REFERENCES
Bai, Y., Han, X., Wu, J., Chen, Z., & Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. https://doi.org/10.1038/nature02850
Bai, Y., Wu, J., Xing, Q., Pan, Q., Huang, J., Yang, D., & Han, X. (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153. https://doi.org/10.1890/07-0992.1
Bartoli, F., & Wilding, L. P. (1980). Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Science Society of America Journal, 44, 873-878. https://doi.org/10.2136/sssaj1980.03615995004400040043x
Berner, R. A. (1992). Weathering, plants, and the long-term carbon cycle. Geochimica et Cosmochimica Acta, 56, 3225-3231. https://doi.org/10.1016/ 0016-7037 (92)9030-8
Blecker, S. W., Mcculley, R. L., Chadwick, O. A., & Kelly, E. F. (2006). Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles, 20, 1-11. https://doi.org/10.1029/2006GB002690
Chai, X., Liang, C., Liang, M., Han, W., Li, Z. Y., Miao, B., …Wang, L. (2014). Seasonal dynamics of belowground biomass and productivity and potential of carbon sequestration in meadow steppe and typical steppe in Inner Mongolia, China. Acta Ecologica Sinica, 34, 5530-5540. https://doi.org/10.584/ stxb201301190118
Chen, C., Huang, Z., Jiang, P., Chen, J., & Wu, J. (2018). Belowground phytolith- occluded carbon of monopodial bamboo in China: an overlooked carbon stock. Frontiers in Plant Science, 6, 1615. https://doi.org/10.3389/fpls.2018.01615
Clarkson, D. T., & Hanson, J. B. (1980). The mineral nutrition of higher plants. Annual Review of Plant Biology, 31, 239-298. https://doi.org/10.1146/annurev.pp. 31.060180.001323
Conley, & Daniel, J. (2002). Terrestrial ecosystems and the biogeochemical silica cycle. Global Biogeochemical Cycles, 16, 68-1-68-8. https://doi.org/10.1029/ 2002GB001894
Dai, C., Kang, M., Ji, W., & Jiang, Y. (2012). Responses of underground productivity to biomass and environmental factors in Xilingol grassland, Inner Mongolia. Chinese Journal of Grassland, 34, 54-60. https://doi.org/1673-5021(2012) 03-0054-07
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science, 298, 2068-2074. https://doi.org/10.1126/science.289.5487.2068
Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91, 11-17. https://doi.org/10.1073/pnas.91.1.11
Epstein, E. (2009). Silicon: its manifold roles in plants. Annals Applied Biology, 155, 155-160. https://doi.org/10.1111/j.1744-7348.2009.00343.x
Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J. D. (2009). Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 258, 197-206. https://doi.org/10.1016/j.chemgeo.2008.10.003
Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96, 1027-1046. https://doi.org/10.1093/aob/mci255
Hou, X., Ji, L., & Wang, Z. (2014). Response of net primary productivity and C accumulation of plant communities in desert steppe and semiarid steppe with different land use types during two hydrologically contrastiong growing seasons. Acta Ecologica Sinica, 34, 6256-6264. https://doi.org/10.5846/stxb201301310206
Ji, Z., Yang, X., Song, Z., Liu, H., Liu, X., Qiu, S., …Zhang, X. (2018). Silicon distribution in meadow steppe and typical steppe of northern China and its implications for phytolith carbon sequestration. Grass and Forage Science, 73, 482-492. https://doi.org/10.1111/gfs.12316
Jones, L. H. P., & Milne, A. A. (1965). Studies of silica in the oat plant. Plant and Soil, 23, 79-96. https://doi.org/10.1007/BF01347875
Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484. https://doi.org/ 10.1126/science.291.5503.481
Li, Z., Song, Z., Parr, J. F., & Wang, H. (2013a). Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant and Soil, 370, 615-623. https://doi.org/10.1007/s11104-013-1661-9
Li, Z., Song, Z., & Li, B. (2013b). The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Applied Geochemistry, 37, 117-124. https://doi.org/10.1016/j.apgeochem.2013.07.012
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11, 392-397. https://doi.org/10.1016/j.tplants. 2006.06.007
Ma, W., Fang, J., Yang, Y., & Mohammat, A. (2010). Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Science China-life Sciences, 53, 841-850. https://doi.org/10.1007/s11427-010-4020-6
Pan, W., Song, Z., Liu, H., Müeller, K., Yang, X., Zhang, X., …Wang, H. (2017). Impact of grassland degradation on soil phytolith carbon sequestration in Inner Mongolia steppe of China. Geoderma, 308, 86-92. https://doi.org/10.1016/ j.geoderma.2017.08.037
Parr, J. F., Sullivan, L. A., Chen, B., Ye, G., & Zheng, W. (2010). Carbon bio-sequestration within the phytoliths of economic bamboo species. Global Change Biology, 16, 2661-2667. https://doi.org/10.1111/j.1365-2486.2009. 02118.x
Parr, J. F., Sullivan, L. A., & Quirk, R. (2009). Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech, 11, 17-21. https:// doi.org/10.1007/s12355-009-0003-y
Parr, J. F., Dolic, V., Lancaster, G., & Boyd, W. E. (2001). A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology, 116, 203-212. https://doi.org/10.1016/ S0034-6667(01)00089-6
Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths. Soil Biologyand Biochemistry, 37, 117-124. https://doi.org/10.1016/ j.soilbio.2004.06.013
Parr, J. F., & Sullivan, L. A. (2011). Phytolith occluded carbon and silica variability in wheat cultivars. Plant and Soil, 342, 165-171. https://doi.org/ 10.1007/s11104-010-0680-z
Parr, J. F., & Sullivan, L. A. (2014). Comparison of two methods for the isolation of phytolith occluded carbon from plant material. Plant and Soil, 374, 45-53. https://doi.org/10.1007/s11104-013-1847-1
Qi, L., Li, F. Y., Huang, Z., Jiang, P., Baoyin, T., & Wang, H. (2016). Phytolith-occluded organic carbon as a mechanism for long-term carbon sequestration in a typical steppe: the predominant role of belowground productivity. Science of Total Environment, 577, 413-417. https://doi.org/10.1016/j.scitotenv.2016.10.206
Ru, N., Yang, X., Song, Z., Liu, H., Hao, Q., Liu, X., & Wu, X. (2018). Phytoliths and phytolith carbon occlusion in aboveground vegetation of sandy grasslands in eastern Inner Mongolia, China. Science of Total Environment, 625, 1283-1289. https:// doi.org/10.1016/j.scitotenv.2018.01.055
Schaller, J., Brackhage, C., Paasch, S., Brunner, E., Bäucker, E., & Dudel, E. G. (2013). Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Science of Total Environment, 442, 6-9. https://doi.org/10.1016/j.scitotenv.2012.10.0166.199
Scurlock, J. M. O., & Hall, D. O. (2010). The global carbon sink: a grassland perspective. Global Change. Biology, 4, 229-233. https://doi.org/10.1046/j.1365-2488.00151.x
Scurlock, J. M. O., Johnson, K. R., & Olson, R. J. (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753. https://doi.org/10.1046/j.1365-2486.2002.00512.x
Song, Z., Liu, H., Stromberg, C. A. E., Yang, X., & Zhang, X. (2017). Phytolith carbon sequestration in global terrestrial biomes. Science of Total Environment, 603, 502-509. https://doi.org/10.1016/j.scitotenv.2017.06.107
Song, Z., Liu, H., Si, Y., & Yin, Y. (2012a). The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Global Change Biology, 18, 3647-3653. https://doi.org/10.1111/gcb.12017
Song, Z., Wang, H., Strong, P. J., Li, Z., & Jiang, P. (2012b). Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: implications for biogeochemical carbon sequestration. Earth-Science Reviews, 115, 319-331. https://doi.org/10.1016/j.earscirev.2012.09.006
Strömberg, C. A. E., Stilio, V. S. D., & Song, Z. (2016). Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology, 30, 1286-1297. https://doi.org/10.1111/1365-2435.12692
Walkley, A. J., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. https://doi.org/10.1097/ 00010694-193401000-00003
Yang, J., Li, Y., Huang, Z., Jiang, P., Xiang, T., & Ying, Y. (2014). Determination of phytolith-occluded carbon content using alkali dissolution- spectrophotometry. Chinese Journal of Analytical Chemistry, 42, 1389-1390. https://doi.org/10.11895/j.issn.02533820.131190
Yang, X., Song, Z., Liu, H., Zwieten, L. V., Song, A. L., Li, Z., …Wang, H. (2018). Phytolith accumulation in broadleaf and conifer forests of northern China: implications for phytolith carbon sequestration. Geoderma, 312, 36-44. https://doi.org/10.1016/j.geoderma.2017.10.005
Zhang, X., Song, Z., Hao, Q., Wang, Y., Ding, F., & Song, A. (2019). Phytolith-occluded carbon storages in forest litter layers in southern China: implications for evaluation of long-term forest carbon budget. Frontiers in Plant Science, 10, 581. https://doi.org/10, 581. doi: 10.3389/fpls.2019.00581
Zuo, X., & Lü, H. (2011). Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chin. Science Bulletin, 56, 3451-3456. https://doi.org/10.1007/s11434-011-4674-x