REFERENCES
Bai, Y., Han, X., Wu, J., Chen, Z., & Li, L. (2004). Ecosystem
stability and compensatory effects in the Inner Mongolia grassland.
Nature, 431, 181-184. https://doi.org/10.1038/nature02850
Bai, Y., Wu, J., Xing, Q., Pan, Q., Huang, J., Yang, D., & Han, X.
(2008). Primary production and rain use efficiency across a
precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
https://doi.org/10.1890/07-0992.1
Bartoli, F., & Wilding, L. P. (1980). Dissolution of biogenic opal as a
function of its physical and chemical properties. Soil Science Society
of America Journal, 44, 873-878.
https://doi.org/10.2136/sssaj1980.03615995004400040043x
Berner, R. A. (1992). Weathering, plants, and the long-term carbon
cycle. Geochimica et Cosmochimica Acta, 56, 3225-3231.
https://doi.org/10.1016/ 0016-7037 (92)9030-8
Blecker, S. W., Mcculley, R. L., Chadwick, O. A., & Kelly, E. F.
(2006). Biologic cycling of silica across a grassland bioclimosequence.
Global Biogeochemical Cycles, 20, 1-11.
https://doi.org/10.1029/2006GB002690
Chai, X., Liang, C., Liang, M., Han, W., Li, Z. Y., Miao, B.,
…Wang, L. (2014). Seasonal dynamics of belowground biomass and
productivity and potential of carbon sequestration in meadow steppe and
typical steppe in Inner Mongolia, China. Acta Ecologica Sinica, 34,
5530-5540. https://doi.org/10.584/ stxb201301190118
Chen, C., Huang, Z., Jiang, P., Chen, J., & Wu, J. (2018). Belowground
phytolith- occluded carbon of monopodial bamboo in China: an overlooked
carbon stock. Frontiers in Plant Science, 6, 1615.
https://doi.org/10.3389/fpls.2018.01615
Clarkson, D. T., & Hanson, J. B. (1980). The mineral nutrition of
higher plants. Annual Review of Plant Biology, 31, 239-298.
https://doi.org/10.1146/annurev.pp. 31.060180.001323
Conley, & Daniel, J. (2002). Terrestrial ecosystems and the
biogeochemical silica cycle. Global Biogeochemical Cycles, 16,
68-1-68-8. https://doi.org/10.1029/ 2002GB001894
Dai, C., Kang, M., Ji, W., & Jiang, Y. (2012). Responses of underground
productivity to biomass and environmental factors in Xilingol grassland,
Inner Mongolia. Chinese Journal of Grassland, 34, 54-60.
https://doi.org/1673-5021(2012) 03-0054-07
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T.
R., & Mearns, L. O. (2000). Climate extremes: observations, modeling,
and impacts. Science, 298, 2068-2074.
https://doi.org/10.1126/science.289.5487.2068
Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings
of the National Academy of Sciences of the United States of America, 91,
11-17. https://doi.org/10.1073/pnas.91.1.11
Epstein, E. (2009). Silicon: its manifold roles in plants. Annals
Applied Biology, 155, 155-160.
https://doi.org/10.1111/j.1744-7348.2009.00343.x
Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J. D. (2009).
Surface chemistry and reactivity of plant phytoliths in aqueous
solutions. Chemical Geology, 258, 197-206.
https://doi.org/10.1016/j.chemgeo.2008.10.003
Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005).
Phylogenetic variation in the silicon composition of plants. Annals of
Botany, 96, 1027-1046. https://doi.org/10.1093/aob/mci255
Hou, X., Ji, L., & Wang, Z. (2014). Response of net primary
productivity and C accumulation of plant communities in desert steppe
and semiarid steppe with different land use types during two
hydrologically contrastiong growing seasons. Acta Ecologica Sinica, 34,
6256-6264. https://doi.org/10.5846/stxb201301310206
Ji, Z., Yang, X., Song, Z., Liu, H., Liu, X., Qiu, S., …Zhang, X.
(2018). Silicon distribution in meadow steppe and typical steppe of
northern China and its implications for phytolith carbon sequestration.
Grass and Forage Science, 73, 482-492. https://doi.org/10.1111/gfs.12316
Jones, L. H. P., & Milne, A. A. (1965). Studies of silica in the oat
plant. Plant and Soil, 23, 79-96. https://doi.org/10.1007/BF01347875
Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal
dynamics of aboveground primary production. Science, 291, 481-484.
https://doi.org/ 10.1126/science.291.5503.481
Li, Z., Song, Z., Parr, J. F., & Wang, H. (2013a). Occluded C in rice
phytoliths: implications to biogeochemical carbon sequestration. Plant
and Soil, 370, 615-623. https://doi.org/10.1007/s11104-013-1661-9
Li, Z., Song, Z., & Li, B. (2013b). The production and accumulation of
phytolith-occluded carbon in Baiyangdian reed wetland of China. Applied
Geochemistry, 37, 117-124.
https://doi.org/10.1016/j.apgeochem.2013.07.012
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in
higher plants. Trends in Plant Science, 11, 392-397.
https://doi.org/10.1016/j.tplants. 2006.06.007
Ma, W., Fang, J., Yang, Y., & Mohammat, A. (2010). Biomass carbon
stocks and their changes in northern China’s grasslands during
1982–2006. Science China-life Sciences, 53, 841-850.
https://doi.org/10.1007/s11427-010-4020-6
Pan, W., Song, Z., Liu, H., Müeller, K., Yang, X., Zhang, X.,
…Wang, H. (2017). Impact of grassland degradation on soil
phytolith carbon sequestration in Inner Mongolia steppe of China.
Geoderma, 308, 86-92. https://doi.org/10.1016/ j.geoderma.2017.08.037
Parr, J. F., Sullivan, L. A., Chen, B., Ye, G., & Zheng, W. (2010).
Carbon bio-sequestration within the phytoliths of economic bamboo
species. Global Change Biology, 16, 2661-2667.
https://doi.org/10.1111/j.1365-2486.2009. 02118.x
Parr, J. F., Sullivan, L. A., & Quirk, R. (2009). Sugarcane phytoliths:
encapsulation and sequestration of a long-lived carbon fraction. Sugar
Tech, 11, 17-21. https:// doi.org/10.1007/s12355-009-0003-y
Parr, J. F., Dolic, V., Lancaster, G., & Boyd, W. E. (2001). A
microwave digestion method for the extraction of phytoliths from
herbarium specimens. Review of Palaeobotany and Palynology, 116,
203-212. https://doi.org/10.1016/ S0034-6667(01)00089-6
Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in
phytoliths. Soil Biologyand Biochemistry, 37, 117-124.
https://doi.org/10.1016/ j.soilbio.2004.06.013
Parr, J. F., & Sullivan, L. A. (2011). Phytolith occluded carbon and
silica variability in wheat cultivars. Plant and Soil, 342, 165-171.
https://doi.org/ 10.1007/s11104-010-0680-z
Parr, J. F., & Sullivan, L. A. (2014). Comparison of two methods for
the isolation of phytolith occluded carbon from plant material. Plant
and Soil, 374, 45-53. https://doi.org/10.1007/s11104-013-1847-1
Qi, L., Li, F. Y., Huang, Z., Jiang, P., Baoyin, T., & Wang, H. (2016).
Phytolith-occluded organic carbon as a mechanism for long-term carbon
sequestration in a typical steppe: the predominant role of belowground
productivity. Science of Total Environment, 577, 413-417.
https://doi.org/10.1016/j.scitotenv.2016.10.206
Ru, N., Yang, X., Song, Z., Liu, H., Hao, Q., Liu, X., & Wu, X. (2018).
Phytoliths and phytolith carbon occlusion in aboveground vegetation of
sandy grasslands in eastern Inner Mongolia, China. Science of Total
Environment, 625, 1283-1289. https://
doi.org/10.1016/j.scitotenv.2018.01.055
Schaller, J., Brackhage, C., Paasch, S., Brunner, E., Bäucker, E., &
Dudel, E. G. (2013). Silica uptake from nanoparticles and silica
condensation state in different tissues of Phragmites australis. Science
of Total Environment, 442, 6-9.
https://doi.org/10.1016/j.scitotenv.2012.10.0166.199
Scurlock, J. M. O., & Hall, D. O. (2010). The global carbon sink: a
grassland perspective. Global Change. Biology, 4, 229-233.
https://doi.org/10.1046/j.1365-2488.00151.x
Scurlock, J. M. O., Johnson, K. R., & Olson, R. J. (2002). Estimating
net primary productivity from grassland biomass dynamics measurements.
Global Change Biology, 8, 736-753.
https://doi.org/10.1046/j.1365-2486.2002.00512.x
Song, Z., Liu, H., Stromberg, C. A. E., Yang, X., & Zhang, X. (2017).
Phytolith carbon sequestration in global terrestrial biomes. Science of
Total Environment, 603, 502-509.
https://doi.org/10.1016/j.scitotenv.2017.06.107
Song, Z., Liu, H., Si, Y., & Yin, Y. (2012a). The production of
phytoliths in China’s grasslands: implications to the biogeochemical
sequestration of atmospheric CO2. Global Change Biology,
18, 3647-3653. https://doi.org/10.1111/gcb.12017
Song, Z., Wang, H., Strong, P. J., Li, Z., & Jiang, P. (2012b). Plant
impact on the coupled terrestrial biogeochemical cycles of silicon and
carbon: implications for biogeochemical carbon sequestration.
Earth-Science Reviews, 115, 319-331.
https://doi.org/10.1016/j.earscirev.2012.09.006
Strömberg, C. A. E., Stilio, V. S. D., & Song, Z. (2016). Functions of
phytoliths in vascular plants: an evolutionary perspective. Functional
Ecology, 30, 1286-1297. https://doi.org/10.1111/1365-2435.12692
Walkley, A. J., & Black, I. A. (1934). An examination of the degtjareff
method for determining soil organic matter, and a proposed modification
of the chromic acid titration method. Soil Science, 37, 29-38.
https://doi.org/10.1097/ 00010694-193401000-00003
Yang, J., Li, Y., Huang, Z., Jiang, P., Xiang, T., & Ying, Y. (2014).
Determination of phytolith-occluded carbon content using alkali
dissolution- spectrophotometry. Chinese Journal of Analytical Chemistry,
42, 1389-1390. https://doi.org/10.11895/j.issn.02533820.131190
Yang, X., Song, Z., Liu, H., Zwieten, L. V., Song, A. L., Li, Z.,
…Wang, H. (2018). Phytolith accumulation in broadleaf and conifer
forests of northern China: implications for phytolith carbon
sequestration. Geoderma, 312, 36-44.
https://doi.org/10.1016/j.geoderma.2017.10.005
Zhang, X., Song, Z., Hao, Q., Wang, Y., Ding, F., & Song, A. (2019).
Phytolith-occluded carbon storages in forest litter layers in southern
China: implications for evaluation of long-term forest carbon budget.
Frontiers in Plant Science, 10, 581. https://doi.org/10, 581. doi:
10.3389/fpls.2019.00581
Zuo, X., & Lü, H. (2011). Carbon sequestration within millet phytoliths
from dry-farming of crops in China. Chin. Science Bulletin, 56,
3451-3456. https://doi.org/10.1007/s11434-011-4674-x