗i
(t) ∩ Ωv∗i

(t) = ∅, where

Ωu∗i
(t) := {(x, t) ∈ QT | u∗i (x, t) > 0}, Ωv∗i

(t) := {(x, t) ∈ QT | v∗i (x, t) > 0}.

Moreover, for i = 1, 2, if Γi :=
⋃

0≤t≤T Γi(t) (with Γi(t) := ∂Ωu∗i
(t)) is a smooth hypersurface13

satisfying Γi(t) ∩ ∂Ω = ∅ for 0 ≤ t ≤ T , u∗i is smooth in Ωu∗i
(t) × [0, T ] and vi0(x) ∈ (0, 1] for14

x ∈ Ωvi(0), then (u∗1(x, t), u∗2(x, t),Γ1(t),Γ2(t)) solves the following free boundary problem15

(1.2)



u1t = ∇ ·A1(u1) + f1(x, t, u1, u2), (x, t) ∈ Ωu1(t)× (0, T ],
u2t = ∇ ·A2(u2) + f2(x, t, u1, u2), (x, t) ∈ Ωu2(t)× (0, T ],
ui(x, t) = 0, (x, t) ∈ Γi(t)× (0, T ], i = 1, 2,

Vni = −qiai(x, t)
pivi0(x)

∂ui
∂ni

, (x, t) ∈ Γi(t)× (0, T ], i = 1, 2,

Ai(ui) · ν = 0, (x, t) ∈ ∂Ω× (0, T ], i = 1, 2,
Γi(0) = ∂Ωui(0), ui(x, 0) = ui0(x), x ∈ Ω, i = 1, 2,

where ni is the unit normal vector on Γi(t) oriented from Ωui(t) to Ω\Ωui(t).16

Note that the strong competition terms −kpiuivi in (1.1) leave effect to this limiting problem17

in a way that the normal velocity Vni of the free boundary depends on vi0.18

Finally, in section 4, we give some remarks. First we present a simple version of the problem19

(1.2) without u2 and Γ2 (cf. Theorem 4.1 below). Then we give a brief review on recent studies20

for the problems (1.2) and (4.2). In some sense, this paper can also be regarded as a derivation21

for the widely studied problems (1.2) and (4.2).22

Throughout this paper, when we write a formula for ui or vi, we mean that it is true for both23

i = 1, 2.24



COMPETITION SYSTEMS AND FREE BOUNDARY PROBLEMS 3

2. Well-posedness of (1.1) and a priori Bounds1

2.1. Existence and uniqueness of the solution. The existence of solutions to the PDE/ODE2

system (1.1) does not follow directly from the standard theory of parabolic equations because3

of the lack of diffusions for v1 and v2.4

Lemma 2.1. Assume (A1)-(A3) hold and T > 0. Then the problem (1.1) has a unique weak
solution (u1, v1, u2, v2) with

ui ∈W 2,1
2 (QT ), vi ∈ C0,1

(
[0, T ];L∞(Ω)

)
,

and 0 ≤ ui ≤ 1, 0 ≤ vi ≤ 1.5

Proof. The existence of the solution can be shown by the Schauder fixed point theorem as in
[12]. We give a sketch here. Set

X := L2(QT )× L2(QT ) and X := {(w1, w2) ∈X | 0 ≤ w1, w2 ≤ 1}.
1. We define an operator C1 : X → X as follows. Given (u1, u2) ∈ X. Consider the initial

value problem {
v̂it = −kqiuiv̂i, in QT ,
v̂i(x, 0) = vi0(x), in Ω.

A direct calculation yields6

(2.1) v̂i(x, t) = vi0(x)e−kqi
∫ t
0 ui(x,s)ds ∈ C0,1([0, T ];L∞(Ω)) and 0 ≤ v̂i ≤ 1.

Hence (v̂1, v̂2) = C1(u1, u2) ∈ X. Moreover, one can show by (2.1) that C1 : X → X is a7

continuous operator.8

2. Next we define an operator C2 : X → X in the following way. Given (v1, v2) ∈ X, let9

(û1, û2) := C2(v1, v2) be the unique solution of the problem10

(2.2)


û1t = ∇ ·A1(û1) + f1(x, t, û1, û2)− kp1û1v1, x ∈ Ω, t > 0,
û2t = ∇ ·A2(û2) + f2(x, t, û1, û2)− kp2û2v2, x ∈ Ω, t > 0,
Ai(ûi) · ν = 0, x ∈ ∂Ω, t > 0,
ûi(x, 0) = ui0(x), x ∈ Ω, i = 1, 2.

Then ûi ∈ W 2,1
2 (QT ) and ‖ûi‖W 2,1

2 (QT )
has an upper bound, independent of (v1, v2). Moreover,11

0 ≤ ûi ≤ 1 since [0, 1]2 is an invariant domain by the assumption (A2).12

To show the continuity of C2, we assume (v1m, v2m) ∈ X such that vim → ṽi as m → ∞13

in L2(QT ). Then (û1m, û2m) = C2(v1m, v2m) is bounded in W 2,1
2 (QT ) × W 2,1

2 (QT ), so there14

is a subsequence of {m} (still denotes it by {m}) and functions ũ1, ũ2 ∈ L2(QT ) such that15

(û1m, û2m)→ (ũ1, ũ2) as m→∞ in L2(QT )×L2(QT ). For any test function η ∈ C∞(QT ) with16

∂η
∂ν = 0, multiplying the equation of ûim by η and integrating it over QT by parts we obtain17 ∫

Ω
(ûimη)

∣∣∣t=T
t=0

dx =

∫∫
QT

[
ûimηt + fi(x, t, û1m, û2m)η − kpiûimvimη

]
dxdt

+

∫∫
QT

[
ûim∇ai · ∇η + aiûim∆η − ûim∇bi · ∇η

]
dxdt.

Taking limit as m→∞ we have18 ∫
Ω

(ũiη)
∣∣∣t=T
t=0

dx =

∫∫
QT

[
ũiηt + fi(x, t, ũ1, ũ2)η − kpiũiṽiη

]
dxdt

+

∫∫
QT

[
ũi∇ai · ∇η + aiũi∆η − ũi∇bi · ∇η

]
dxdt.
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Therefore (ũ1, ũ2) is a weak solution of (2.2) with vi = ṽi, so we have (ũ1, ũ2) = C2(ṽ1, ṽ2). This1

proves the continuity of C2.2

3. From above we see that C := C2 ◦ C1 maps X into X continuously. Moreover, C maps3

bounded sets of X into compact sets of X as C2 does. So, the Schauder fixed point theorem can4

be applied to give the fixed point of C, which is the solution of (1.1).5

4. The uniqueness of the weak solution is a consequence of the following lemma. �6

Lemma 2.2. Let (u1, v1, u2, v2) and (ũ1, ṽ1, ũ2, ṽ2) be the solution of (1.1), as in the previous
lemma, with initial data (u10, v10, u20, v20) and (ũ10, ṽ10, ũ20, ṽ20), respectively. Then for any
t ≥ 0 we have ∫

Ω
Θ(x, t)dx ≤ eMt

∫
Ω

Θ(x, 0)dx,

where M > 0 is a constant depending only on f1, f2, q1, q2 with ϕi := ui − ũi, ψi := vi − ṽi,

Θ(x, t) := q1|ϕ1(x, t)|+ p1|ψ1(x, t)|+ q2|ϕ2(x, t)|+ p2|ψ2(x, t)|.

Proof. For any given t > 0, by our assumption (A2), there exist Mi > 0 such that

|fi(x, t, s1, s2)−fi(x, t, s̃1, s̃2)| ≤Mi(|s1− s̃1|+ |s2− s̃2|) for (x, t) ∈ Qt := Ω×(0, t], si, s̃i ∈ [0, 1].

Subtracting the equation for ui and ũi, multiplying the result by sign(ϕi) and then integrating7

it over Qt we deduce8

(2.3)

∫
Ω
|ϕi(x, t)|dx ≤

∫
Ω
|ϕi(x, 0)|dx−kpi

∫∫
Qt

|ϕi|vi+kpi

∫∫
Qt

|ψi|ũi+Mi

∫∫
Qt

(
|ϕ1|+ |ϕ2|

)
.

Here we used the fact∫∫
Qt

ϕit · sign(ϕi) =

∫
Ω
|ϕi(x, t)|dx−

∫
Ω
|ϕi(x, 0)|dx and

∫∫
Qt

∇ ·Ai(ϕi) · sign(ϕi) = 0

as in the proof of [4, Theorem 2.2]. Subtracting the equation for vi and ṽi, multiplying the result9

by sign(ψi) and then integrating it over Qt we obtain10

(2.4)

∫
Ω
|ψi(x, t)|dx ≤

∫
Ω
|ψi(x, 0)|dx+ kqi

∫∫
Qt

|ϕi|vi − kqi
∫∫

Qt

|ψi|ũi.

Multiplying (2.3) and (2.4) by qi and pi, then taking the sum of them we have11 ∫
Ω
qi|ϕi(x, t)|dx ≤

∫
Ω

[
qi|ϕi(x, t)|+ pi|ψi(x, t)|

]
dx

≤
∫

Ω

[
qi|ϕi(x, 0)|+ pi|ψi(x, 0)|

]
dx+ qiMi

∫∫
Qt

(
|ϕ1|+ |ϕ2|

)
.

Set E(t) :=
∫∫
Qt

(
q1|ϕ1|+ q2|ϕ2|

)
, then the above inequality implies that

E′(t) ≤
∫

Ω
Θ(x, 0)dx+ (q1M1 + q2M2)

∫∫
Qt

(
|ϕ1|+ |ϕ2|

)
≤
∫

Ω
Θ(x, 0)dx+ME(t),

where M := (q1M1 + q2M2)/min{q1, q2}. The conclusion then follows from the Gronwall’s12

inequality. �13
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2.2. A priori bounds. Now we present some a priori bounds for the solution of (1.1). These1

bounds will play important roles later.2

Lemma 2.3. Let (u1, v1, u2, v2) be the solution of (1.1), then there exists C > 0, independent3

of k such that4

(2.5) k

∫∫
QT

uividxdt ≤ C,
∫∫

QT

|∇ui|2dxdt ≤ C.

Proof. To prove the first bound, one only needs to integrate the equation for ui over QT .5

We now prove the second inequality. Multiplying the equation for ui by ui and integrating it
over QT we have

1

2

∫∫
QT

(u2
i )tdxdt =

∫∫
QT

[
∇ · (Ai(ui)ui)−Ai(ui) · ∇ui

]
+

∫∫
QT

[fi(x, t, u1, u2)− kpiuivi]ui.

Using the boundary condition in (1.1) we have

1

2

∫
Ω
u2
i (x, t)

∣∣∣t=T
t=0

dx = −
∫∫

QT

Ai(ui) · ∇ui +

∫∫
QT

[fi(x, t, u1, u2)− kpiuivi]ui.

By the assumption (A1) we have6

λ

∫∫
QT

|∇ui|2 ≤
∫∫

QT

ai|∇ui|2 + kpi

∫∫
QT

u2
i vi

= −
∫∫

QT

ui∇bi · ∇ui +

∫∫
QT

fi(x, t, u1, u2)ui +
1

2

∫
Ω
u2
i (x, t)

∣∣∣t=T
t=0

dx

≤ λ

2

∫∫
QT

|∇ui|2 +
1

2λ

∫∫
QT

u2
i |∇bi|2 + Fi|Ω|T +

1

2
|Ω|,

where |Ω| denotes the measure of Ω and Fi := max{fi(x, t, s1, s2) | x ∈ Ω, t ∈ [0, T ], s1, s2 ∈
[0, 1]}. Therefore, ∫∫

QT

|∇ui|2 ≤ C :=
1

λ2

∫∫
QT

|∇bi|2 +
2

λ
Fi|Ω|T +

1

λ
|Ω|.

This completes the proof. �7

We will use the Riesz-Fréchet-Kolmogoroff theorem to give the convergence for U (k) as k →∞.8

For this purpose we need the estimates for the difference between ui, vi and their shifts.9

Let r̂ > 0 be a small constant. For any r ∈ (0, r̂), denote Ωr := {x ∈ Ω | B(x, r) ⊂ Ω}, where10

B(x, r) is an open ball with radius r centered at x.11

Lemma 2.4. There exists C > 0 such that, for any ξ ∈ B(0, r),12

(2.6)

∫ T

0

∫
Ωr

|ui(x+ ξ, t)− ui(x, t)|2 ≤ C|ξ|2,

and for any τ ∈ (0, T ),13

(2.7)

∫ T−τ

0

∫
Ω
|ui(x, t+ τ)− ui(x, t)|2 ≤ Cτ.

Proof. The inequality (2.6) follows from (2.5) immediately. Indeed, by (2.5) we have∫ T

0

∫
Ωr

[ui(x+ ξ, t)− ui(x, t)]2 =

∫ T

0

∫
Ωr

[∫ 1

0
∇ui(x+ sξ, t) · ξds

]2

≤ C|ξ|2
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for some constant C > 0 independent of ξ and r. Next we prove (2.7).1 ∫ T−τ

0

∫
Ω

[ui(x, t+ τ)− ui(x, t)]2

=

∫ T−τ

0

∫
Ω

[ui(x, t+ τ)− ui(x, t)]
∫ τ

0
uit(x, t+ s)ds

=

∫ T−τ

0

∫
Ω

[ui(x, t+ τ)− ui(x, t)]
∫ τ

0
[∇ · Ãi + f̃i − kpiui(x, κ)vi(x, κ)]ds,

where κ = t+ s, f̃i := fi(x, κ, u1(x, κ), u2(x, κ)) and Ãi := ai(x, κ)∇ui(x, κ) + ui(x, κ)∇bi(x, κ).2

For t̂ = 0 or t̂ = τ , note that3 ∫ τ

0

∫
Ω

∫ T−τ

0
ai(x, κ)|∇ui(x, t+ s)| · |∇ui(x, t+ t̂)|dtdxds

≤ Λ

2

∫ τ

0

∫
Ω

(∫ T−τ

0

[
|∇ui(x, t+ s)|2 + |∇ui(x, t+ t̂)|2

]
dt

)
dxds

≤ Λ

∫ τ

0

∫
Ω

∫ T

0
|∇ui(x, t)|2dtdxds ≤ Λτ

∫∫
QT

|∇ui(x, t)|2 ≤ Cτ,

and by ui(x, t) ∈ [0, 1], we have∫ τ

0

∫
Ω

∫ T−τ

0
ui(x, κ)|∇bi| · |∇ui(x, t+ t̂)|dtdxds ≤ τ‖∇bi‖L2(QT )‖∇ui‖L2(QT ) ≤ Cτ.

So, for some constant C independent of τ , we firstly have4 ∫ τ

0

∫
Ω

∫ T−τ

0
[ui(x, t+ τ)− ui(x, t)]∇ · Ãi dtdxds

= −
∫ τ

0

∫
Ω

∫ T−τ

0
∇[ui(x, t+ τ)− ui(x, t)] ·

[
ai(x, κ)∇ui(x, κ) + ui(x, κ)∇bi(x, κ)

]
dtdxds

≤ Cτ.

Secondly, we have ∣∣∣∣∫ T−τ

0

∫
Ω

[ui(x, t+ τ)− ui(x, t)]
∫ τ

0
f̃i ds

∣∣∣∣ ≤ Fi|Ω|Tτ,
where Fi is the same constant as in the proof of the previous lemma. Thirdly, by ui, vi ∈ [0, 1]
we have ∣∣∣∣−kpi ∫ τ

0

∫
Ω

∫ T−τ

0
[ui(x, t+ τ)− ui(x, t)]ui(x, κ)vi(x, κ) dtdxds

∣∣∣∣ ≤ kpi|Ω|Tτ.
Combining these inequalities together we obtain (2.7). �5

Lemma 2.5. For i = 1, 2, there exists a positive function Gi(ξ) such that Gi(ξ)→ 0 as ξ → 0,6

and a positive constant C1 > 0 such that, for any ξ ∈ B(0, r),7

(2.8)

∫ T

0

∫
Ωr

|vi(x+ ξ, t)− vi(x, t)| ≤ Gi(ξ),

and for any τ ∈ (0, T ),8

(2.9)

∫ T−τ

0

∫
Ω
|vi(x, t+ τ)− vi(x, t)| ≤ C1τ.
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Proof. From the equation of vi we easily obtain that

vi(x, t) = vi0(x)e−kqi
∫ t
0 ui(x,s)ds, t > 0.

The estimates follow easily from this formula (cf. [12, 20]). �1

3. Spatial segregation limit and free boundary problems2

In this section we fix a positive number T and consider the limit as k → ∞ of the solution3

sequence (u
(k)
1 , v

(k)
1 , u

(k)
2 , v

(k)
2 ) to (1.1).4

3.1. Convergence of the solution sequence. From the previous Lemmas 2.1 and 2.3 we see

that the family {u(k)
i | k > 0} is bounded in L2(0, T ;H1(Ω)) and the family {v(k)

i | k > 0} is
bounded in L∞(QT ). Therefore, it follows from Lemma 2.4 and the Riesz-Fréchet-Kolmogoroff

theorem ([2], Theorem IV.25 and Corollary IV.26) that {u(k)
i | k > 0} and {v(k)

i | k > 0} are
precompact in L2(QT ). Therefore there exist

u∗i ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ), v∗i ∈ L∞(QT )

and a subsequence {kj} of {k} with kj →∞ such that, as j →∞, we have5

(3.1) u
(kj)
i → u∗i , v

(kj)
i → v∗i strongly in L2(QT ), a.e. in QT ,

and6

(3.2) u
(kj)
i → u∗i weakly in L2(0, T ;H1(Ω)).

Lemma 3.1. Assume u∗i and v∗i are the limits obtained in (3.1). Then7

(3.3) u∗i , v
∗
i ∈ [0, 1], u∗i v

∗
i = 0 for (x, t) ∈ QT .

Proof. The conclusion u∗i (x, t), v
∗
i (x, t) ∈ [0, 1] for (x, t) ∈ QT follows from the limits in (3.1)

and the conclusion u
(k)
i , v

(k)
i ∈ [0, 1] in Lemma 2.1. By the first inequality of (2.5) we have∫∫
QT

u∗i v
∗
i = lim

j→∞

∫∫
QT

u
(kj)
i v

(kj)
i ≤ lim

j→∞

C

kj
= 0.

This proves u∗i v
∗
i = 0 for (x, t) ∈ QT . �8

In what follows we show that the limit (u∗1, v
∗
1, u
∗
2, v
∗
2) is uniquely determined by the weak9

solution of the following problem10

(3.4)


Z1t = ∇ ·D1(Z1) + h1

(
x, t, Z1

q1
, Z2
q2

)
, x ∈ Ω, 0 < t ≤ T,

Z2t = ∇ ·D2(Z2) + h2

(
x, t, Z1

q1
, Z2
q2

)
, x ∈ Ω, 0 < t ≤ T,

D1(Z1) · ν = 0, D2(Z2) · ν = 0, x ∈ ∂Ω, 0 < t ≤ T,
Z1(x, 0) = Z10(x), Z2(x, 0) = Z20(x), x ∈ Ω,

where, for any function ζ, ρ ∈ L2(0, T ;H1(Ω)),

Di(ζ) :=

{
Ai(ζ), ζ(x, t) > 0,
0, ζ(x, t) ≤ 0,

h1(x, t, ζ, ρ) :=

 q1f1(x, t, ζ, ρ), ζ(x, t) > 0, ρ(x, t) > 0,
q1f1(x, t, ζ, 0), ζ(x, t) > 0, ρ(x, t) ≤ 0,
0, ζ(x, t) ≤ 0,

and

h2(x, t, ζ, ρ) :=

 q2f2(x, t, ζ, ρ), ζ(x, t) > 0, ρ(x, t) > 0,
q2f2(x, t, 0, ρ), ζ(x, t) ≤ 0, ρ(x, t) > 0,
0, ρ(x, t) ≤ 0.
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In addition, for any function w(x, t), we denote

(w)+(x, t) := max{w(x, t), 0}, (w)−(x, t) := −min{w(x, t), 0}.

Definition 3.2. A pair (Z1, Z2) with Zi ∈ L∞(QT ), (Zi)+ ∈ L2(0, T ;H1(Ω)) is called a weak1

solution of (3.4) if2

(3.5)

∫∫
QT

Ziηt +

∫
Ω
Zi0(x)η(x, 0)dx =

∫∫
QT

[
Di(Zi) · ∇η − hi

(
x, t,

Z1

q1
,
Z2

q2

)
η
]

for all test functions η ∈ C∞(QT ) with η(x, T ) = 0.3

Our main result in this subsection is the following lemma.4

Lemma 3.3. Let Z∗i := qiu
∗
i − piv

∗
i with u∗i and v∗i being obtained in (3.1). Then the pair5

(Z∗1 , Z
∗
2 ) is the unique weak solution of the problem (3.4) with initial data Zi0 = qiui0 − pivi0.6

Proof. Clearly, Z∗i ∈ L∞(QT ) and (Zi)+ = qiu
∗
i ∈ L2(0, T ;H1(Ω)). Using the equations in (1.1)

we have

(qiu
(kj)
i − piv

(kj)
i )t = qi∇ ·Ai(u

(kj)
i ) + qifi(x, t, u

(kj)
1 , u

(kj)
2 ), x ∈ Ω, t ∈ [0, T ].

Multiplying these equations by the test function η, integrating by parts and using the limits in7

(3.1) and (3.2) we conclude that8 ∫∫
QT

Z∗i ηt +

∫
Ω
Zi0(x)η(x, 0)dx =

∫∫
QT

[
Ai(qiu

∗
i ) · ∇η − qifi(x, t, u∗1, u∗2)η

]
=

∫∫
QT

[
Di(Z

∗
i ) · ∇η − hi

(
x, t,

Z∗1
q1
,
Z∗2
q2

)
η
]
.

Hence (Z∗1 , Z
∗
2 ) is a weak solution to (3.4). The uniqueness of this solution can be proved in a9

similar way as in [3, 12, 18, 20] etc.. We omit the details here. �10

We remark that (u∗1, v
∗
1, u
∗
2, v
∗
2) is uniquely determined by the unique weak solution of the11

problem (3.4) with Zi0 = qiui0 − pivi0 (i = 1, 2). If fact, once we obtain a solution (Z1, Z2) to12

(3.4), by Lemma 3.3 we have Zi ≡ Z∗i , and so u∗i = (Zi)+/qi and v∗i = (Zi)−/pi are determined13

by (Z1, Z2). The same reason also leads to the following supplementary result.14

Corollary 3.4. The limits in (3.1) and (3.2) hold for all subsequences, namely, as k →∞,

u
(k)
i → u∗i , v

(k)
i → v∗i strongly in L2(QT ), a.e. in QT ,

u
(k)
i → u∗i weakly in L2(0, T ;H1(Ω)).

3.2. Explicit Stefan free boundary problem. The problem (3.4) is actually a Stefan type,15

but it is not given in an explicit form. In this subsection we show that under suitable regularity16

assumptions the system (3.4) can be explicitly written as a free boundary problem.17

Assume (Z1, Z2) is the unique solution of (3.4) with some initial data (Z10, Z20). Set

ui := (Zi)+/qi, vi := (Zi)−/pi in QT , i = 1, 2.

For each t ∈ [0, T ], denote18

(3.6)

 Ωui(t) := {x ∈ Ω|Zi(x, t) > 0},
Ωvi(t) := {x ∈ Ω|Zi(x, t) < 0},
Γi(t) := Ω \ (Ωui(t) ∪ Ωvi(t)).
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Theorem 3.5. Assume (Z1, Z2) is the unique weak solution of (3.4) with initial data (Z10, Z20).1

Let Ωui(t), Ωvi(t) and Γi(t) be defined as above. Suppose that, for each i = 1, 2, Γi(t) satisfies2

Γi(t)∩∂Ω = ∅ for any t ∈ [0, T ] and it is a smooth, closed, orientable hypersurface. Let ni be the3

unit normal vector on Γi(t) from Ωui(t) to Ωvi(t) and assume Γi(t) moves smoothly with speed4

Vni. Suppose further that ui is smooth in Ωui(t)× (0, T ], and vi0(x) ∈ (0, 1] for x ∈ Ωvi(0).5

Then (u1, u2,Γ1,Γ2) satisfies (1.2) and Zi(x, 0) = Zi0(x) a.e. in Ω.6

Proof. By the above definitions we have

ui = 0 on Γi(t)× [0, T ], Zi = qiui in Ωui(t)× [0, T ], Zi = −pivi in Ωvi(t)× [0, T ].

Note that vi does not necessarily to be zero on Γi(t) × [0, T ] since it is not assumed that vi is7

continuous in Ωvi(t)× (0, T ].8

For any test function η ∈ C2,1(QT ) with η(·, T ) = 0 in Ω we have

d

dt

∫
Ωui (t)

uiηdx =

∫
Ωui (t)

(uiη)tdx+

∫
Γi(t)

Vniuiηdσ.

Hence ∫ T

0

∫
Ωui (t)

(uiη)tdxdt+

∫ T

0

∫
Γi(t)

Vniηuidσdt = −
∫

Ωui (0)
ui(x, 0)η(x, 0)dx.

Using the assumption ui|Γi(t) = 0 we have∫ T

0

∫
Ωui (t)

(uiη)tdxdt = −
∫

Ωui (0)
ui(x, 0)η(x, 0)dx.

In a similar way we have∫ T

0

∫
Ωvi (t)

(viη)tdxdt =

∫ T

0

∫
Γi(t)

viVniηdσdt−
∫

Ωvi (0)
vi(x, 0)η(x, 0)dx.

Then the first term of (3.5) on the left side can be rewritten as9

(3.7)

∫∫
QT

Ziηtdxdt =

∫ T

0

∫
Ωui (t)

qiuiηtdxdt−
∫ T

0

∫
Ωvi (t)

piviηtdxdt

= −
∫ T

0

∫
Ωui (t)

qiuitηdxdt+

∫ T

0

∫
Ωvi (t)

pivitηdxdt

−
∫ T

0

∫
Γi(t)

piviVniηdσdt−
∫

Ω
Zi(x, 0)η(x, 0)dx.

Now we consider the right side of (3.5). For any test function η as above, since∫
Ωui (t)

∇η ·Ai(ui)dx =

∫
Γi(t)

ηAi(ui) · nidσ +

∫
∂Ω
ηAi(ui) · νdσ −

∫
Ωui (t)

η∇ ·Ai(ui)dx,

we obtain10

(3.8)

∫∫
QT

[
Di(Zi) · ∇η − hi

(
x, t,

Z1

q1
,
Z2

q2

)
η
]

= qi

∫ T

0

∫
Γi(t)

ηAi(ui) · nidσdt+ qi

∫ T

0

∫
∂Ω
ηAi(ui) · νdσdt

−qi
∫ T

0

∫
Ωui (t)

η
[
∇ ·Ai(ui) + fi(x, t, u1, u2)

]
.
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Substituting the above equalities into (3.5) we have∫ T

0

∫
Ωui (t)

[uit −∇ ·Ai(ui)− fi]η −
∫ T

0

∫
Ωvi (t)

pi
qi
vitη

+

∫ T

0

∫
Γi(t)

(
ai
∂ui
∂ni

+
pi
qi
viVni

)
ηdσdt+

∫ T

0

∫
∂Ω
ηAi(ui) · νdσdt

=
1

qi

∫
Ω

[
Zi0(x)− Zi(x, 0)

]
η(x, 0)dx.

By choosing test function η with compact support in Ωvi(t)× (0, T ] we derive vit = 0 and so
vi(x, t) ≡ vi0(x) for (x, t) ∈ Ωvi(t)× [0, T ]. Then we take test function η with compact support
in Ωui(t)× (0, T ] to deduce

uit = ∇ ·Ai(ui) + fi(x, t, u1, u2), (x, t) ∈ Ωui(t)× (0, T ].

Therefore,1

(3.9)

∫
Ω

1

qi

[
Zi0(x)− Zi(x, 0)

]
η(x, 0)dx

=

∫ T

0

∫
Γi(t)

(
ai
∂ui
∂ni

+
pi
qi
vi0Vni

)
ηdσdt+

∫ T

0

∫
∂Ω
ηAi(ui) · νdσdt.

By our assumption, Γi(t) = ∂Ωui(t) for any t ∈ [0, T ]. We take test functions which vanish
on
(
∂Ω× [0, T ]

)
∪
(
Ω× {0}

)
but do not vanish on Γi(t) to deduce

Vni = −qiai(x, t)
pivi0(x)

∂ui
∂ni

, x ∈ Γi(t), t ∈ (0, T ].

Then if we take the test functions vanishing on Ω× {0} we see that

Ai(ui) · ν = 0, (x, t) ∈ ∂Ω× (0, T ].

Finally we consider test functions with η(·, 0) 6≡ 0, then we obtain Zi(x, 0) = Zi0(x) a.e. in Ω. �2

Proof of Theorem 1.1. The conclusions follow from Lemmas 3.1, 3.3, Corollary 3.4 and Theorem3

3.5. �4

4. Some remarks5

4.1. The case with one pair of competitors. If there is only one pair of competitors involved6

in (1.1), then the problem reduces to7

(4.1)


ut = ∇ ·A(u) + f(x, t, u)− kpuv, x ∈ Ω, t > 0,
vt = −kquv, x ∈ Ω, t > 0,
A(u) · ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where A(u) := a∇u + u∇b, a, b, f and (u0, v0) ∈ C(Ω) × L∞(Ω) satisfy the analogue of the8

assumptions (A1)−(A3), respectively. A similar approach as above shows the following theorem.9

Theorem 4.1. Let T be any positive number. Assume (u(k), v(k)) is the unique solution of (4.1)
in QT . Then there exists (u∗, v∗) ∈ L2(0, T ;H1(Ω))× L∞(QT ) such that, as k →∞,

u(k) → u∗ strongly in L2(QT ), weakly in L2(0, T ;H1(Ω)) and a.e. in QT ,

v(k) → v∗ weakly in L2(QT ),
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and Ωu∗(t) ∩ Ωv∗(t) = ∅, where

Ωu∗(t) := {(x, t) ∈ QT | u∗(x, t) > 0}, Ωv∗(t) := {(x, t) ∈ QT | v∗(x, t) > 0}.

Moreover, if Γ :=
⋃

0≤t≤T Γ(t) (with Γ(t) := ∂Ωu∗(t)) is a smooth hypersurface satisfying1

Γ(t) ∩ ∂Ω = ∅ for 0 ≤ t ≤ T , u∗ is smooth in Ωu∗(t) × [0, T ] and v0(x) ∈ (0, 1] for x ∈ Ωv∗(0),2

then (u∗(x, t),Γ(t)) solves the following free boundary problem3

(4.2)



ut = ∇ ·A(u) + f(x, t, u), (x, t) ∈ Ωu(t)× (0, T ],
u(x, t) = 0, (x, t) ∈ Γ(t)× (0, T ],

Vn = −qa(x, t)

pv0(x)

∂u

∂n
, (x, t) ∈ Γ(t)× (0, T ],

A(u) · ν = 0, (x, t) ∈ ∂Ω× (0, T ],
Γ(0) = ∂Ωu(0), u(x, 0) = u0(x), x ∈ Ω,

where n is the unit normal vector on Γ(t) oriented from Ωu(t) to Ω\Ωu(t).4

4.2. Review on recent studies for (4.2) and (1.2). From our theorems we see that the free5

boundary problems (4.2) and (1.2) can be regarded as the approximation (when the competition6

rate is very large) of the systems (4.1) and (1.1), respectively. The free boundary problems, on7

the other hand, have attracted wide attention in the last few years.8

In 2010, Du and Lin [7] studied a special case of the problem (4.2) in one dimension:9

(4.3)


ut = uxx + f(u), x ∈ (0, h(t)), t > 0,
u(x, t) = 0, x = h(t), t > 0,
h′(t) = −µux(h(t), t), t > 0,
∂u
∂ν = 0, x = 0, t > 0,
u(x, 0) = u0(x), x ∈ [0, h(0)],

with logistic nonlinearity: f(u) = u(1−u). Among others, they presented a spreading-vanishing10

dichotomy result for the asymptotic behavior of the solutions. Later, many authors considered11

various extended versions of this problem. For example, [9] studied this problem for general12

nonlinearity, including monostable, bistable and combustiuon types of nonlinearities; [21, 22]13

studied this problem with Dirichlet and Robin boundary conditions at x = 0; [5, 23, 24] studied14

this problem with temporal or spatial nonlinearities; [13, 14] studied the equation with advection15

term: ut = uxx − βux + f(u). In addition, [6, 10] studied the high dimension version of (4.3),16

that is, the problem (4.2) with a = const., b = 0, v0 = const. and Ω = RN . As far as we know,17

many authors are still working on the problem (4.2) now.18

In [15, 16], Guo and Wu studied a special case of the problem (1.2) in one dimension:19

(4.4)


u1t = d1u1xx + r1u1(1− u1 − pu2), x ∈ (0, s1(t)), t > 0,
u2t = d2u2xx + r2u2(1− u2 − qu1), x ∈ (0, s2(t)), t > 0,
u1(x, t) ≡ 0 for x ≥ s1(t), t > 0, u2(x, t) ≡ 0 for x ≥ s2(t), t > 0,
s′1(t) = −µ1u1x(s1(t), t), s′2(t) = −µ2u2x(s2(t), t), t > 0.

With suitable initial data they also studied the asymptotic behavior for the solutions and ob-20

tained spreading-vanishing dichotomy result. In addition, some other authors also studied the21

special version of (1.2) in one dimension. For example, [11, 8] studied the case where Ωu2(t) = R1,22

and [1] studied the case where Ωu1(t) = Ωu2(t) = (g(t), h(t)). In some sense, this paper can also23

be regarded as a derivation for the widely studied problems (1.2) and (4.2).24
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