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Abstract. In this paper we study exact boundary controllability for a linear wave equation with strong
and weak interior degeneration of the coefficients in the principle part of the elliptic operator. The objective
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1. Introduction. In this paper we discuss exact boundary controllability for one-
dimensional degenerate wave equations with a weak and strong interior degeneration in
the principle part of the elliptic operator. Let [0, T ] be a given time interval. For simplicity,
let c and d be a given pair of real numbers such that 0 ≤ c < 1 < d ≤ 2. We set

Ω1 = (c, 1), Ω2 = (1, d), Ω = (c, d), and Ω0 = Ω \ {1} = Ω1 ∪ Ω2.

Let a : Ω→ R be a given weight function with properties
(i) a(1) = 0, a(x) > 0 for all x ∈ Ω0, and there exists subintervals (x∗1, 1) ⊂ Ω1 and

(1, x∗2) ⊂ Ω2 such that a(·) is monotonically decreasing on (x∗1, 1) and monotonically
increasing on (1, x∗2);

(ii) a ∈ C(Ω) ∩ C1(Ω \ {1});
(iii) (

√
a)x 6∈ L∞(Ω) whereas (

√
a)
−1
x ∈ L∞(Ω).

We are concerned with the following controlled system

ytt − (a(x)yx)x = 0 in (0, T )× Ω, (1.1)

y(t, c) = 0, y(t, d) = f(t) on (0, T ), (1.2)

y(0, ·) = y0, yt(0, ·) = y1 in Ω, (1.3)

f ∈ Fad = L2(0, T ). (1.4)

Here, y0, and y1 are given functions, and Fad stands for the class of admissible controls.
(1.1)-(1.4) describes the dynamics of a linear elastic string with out-of-the-plane displace-

ment under the action of a boundary source f acting on the system as a control through
the Dirichlet boundary condition at x = d. The coefficient a(x) can be interpreted as the
spatially varying stiffness (modulus of elasitcity) of the elastic string. In contrast to the
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standard case that is widely studied in the literature (see, for instance, [18]), where the stiff-
ness is assumed to be positive and bounded away from zero, we assume that the string [c, d]
has a defect at the internal point x0 = 1. In case the defect occurs at the endpoint x0 = c,
the problem has been investigated in [1]. In the latter case, the spatial operator is related to
a classical singular Sturm-Liouville-problem that has been treated already by Weyl in [22].
Degeneration in that context is related to the notions of limit-point and limit-cycle. In [1],
the authors define

µa := sup
0<x≤`

x|a′(x)|
x

(1.5)

for the problem on the interval [0, `]. The problem is called weakly damaged if 0 ≤ µa < 1
in which case 1

a ∈ L1, and strongly damaged in case 1 ≤ µa < 2. The authors show,
among other things, one-sided boundary observability and consequently one-sided boundary
exact controllability if µa < 2 with an observability/controllability time approaching +∞ as
µa → 2. Thus, for µa ≥ 2, these properties are lost.

Using the Liouville transform (see [7] 1954), it is possible to transform the system above
into a homogeneous wave equation with singular potential on an interval that tends to
infinity if µa ≥ 2. See e.g. [8], where controllability properties are investigated based on this
transformation. Working in the L∞-framework, the author obtains similar results as in [1].

The authors of this article are not aware of any publication, where in-span degeneration
of the wave equation is treated, in particular in the context of controllability or observability.
For the parabolic case see [3]. The main question that we are going to discuss in this paper,
therefore, is how the defect at the internal point x0 = 1 affects the transmission conditions
at the singular (damage) point and the corresponding solution of the system (1.1)–(1.4) as
well as its its observability or controllability properties.

Such analysis could be important for applications, in particular when extended into
higher dimensions, e.g. for the cloaking problem (building of devices that lead to invisibility,
i.e. to lack of obeservability) [11], where a quadratic singular behaviour of the material
properties - strong damage in our terminology -around the to be cloaked object occurs, the
evolution of damage in materials, optimization problems for elastic bodies arising in contact
mechanics, coupled systems, composite materials, where ’life-cycle-optimization’ appears as
a challenge.

The indicated type of degeneracy raises a number of new questions related to the well-
posedness of the hyperbolic equations in suitable functional spaces as well as new estimates
for their solutions. Hence, new tools are necessary for the analysis of the corresponding
optimal control problems. It should be emphasized here that boundary value problems
for degenerate elliptic and parabolic equations have received a lot of attention in the last
years (see, for instance, [3, 4, 6, 16, 17, 19]). As for the control issue for degenerate wave
equations, we already mentioned [1, 10] (see also [13] for the sensitivity analysis of OCPs
for wave equations in domain with defects).

The purpose of this paper is to provide a qualitative analysis of system (1.1)–(1.4), prove
an exact controllability result, and investigate how the degree of degeneracy in the principle
coefficient a(x) affects the system (1.1)–(1.4) and its solution. In contrast to the recent
results [1], where the authors study controllability and observability for degenerate equation
of the form (1.1) with the degeneracy of (1.1) at the boundary x = c = 0, we focus on the
case where the ’damaged’ point is internal. So, our core idea is to to pass from the original
initial-boundary value problem (1.1)–(1.4) to a relaxed version, namely, to some transmission
problem with appropriate compatibility conditions at the ’damaged’ point. We show that
these conditions play a crucial role and essentially depend on the ’degree of degeneracy’.
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In Section 2 we introduce a special class of weighted Sobolev spaces that are associated
with the original initial-boundary value problem. It allows us not only to to study in detail
some properties of their elements in the regions which are in close vicinity to the ’damaged’
point, but also propose an appropriate relaxation for to the initial-boundary value problems
(1.1)–(1.3). In Section 3, we mainly focus on the well-posedness of the proposed relaxation
for the original controlled system. It allows us to consider in Section 4 the issues related
to the boundary observability of degenerate wave equations. In Section 5 we discuss the
questions of exact and null boundary controllability of the original degenerate system and
the lack of these properties for strong degeneration.

2. Preliminaries. To specify the original controlled system (1.1)–(1.4) and fix the
main ideas, we begin with some preliminaries and assumptions. Let a : Ω → R be a given
weight function with properties (i)–(iii). We define the Banach spaces W 1,2

0 (Ω; c) and H1
a(Ω)

as the closure of the set C∞0 (R; c) = {ϕ ∈ C∞0 (R) : ϕ(c) = 0} with respect to the norms

‖y‖W 1,2
0 (Ω;c) =

(∫
Ω

|yx|2 dx
)1/2

and ‖y‖H1
a(Ω) =

(∫
Ω

(
y2 + a|yx|2

)
dx

)1/2

,

respectively.
We also introduce the closed subspace H1

a,0(Ω) of H1
a(Ω) defined as

H1
a,0(Ω) :=

{
y ∈ H1

a(Ω) : y(c) = 0
}
.

We note that this subspace is correctly defined due to compactness of the embedding
H1
a,0(c, ε) ⊂ W 1,2

0 ((c, ε); c) ↪→ C([c, ε]), for any ε ∈ (c, 1). So, if y ∈ H1
a,0(Ω), then y(·)

is a continuous function at x = c, and, therefore, the condition y(c) = 0 is consistent.
The common characteristic of the weight functions a : Ω → R with properties (i)–(iii)

can be summarizing as follows (see [12] for the details).
Let Gi : Ω→ [0,∞), i = 1, 2, be non-decreasing continuous functions such that Gi(0) =

0, and let

A1,a := sup
x∈Ω1

G1(1− x)
∣∣∣(√a(x)

)
x

∣∣∣√
a(x)

= sup
x∈Ω1

G1(1− x)|a′(x)|
2a(x)

< +∞, (2.1)

A2,a := sup
x∈Ω2

G2(x− 1)
∣∣∣(√a(x)

)
x

∣∣∣√
a(x)

= sup
x∈Ω2

G2(x− 1)|a′(x)|
2a(x)

< +∞. (2.2)

By analogy with [1], we also set

µ1,a := sup
x∈Ω1

(1− x)|a′(x)|
a(x)

, µ2,a := sup
x∈Ω2

(x− 1)|a′(x)|
a(x)

. (2.3)

We make use of the following result (for the proof we refer to [12], see Theorems 3.1 and
3.2).

Proposition 2.1. Let a : Ω → R be a weight function satisfying properties (i)–(iii).
Then the following assertions hold true:

0 ≤ max{2A1,a, µ1,a} < 2 and 0 ≤ max{2A2,a, µ2,a} < 2, (2.4)

a(x) ≥ a(c)(1− x)max{µ1,a,2A1,a} ∀x ∈ [c, 1], (2.5)

a(x) ≥ a(d)(x− 1)max{µ2,a,2A2,a} ∀x ∈ [1, d], (2.6)

‖y‖L2(Ω) ≤ [C1 + C2] ‖y‖H1
a(Ω), ∀ y ∈ H1

a,0(Ω), (2.7)
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where

C1 =
1√
a(c)

min

{
1√

[2−max{µ1,a, 2A1,a}]
, 2

}
, (2.8)

C2 =
1√
a(d)

[
min

{
1√

[2−max{µ2,a, 2A2,a}]
, 2

}
+ CSob

√
1 + a(d)

]
, (2.9)

and CSob > 0 is a constant coming from the continuous embedding W 1,2(1, d) ↪→ C0,1([1, d]),

max
x∈[1,d]

|y(x)| ≤ CSob‖y‖W 1,2(1,d), ∀ y ∈W 1,2(1, d).

Remark 2.1. In order to avoid any ambiguity coming from the choice of functions
Gi : Ω → [0,∞), i = 1, 2, we set Gi(x) = 2x, i = 1, 2. Then 2Ai,a = µi,a and, therefore
the estimates (2.4)–(2.7) can be simplified. Hereinafter in this paper, we will follow this
agreement.

As a direct consequence, we have: Under the assumptions of Proposition 2.1, H1
a,0(Ω)

is a Hilbert space with respect to the scalar product

〈u, v〉H1
a,0(Ω) =

∫
Ω

a(x)u′(x)v′(x) dx, ∀u, v ∈ H1
a,0(Ω). (2.10)

The proposition given below reveals some extra properties of the weight function a(x)
that can be interesting per se.

Proposition 2.2. Let a : Ω → R be a weight function satisfying properties (i)–(iii).
Then

√
a

|x− 1|
6∈ Lq(Ω) ∀ q ≥ q∗, (2.11)

(√
a
)
x
∈ Lq(Ω) provided

√
a

|x− 1|
∈ Lq(Ω), for some q ∈ [1, q∗), (2.12)

with

q∗ = 2 min

{
1

2− µ1,a
,

1

2− µ2,a
,

}
.

Proof. Fixing an arbitrary function a : Ω→ R satisfying properties (i)–(iii), we see that,
for a given exponent q ≥ 1, the following inequality∫

Ω

∣∣∣∣ √a|x− 1|

∣∣∣∣q dx by (2.5)–(2.6)

≥ aq(c)

∫
Ω1

∣∣|x− 1|µ1,a−2
∣∣ q2 dx

+ aq(d)

∫
Ω2

∣∣|x− 1|µ2,a−2
∣∣ q2 dx

holds. Since the right hand side of this inequality blows up provided q ≥ q∗, the first
assertion (2.11) follows. As for (2.12),∫

Ω

∣∣(√a)
x

∣∣q dx =

∫
Ω

∣∣∣∣ |x− 1|ax
2a

√
a

|x− 1|

∣∣∣∣q dx
by (2.3)

≤
∫

Ω

(∣∣∣µ1,a

2

∣∣∣q +
∣∣∣µ1,a

2

∣∣∣q) ∣∣∣∣ √a|x− 1|

∣∣∣∣q dx by (2.4)

≤ 2

∫
Ω

∣∣∣∣ √a|x− 1|

∣∣∣∣q dx.
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Example 2.1. As an example of function a : Ω→ R+ with the above indicated properties
(i)–(iii), we may consider:

a(x) =

{
(1− x)2p1 , if x ∈ [0, 1]
(x− 1)2p2 , if x ∈ (1, 2],

with p1, p2 > 0. (2.13)

It is easy to check that, in this case, properties (i)–(iii) hold and in addition

µ(x) =


p1(p1 − 1)

(1− x)2
, if x ∈ [0, 1]

p2(p2 − 1)

(1− x)2
, if x ∈ (1, 2],

, µ1,a = 2p1, µ2,a = 2p2.

Moreover, setting G1(x) = k1x and G2(x) = k2x, where k1, k2 are some positive con-
stants, we obtain

A1,a =
k1

2
µ1,a = k1p1 and A2,a =

k2

2
µ2,a = k2p2.

In addition, we have the following properties(√
a
)
x
6∈ L∞(Ω) and

(√
a
)−1

x
∈ L∞(Ω) if p1 and p2 are less than 1,

1

a
∈ L1(Ω) provided 0 < p1, p2 <

1

2
.

In what follows, we will distinguish two possible cases for the weight function a : Ω→ R.
Namely, we say that we deal with

• a weak degeneration in (1.1) if a : Ω → R satisfies properties (i)–(iii) and 1/a ∈
L1(Ω);

• a strong degeneration in (1.1) if a : Ω → R satisfies properties (i)–(iii) and 1/a 6∈
L1(Ω).

Starting with the weak degenerate case, we note that due to the continuous embedding
W 1,1(Ω) ↪→ C(Ω) and estimates∫

Ω

|y| dx ≤ |Ω|1/2
(∫

Ω

|y|2 dx
)1/2

≤
√
|Ω| ‖y‖H1

a(Ω),∫
Ω

|yx| dx ≤
(∫

Ω

|yx|2a dx
)1/2(∫

Ω

a−1 dx

)1/2

≤ C‖y‖H1
a(Ω),

we have the following result (we refer to [1, Proposition 2.5] for the details).
Theorem 2.3. Let a : Ω → R be a weight function satisfying properties (i)–(iii)

and 1/a ∈ L1(Ω), i.e., a(x) belongs to the class of Muckenhoupt weights A2(Ω). Then
W 1,2(Ω) ↪→ H1

a(Ω), H1
a(Ω) ↪→ W 1,1(Ω), H1

a(Ω) ↪→↪→ L1(Ω) compactly, and H1
a(Ω) is con-

tinuously embedded into the class of absolutely continuous functions on Ω, so

lim
x↗1

y(x) = lim
x↘1

y(x), |y(1)| < +∞, ∀ y ∈ H1
a(Ω), (2.14)

lim
x↗1

√
a(x)y(x) = lim

x↘1

√
a(x)y(x) = 0, ∀ y ∈ H1

a(Ω). (2.15)
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In addition, if y is an arbitrary element of the space

H2
a(Ω) :=

{
y ∈ H1

a(Ω) : ayx ∈W 1,2(Ω)
}
, (2.16)

then the following transmission condition

lim
x↗1

a(x)yx(x) = lim
x↘1

a(x)yx(x) = L, with |L| < +∞, (2.17)

holds true.
However, the situation changes drastically if we deal with strong degeneration in (1.1).

Indeed, let us consider the following example. Let c = 0, d = 2, and

y(x) =

{
|x− 1|− 1

4 − 1, if x ∈ (0, 1),

|x− 1| 12 , if x ∈ [1, 2).

Setting a(x) = |x−1|7/4, we see that properties (i)–(iii) hold true. Moreover, in this case we
have 1/a 6∈ L1(Ω). Then, in spite of the fact that the function y : Ω→ R has a discontinuity
of the second kind at x0 = 1, a direct calculations show that y ∈ H1

a,0(Ω) and

a(x)yx(x) =

{
− 1

4 |x− 1| 12 , if x ∈ (0, 1),

+ 1
2 |x− 1| 54 , if x ∈ [1, 2).

So, instead of transmission conditions (2.14)–(2.17), we have

lim
x↗1

a(x)yx(x) = lim
x↘1

a(x)yx(x) = 0. (2.18)

In fact, we have the following result (see [1, Proposition 2.5] for comparison).
Theorem 2.4. Let a : Ω → R be a weight function satisfying properties (i)–(iii) and

1/a 6∈ L1(Ω). Then the following assertions hold true:

lim
x↗1
|x− 1|y2(x) = lim

x↘1
|x− 1|y2(x) = 0, ∀ y ∈ H1

a(Ω), (2.19)

∃xi ∈ Ωi, i = 1, 2, such that y(x) = o
(
|x− 1|− 1

2

)
for a.a. x ∈ (x1, x2), (2.20)

lim
x↗1

√
a(x)y(x) = lim

x↘1

√
a(x)y(x) = 0, ∀ y ∈ H1

a(Ω), (2.21)

lim
x↗1

a(x)yx(x) = lim
x↘1

a(x)yx(x) = 0, ∀ y ∈ H2
a(Ω), (2.22)

lim
x↗1
|x− 1|a(x)yx(x)2 = lim

x↘1
|x− 1|a(x)yx(x)2 = 0, ∀ y ∈ H2

a(Ω), (2.23)

lim
x↗1

a(x)ϕx(x)y(x) = lim
x↘1

a(x)ϕx(x)y(x) = 0, ∀ y ∈ H1
a,0(Ω), ∀ϕ ∈ H2

a(Ω), (2.24)

a(d)y2
x(d) ≤ 3‖y‖2H1

a(Ω) +
2√
a(d)
‖y‖H1

a(Ω)‖ayx‖W 1,2(Ω), ∀ y ∈ H2
a(Ω), (2.25)

where the small symbol o stands for the Bachmann-Landau asymptotic notation.
Proof. Let y ∈ H1

a(Ω). To begin with, let us show that the function

v(x) =

 (1− x)y2(x), c ≤ x < 1,
0, x = 1,
(x− 1)y2(x), 1 < x ≤ d
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is continuous on Ω. Indeed, v is locally absolutely continuous in Ω \ {1} and

vx = sign (x− 1) y2(x) + 2|x− 1|y(x)yx(x), a.e. in Ω.

Since y ∈ L2(Ω) and∫
Ω

|x− 1|2yx(x)2 dx
by (2.4)

≤
∫

Ω1

|x− 1|µ1,ayx(x)2 dx+

∫
Ω2

|x− 1|µ2,ayx(x)2 dx

by (2.5)–(2.6)

≤ 1

a(c)

∫
Ω1

a(x)yx(x)2 dx+
1

a(d)

∫
Ω2

a(x)yx(x)2 dx

≤ max

{
1

a(c)
,

1

a(d)

}
‖y‖2H1

a(Ω), (2.26)

it follows that vx ∈ L1(Ω). Hence, v is an absolutely continuous functions and, as a con-
sequence, the limits limx↗1 |x − 1|y2(x) = limx↘1 |x − 1|y2(x) = L do exist and must
vanish, for otherwise y(x)2 ∼ L/|x − 1| (near the point x0 = 1) would be not integrable.
So, we come into conflict with the initial condition: y ∈ L2(Ω). From this and the fact
that a(x) = O(|x − 1|) in some neighborhood of x = 1, we immediately deduce properties
(2.20)–(2.21).

To prove the equality (2.22), it is enough to observe that the function a(x)yx(x) is
absolutely continuous. Hence, the limits limx↗1 a(x)yx(x) = limx↘1 a(x)yx(x) = L do exist
and must vanish, for otherwise a(x)yx(x)2 ∼ L2/a(x) (near the point x0 = 1) would be not
integrable. So, we come into conflict with the initial condition: y ∈ H1

a(Ω).
It remains to establish properties (2.23)–(2.25). To do so, we set

v(x) =

 (1− x)a(x)yx(x)2, c ≤ x < 1,
0, x = 1,
(x− 1)a(x)yx(x)2, 1 < x ≤ d,

where y is an arbitrary element of H2
a(Ω). Then v(x) is continuous on Ω. Indeed, v is locally

absolutely continuous in Ω \ {1} and

vx(x) = sign (x− 1) a(x)yx(x)2 + 2|x− 1|yx(x) (a(x)yx(x))x

− |x− 1|ax(x)yx(x)2 = I1(x) + I2(x) + I3(x), a.e. in Ω.

Since y ∈ H1
a(Ω), it follows that I1 ∈ L1(Ω). The same conclusion is true for the second

term I2. Indeed, in view of estimate (2.26), we have

‖I2‖L1(Ω) ≤ 2

(∫
Ω

|x− 1|2yx(x)2 dx

) 1
2
(∫

Ω

(a(x)yx(x))
2
x dx

) 1
2

by (2.26)

≤ 2

√
max

{
1

a(c)
,

1

a(d)

}
‖y‖H1

a(Ω)‖(ayx)x‖L2(Ω) < +∞.

As for the third term, we see that

‖I3‖L1(Ω)

by (2.3)

≤ µ1,a

∫
Ω1

a(x)yx(x)2 dx+ µ2,a

∫
Ω2

a(x)yx(x)2 dx

by (2.4)

≤ 2

∫
Ω

a(x)yx(x)2 dx ≤ 2‖y‖2H1
a(Ω) < +∞.
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So, v(x) is absolutely continuous in Ω. As a consequence, we see that the limits limx↗1 |x−
1|a(x)yx(x)2 = limx↘1 |x − 1|a(x)yx(x)2 = L do exist and must vanish, for otherwise
a(x)yx(x)2 ∼ L/|x − 1| (near the point x0 = 1) would be not integrable. Taking this
property into account, we obtain

a(d)y2
x(d) = v(d) =

∫
Ω2

[I1(x) + I2(x) + I3(x)] dx

≤ ‖
√
ayx‖2L2(Ω) +

2√
a(d)
‖y‖H1

a(Ω)‖(ayx)x‖L2(Ω) + 2‖y‖2H1
a(Ω)

≤ 3‖y‖2H1
a(Ω) +

2√
a(d)
‖y‖H1

a(Ω)‖ayx‖W 1,2(Ω).

It remains to prove relation (2.24). We do it by proving that the function

v(x) =

 a(x)ϕx(x)y(x), c ≤ x < 1,
0, x = 1,
a(x)ϕx(x)y(x), 1 < x ≤ d

is continuous on Ω. This follows by the arguments as above, because

‖vx‖L1(Ω) ≤
∫

Ω

|
√
ayx||

√
aϕx| dx+

∫
Ω

|y||(aϕx)x| dx

≤ ‖y‖H1
a(Ω)‖ϕ‖H1

a(Ω) + ‖y‖L2(Ω)‖aϕx‖L2(Ω) < +∞,

end, therefore, v is absolutely continuous in Ω. Thus, we see that the limits limx↗1 |x −
1|a(x)yx(x)2 = limx↘1 |x− 1|a(x)yx(x)2 = L do exist. To conclude the proof, we show that
L = 0. Indeed, in view of the property (2.21), we have

a(x)|ϕx(x)| =
∣∣∣∣∫ x

1

(aϕx)x dx

∣∣∣∣ ≤√|x− 1|‖aϕx‖L2(Ω), ∀x ∈ Ω0, ∀ϕ ∈ H2
a(Ω).

Hence, if we assume that L 6= 0, then, in a neighborhood of x = 1, for any functions
y ∈ H1

a(Ω) and ϕ ∈ H2
a(Ω), we have the inequality

L

2
≤ a(x)|ϕx(x)||y(x)| ≤

√
|x− 1||y(x)|‖aϕx‖L2(Ω), ∀x ∈ Ω0.

However, since y is an L2(Ω)-function, this relations becomes inconsistent. Thus, L = 0.
The main technical difficulty related to the problem (1.1)–(1.3) comes from the degen-

eration effect at the point x0 = 1. Therefore, taking now into account Theorems 2.3 and
2.4, we specify the original initial-boundary value problem (1.1)–(1.3) in the form of the
following transmission problem:

ytt − (a(x)yx)x = 0 in (0, T )× Ω1 and (0, T )× Ω2, (2.27)

with the initial conditions

y(0, ·) = y0, yt(0, ·) = y1 in Ω, (2.28)

the boundary conditions

y(t, c) = 0, y(t, d) = f(t) on (0, T ), (2.29)

and the transmission conditions:
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(I) For the case 1/a ∈ L1(Ω)

lim
x↗1

y(t, x) = lim
x↘1

y(t, x), 0 < t < T, (2.30)

lim
x↗1

a(x)yx(t, x) = lim
x↘1

a(x)yx(t, x), 0 < t < T ; (2.31)

(II) For the case 1/a 6∈ L1(Ω)

lim
x↗1

a(x)ϕx(x)y(t, x) = 0 = lim
x↘1

a(x)ϕx(x)y(t, x), ∀ϕ ∈ H1
a,0(Ω), 0 < t < T,

(2.32)

lim
x↗1

a(x)yx(t, x) = 0 = lim
x↘1

a(x)yx(t, x), 0 < t < T. (2.33)

Since transmission conditions (2.31)–(2.33) were substantiated in Theorems 2.3 and 2.4
if only y(t, ·) ∈ H2

a(Ω) and ϕ ∈ H2
a(Ω) (which mainly corresponds to the case of classical

solutions), it is reasonable to consider the transmission problems (2.27)–(2.33) as a relaxed
version of the original problem (1.1)–(1.3).

3. On well-posedness of the degenerate transmission problems. In this section
we recall the main results of semi-group theory concerning weak and classical notions of
solutions for differential operator equation. By analogy with [1], we consider the Hilbert
space Ha := H1

a,0(Ω)× L2(Ω) and endow it with the scalar product〈[u
v

]
,

[
ũ

ṽ

]〉
Ha

=

∫
Ω

v(x)ṽ(x) dx+

∫
Ω

a(x)ux(x)ũx(x) dx.

We define the unbounded operator A : D(A) ⊂ Ha → Ha, associated with the problem
(2.27)–(2.33) provided f(t) ≡ 0, as follows

A
[u
v

]
=

[
v

(aux)x

]
. (3.1)

and either

D(A) =


[u
v

]
∈ H2

a(Ω)×H1
a,0(Ω) :

lim
x↗1

u(x) = lim
x↘1

u(x),

lim
x↗1

a(x)ux(x) = lim
x↘1

a(x)ux(x),

u(d) = 0

 (3.2)

if 1/a ∈ L1(Ω), or

D(A) =


[u
v

]
∈ H2

a(Ω)×H1
a,0(Ω) :

lim
x↗1

aϕxu = 0 = lim
x↘1

aϕxu, ∀ϕ ∈ H2
a(Ω),

lim
x↗1

a(x)ux(x) = 0 = lim
x↘1

a(x)ux(x),

u(d) = 0

 (3.3)

provided 1/a 6∈ L1(Ω).
Arguing as in [9, Section II.2], it can be shown that D(A) is a dense subset of Ha.
Lemma 3.1. A : D(A) ⊂ Ha → Ha is the generator of a contraction semi-group in

Ha.
Proof. It is well-known that if H is a Hilbert space and B : D(D) ⊂ H → H is a densely

defined linear operator such that both B and B∗ are dissipative, i.e.,

〈Bu, u〉H ≤ 0 and 〈u,B∗u〉H ≤ 0 ∀u ∈ D(B),
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then B generates a strongly continuous semi-group of contraction operators [15, p. 686]. Let
us show that A

[
u
v

]
∈ Ha for all

[
u
v

]
∈ D(A), and this operator satisfies the above mentioned

properties.

Since the inclusion A
[
u
v

]
∈ Ha is obvious for each

[
u
v

]
∈ D(A), it remains to check the

properties〈
A
[u
v

]
,
[u
v

]〉
Ha

≤ 0, and
〈[u
v

]
, (A)

∗
[u
v

]〉
Ha

≤ 0 ∀
[u
v

]
∈ D(A). (3.4)

We do it for the case (II), 1/a 6∈ L1(Ω), because the case (I) can be considered in a similar
manner. Then the first inequality in (3.4) immediately follows from the definition of the set
D(A) and the following relations

〈
A
[u
v

]
,
[u
v

]〉
Ha

=

〈[
v

(aux)x

]
,
[u
v

]〉
Ha

=

2∑
i=1

∫
Ωi

(aux)x v dx+

2∑
i=1

∫
Ωi

avxux dx

= lim
x↗1

[∫ x

c

(aus)s v ds+

∫ x

c

avsus ds

]
+ lim
x↘1

[∫ d

x

(aus)s v ds+

∫ d

x

avsus ds

]

=

[
lim
x↗1

a(x)ux(x)v(x)

]
−
[

lim
x↘1

a(x)ux(x)v(x)

]
= 0, for all

[u
v

]
∈ D(A) (3.5)

by the transmission conditions.

Taking into account the equality〈
A
[u
v

]
,

[
ũ

ṽ

]〉
Ha

=

〈[u
v

]
,A∗

[
ũ

ṽ

]〉
Ha

,
[u
v

]
,

[
ũ

ṽ

]
∈ D(A),

we see that

〈
A
[u
v

]
,

[
ũ

ṽ

]〉
Ha

=

〈[
v

(aux)x

]
,

[
ũ

ṽ

]〉
Ha

=

2∑
i=1

∫
Ωi

(aux)x ṽ dx+

2∑
i=1

∫
Ωi

avxũx dx

= lim
x↗1

[∫ x

c

(aus)s ṽ ds+

∫ x

c

avsũs ds

]
+ lim
x↘1

[∫ d

x

(aus)s ṽ ds+

∫ d

x

avsũs ds

]

= lim
x↗1

[
−
∫ x

c

ausṽs ds−
∫ x

c

v (aũs)s ds

]
+ lim
x↘1

[
−
∫ d

x

ausṽs ds−
∫ d

x

v (aũs)s ds

]

+

[
lim
x↗1

a(x)ux(x)ṽ(x)− lim
x↘1

a(x)ux(x)ṽ(x)

]
+

[
lim
x↗1

a(x)ũx(x)v(x)− lim
x↘1

a(x)ũx(x)v(x)

]
by t.c.

= −
∫

Ω

(aũx)x v dx−
∫

Ω

aṽxux dx =

〈[u
v

]
,

[
−ṽ

− (aũx)x

]〉
Ha

.

Hence, A∗
[
ũ
ṽ

]
=
[
−ṽ

−(aũx)x

]
, and arguing as in (3.5), we see that A∗ is a dissipative operator

as well. Thus, A : D(A) ⊂ Ha → Ha generates a strongly continuous semi-group of
contraction operators.
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For further convenience, let us denote this semi-group by eAt. Then for any U0 =
[
u0

v0

]
∈

Ha, the representation U(t) = eAtU0 gives the so-called mild solution of the Cauchy problem{
d

dt
U(t) = AU(t), t > 0,

U(0) = U0.
(3.6)

When U0 ∈ D(A), the solution U(t) = eAtU0 is classical in the sense that

U(·) ∈ C1([0,∞);Ha) ∩ C([0,∞);D(A))

and equation (3.6) holds on [0,∞).
Thus, in view of the above consideration, we say that, for given y0 ∈ H1

a,0(Ω) and
y1 ∈ L2(Ω), the function

y ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];H1
a,0(Ω))

is the weak solution of problem

ytt − (a(x)yx)x = 0 in (0, T )× Ωi, i = 1, 2, (3.7)

y(t, c) = 0, y(t, d) = 0, t ∈ (0, T ), (3.8)

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω, (3.9)

with the transmission conditions (2.30)–(2.31) or (2.32)–(2.33), (3.10)

if
[
y(t)
v(t)

]
= eAt

[
y0
y1

]
for all t ∈ [0, T ]. By the aforementioned regularity result for eAt, if[

y0

y1

]
∈ H2

a(Ω)×H1
a,0(Ω),

then y is the classical solution of (3.7)–(3.10) meaning that

y ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1
a,0(Ω)) ∩ C([0, T ];H2

a(Ω))

and the equation (3.7) is satisfied for all t ∈ [0, T ] and a.e. x ∈ Ω0.
The energy of a mild solution y of (3.7)–(3.10) is the continuous function defined by

Ey(t) =
1

2

∫
Ω0

[
y2
t (t, x) + a(x)y2

x(t, x)
]
dx, ∀ t ≥ 0.

Proposition 3.2. Let a : Ω → R be a weight function satisfying properties (i)–(iii),
and let y be a mild solution of (3.7)–(3.10). Then

Ey(t) = Ey(0), ∀ t ≥ 0. (3.11)

Proof. Suppose, first, that y is a classical solution of (3.7)–(3.10). Then, multiplying the
equation by yt and integrating by parts, in view of the transmission conditions (2.30)–(2.31)
or (2.32)–(2.33), we obtain

0 =

∫
Ω0

yt(t, x)ytt(t, x) dx−
2∑
i=1

∫
Ωi

yt(t, x) (a(x)yx(t, x))x dx

=

∫
Ω0

[yt(t, x)ytt(t, x) + a(x)yx(t, x)yxt(t, x)] dx

− [yt(t, x)a(x)yx(t, x)]
x=1
x=c − [yt(t, x)a(x)yx(t, x)]

x=d
x=1

=
d

dt
Ey(t)− yt(t, 1)

(
lim
x↗1

[a(x)yx(t, x)]− lim
x↘1

[a(x)yx(t, x)]

)
,
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where the last term vanishes because of the transmission conditions. Thus, we conclude that
the energy of the classical solution y is constant. The same conclusion can be extended to
any mild solution by approximation arguments.

4. On Boundary Observability. We say that the system (3.7)–(3.10) is boundary
observable (via the normal derivative at x = c and x = d) in time T > 0 if there exists
a constant CT > 0 such that for any y0 ∈ H1

a,0(Ω) and y1 ∈ L2(Ω) the mild solution of
(3.7)–(3.10) satisfies the estimate∫ T

0

y2
x(t, c) dt+

∫ T

0

y2
x(t, d) dt ≥ CT Ey(0). (4.1)

Any constant satisfying (4.1) is called an observability constant for (3.7)–(3.10) in time T .
We denoted the supremum of all observability constants for (3.7)–(3.10) by CT .

Lemma 4.1. For any mild solution y(t, x) of (3.7)–(3.10) we have that yx(·, c) ∈ L2(0, T )
and yx(·, d) ∈ L2(0, T ) for any T > 0, and

a(c)

∫ T

0

y2
x(t, c) dt ≤ 1

1− c

[
6T +

4

min{1, a(c), a(d)}

]
Ey(0), (4.2)

a(d)

∫ T

0

y2
x(t, d) dt ≤ 1

d− 1

[
6T +

4

min{1, a(c), a(d)}

]
Ey(0). (4.3)

Moreover,

(1− c)a(c)

∫ T

0

y2
x(t, c) dt+ (d− 1)a(d)

∫ T

0

y2
x(t, d) dt

= 2

[∫
Ω0

(x− 1)yx(t, x)yt(t, x) dx

]t=T
t=0

+

∫ T

0

∫
Ω0

(
y2
t (t, x) +

[
1− (x− 1)ax(x)

a(x)

]
a(x)y2

x(t, x)

)
dx dt. (4.4)

Proof. To begin with, we assume that
[
y0
y1

]
∈ H2

a(Ω)×H1
a,0(Ω), that is, y given by the

formula
[
y(t)
v(t)

]
= eAt

[
y0
y1

]
is a classical solution of the problem (3.7)–(3.10). Following in

many aspects [1, Lemma 3.2], we multiply equation (3.7) by (x − 1)yx. Integrating over
(0, T )× Ω0, we obtain

0 =

∫ T

0

∫
Ω0

(x− 1)yx(t, x) (ytt(t, x)− (a(x)yx(t, x))x) dx dt

=

[∫
Ω0

(x− 1)yx(t, x)yt(t, x) dx

]t=T
t=0

−
∫ T

0

∫
Ω0

(x− 1)ytx(t, x)yt(t, x) dx dt

−
∫ T

0

∫
Ω0

(
(x− 1)ax(x)y2

x(t, x) + (x− 1)a(x)yx(t, x)yxx(t, x)
)
dx dt

=

[∫
Ω0

(x− 1)yx(t, x)yt(t, x) dx

]t=T
t=0

−
∫ T

0

∫
Ω0

(x− 1)ax(x)y2
x(t, x) dx dt

−
∫ T

0

∫
Ω0

(
(x− 1)

[
y2
t (t, x)

2

]
x

+ (x− 1)a(x)

[
y2
x(t, x)

2

]
x

)
dx dt (4.5)
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After integration of the last two term above, we have

∫ T

0

∫
Ω0

(x− 1)

[
y2
t (t, x)

2

]
x

dx dt = −1

2

∫ T

0

∫
Ω0

y2
t (t, x) dx dt

+
1

2

∫ T

0

[
(x− 1)y2

t (t, x)
]x=1

x=c
dt+

1

2

∫ T

0

[
(x− 1)y2

t (t, x)
]x=d

x=1
dt

by (2.19), (3.8)
= −1

2

∫ T

0

∫
Ω0

y2
t (t, x) dx dt, (4.6)∫ T

0

∫
Ω0

(x− 1)a(x)

[
y2
x(t, x)

2

]
x

dx dt = −1

2

∫ T

0

∫
Ω0

[(x− 1)a(x)]x y
2
x(t, x) dx dt

+
1

2

∫ T

0

[
(x− 1)a(x)y2

x(t, x)
]x=1

x=c
dt+

1

2

∫ T

0

[
(x− 1)a(x)y2

x(t, x)
]x=d

x=1
dt

by (2.23), (3.8)
=

(1− c)a(c)

2

∫ T

0

y2
x(t, c) dt+

(d− 1)a(d)

2

∫ T

0

y2
x(t, d) dt

− 1

2

∫ T

0

∫
Ω0

[(x− 1)a(x)]x y
2
x(t, x) dx dt. (4.7)

As a result, the identity (4.4) follows by inserting (4.6) and (4.7) into (4.5). To deduce the
estimate (4.2), it is enough to notice that

∣∣∣∣∫
Ω0

(x− 1)yx(t, x)yt(t, x) dx

∣∣∣∣ ≤ 1

2

∫
Ω0

[
y2
t (t, x) +

(x− 1)2

a(x)
a(x)y2

x(t, x)

]
dx

by Proposition 2.1

≤ Ey(0)

min{1, a(c), a(d)}
, (4.8)[

1− (x− 1)ax(x)

a(x)

]
by (2.4)

≤ 3, in Ω,

and the energy Ey(t) is constant.

In order to extend relations (4.2) and (4.4) to the mild solution associated with the initial

data y0 ∈ H1
a,0(Ω) and y1 ∈ L2(Ω), it suffices to approximate such data by

[
yk0
yk1

]
∈ H2

a(Ω)×
H1
a,0(Ω) and use estimate (4.2) to show that the normal derivatives of the corresponding

classical solutions give a Cauchy sequence in L2(0, T ).

Lemma 4.2. For any mild solution y(t, x) of (3.7)–(3.10) we have that, for each T > 0,

∫ T

0

∫
Ω0

[
a(x)y2

x(t, x)− y2
t (t, x)

]
dx dt+

[∫
Ω0

y(t, x)yt(t, x) dx

]t=T
t=0

= 0. (4.9)
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Proof. Let y be a classical solution of (3.7)–(3.10). Then, multiplying equation (3.7) by
y and integrating over (0, T )× Ω0, we obtain

0 =

∫ T

0

∫
Ω0

y(t, x) [ytt(t, x)− (a(x)yx(t, x))x] dx dt

=

[∫
Ω0

y(t, x)yt(t, x) dx

]t=T
t=0

−
∫ T

0

∫
Ω0

y2
t (t, x) dx dt

−
∫ T

0

[a(x)yx(t, x)y(t, x)]
x=1
x=c dt−

∫ T

0

[a(x)yx(t, x)y(t, x)]
x=d
x=1 dt

+

∫ T

0

∫
Ω0

a(x)y2
x(t, x) dx dt.

Since∫ T

0

[a(x)yx(t, x)y(t, x)]
x=1
x=c dt+

∫ T

0

[a(x)yx(t, x)y(t, x)]
x=d
x=1 dt

by (3.8)
=

∫ T

0

[
lim
x↗1

a(x)yx(t, x)y(t, x)− lim
x↘1

a(x)yx(t, x)y(t, x)

]
dt = 0

by the transmission conditions (2.30)–(2.31) or (2.32)–(2.33), the announced equality (4.9)
follows from the above identity. An approximation argument allows to extend this conclusion
to mild solutions.

Theorem 4.3. Let a : Ω → R be a weight function satisfying properties (i)–(iii), and
let y be a mild solution of (3.7)–(3.10). Then, for every T > 0, the estimate

(1− c)a(c)

∫ T

0

y2
x(t, c) dt+ (d− 1)a(d)

∫ T

0

y2
x(t, d) dt

≥
[
(2−max{µ1,a, µ2,a})T −

4

min{1, a(c), a(d)}
− 2(C1 + C2)

]
Ey(0) (4.10)

holds true with C1 and C2 given by relations (2.8)–(2.9).
Proof. Since the case of mild solutions can be recovered by an approximation arguments,

we restrict ourself by assumptions that y is a classical solution of the problem (3.7)–(3.10).
Then adding to the right hand side of (4.4) the left side of (4.9) multiplied by , we obtain

(1− c)a(c)

∫ T

0

y2
x(t, c) dt+ (d− 1)a(d)

∫ T

0

y2
x(t, d) dt

= 2

[∫
Ω0

(x− 1)yx(t, x)yt(t, x) dx

]t=T
t=0

+
max{µ1,a, µ2,a}

2

[∫
Ω0

y(t, x)yt(t, x) dx

]t=T
t=0

+

∫ T

0

∫
Ω0

(
1− max{µ1,a, µ2,a}

2

)
y2
t (t, x) dx dt

+

∫ T

0

∫
Ω0

([
1 +

max{µ1,a, µ2,a}
2

− (x− 1)ax(x)

a(x)

]
a(x)y2

x(t, x)

)
dx dt = I1 + I2 + I3 + I4.

Since

− (x− 1)ax(x)

a(x)
≥ −|x− 1||ax(x)|

a(x)
≥ −max{µ1,a, µ2,a},
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it follows that

I3 + I4 ≥ (2−max{µ1,a, µ2,a})
∫ T

0

Ey(0) dt = (2−max{µ1,a, µ2,a})TEy(0).

Taking into account that

I1 = 2

[∫
Ω0

(x− 1)yx(t, x)yt(t, x) dx

]t=T
t=0

by (4.8)

≥ − 4Ey(0)

min{1, a(c), a(d)}
,

and

1

2

∣∣∣∣∫
Ω0

y(t, x)yt(t, x) dx

∣∣∣∣ ≤ 1

2

∫
Ω0

(
1

Ca
y2(t, x) + Cay

2
t (t, x)

)
dx ≤ CaEy(0),

where Ca = C1 +C2 is Poincaré’s constant in (2.7) and Ci are defined in (2.8)–(2.9), we see
that

I2 ≥ −2(C1 + C2)Ey(0).

Thus, the announced estimate (4.10) is proven.
Due to Theorem 4.3, the observability constant CT (see inequality (4.1)) for the problem

(3.7)–(3.10) in time T can be derived from (4.10). Namely,

CT =
1

max{(1− c)a(c), (d− 1)a(d)}

×
[
(2−max{µ1,a, µ2,a})T −

4

min{1, a(c), a(d)}
− 2(C1 + C2)

]
.

As for the minimal time Ta > 0 when the system (3.7)–(3.10) becomes observable in
time T > Ta, it can be defined as follows

Ta :=
1

(2−max{µ1,a, µ2,a})

[
4

min{1, a(c), a(d)}
+ 2(C1 + C2)

]
. (4.11)

5. On Boundary Null-Controllability. In this section the problem of boundary
controllability of the degenerate wave equation is studied. The control is assumed to act at
the boundary point x = d through the Dirichlet condition. So, we consider the following
degenerate control system

ytt − (a(x)yx)x = 0 in (0,+∞)× Ωi, i = 1, 2, (5.1)

y(t, c) = 0, y(t, d) = f(t), t ∈ (0,+∞), (5.2)

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω, (5.3)

with the transmission conditions (2.30)–(2.31) or (2.32)–(2.33), (5.4)

where f ∈ L2(0, T ) is the control.
Let H−1

a (Ω) be the dual space to H1
a,0(Ω) with respect to the pivot space L2(Ω). Since

y = y(t, x) can be considered as a function of t with values into a suitable space, in the
sequel we will write y(t) instead of y(t, x), ẏ instead of yt, and ÿ instead of ytt.

In order to make a precise definition of the solution to the boundary value problem
(5.1)–(5.4), where f ∈ L2(0, T ) is the control, and indicate its characteristic properties, we
notice that Proposition 2.1 (see also (2.10)) implies that the operator Aa : D(Aa) ⊂ L2(Ω)→
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L2(Ω), where Aa(y) = −(ayx)x and D(Aa) = H2
a(Ω), is an isomorphism from H1

a,0(Ω) onto

H−1
a (Ω). In particular, H−1

a (Ω) = Aa
(
H1
a,0(Ω)

)
.

Definition 5.1. System (5.1)–(5.4) is boundary null controllable in time T > 0 if, for
every initial data y0 ∈ L2(Ω), and y1 ∈ H−1

a (Ω), the set of reachable states (y(T ), ẏ(T )),
where y is a solution of (5.1)–(5.4) with f ∈ L2(0, T ), contains the element (0, 0).

Definition 5.2. System (5.1)–(5.4) is boundary exactly controllable in time T > 0 if,
for every initial data y0 ∈ L2(Ω), and y1 ∈ H−1

a (Ω), the set of reachable states (y(T ), ẏ(T )),
coincides with L2(Ω)×H−1

a (Ω).
Remark 5.1. Arguing as in Proposition 2.2.1 in [20], and utilizing the linearity and

reversibility properties of system (5.1)–(5.4), it can be shown that this system is exactly
controllable through the boundary Dirichlet condition at x = d if and only if it is null con-
trollable.

Following the standard approach and utilizing the transmission conditions, we define
the solution of controlled system (5.1)–(5.4) by transposition.

Definition 5.3. Let f ∈ L2(0, T ), y0 ∈ L2(Ω), and y1 ∈ H−1
a (Ω) be given distributions.

We say that y is a solution by transposition of the problem (5.1)–(5.4) if

y ∈ C1
(
[0,∞);H−1

a (Ω)]
)
∩ C

(
[0,∞);L2(Ω)

)
satisfies for all T > 0 and all w0

T ∈ H1
a,0(Ω) and w1

T ∈ L2(Ω) the following equality

〈
ẏ(T ), w0

T

〉
H−1

a (Ω);H1
a,0(Ω)

−
∫

Ω

y(T )w1
T dx

= 〈y1, w(0)〉H−1
a (Ω);H1

a,0(Ω) −
∫

Ω

y0ẇ(0) dx− a(d)

∫ T

0

f(t)wx(t, d) dt, (5.5)

where w is the solution of the backward homogeneous equation

wtt − (a(x)wx)x = 0 in (0,+∞)× Ωi, i = 1, 2 (5.6)

with the final conditions

w(T ) = w0
T , wt(T ) = w1

T in Ω, (5.7)

the boundary conditions

w(t, c) = 0, w(t, d) = 0 on (0, T ), (5.8)

and the transmission conditions:
(I) For the case 1/a ∈ L1(Ω)

lim
x↗1

w(t) = lim
x↘1

w(t), 0 < t < T, (5.9)

lim
x↗1

awx(t) = lim
x↘1

awx(t), 0 < t < T ; (5.10)

(II) For the case 1/a 6∈ L1(Ω)

lim
x↗1

aϕxw(t) = 0 = lim
x↘1

aϕxw(t), ∀ϕ ∈ H1
a,0(Ω), 0 < t < T, (5.11)

lim
x↗1

awx(t) = 0 = lim
x↘1

awx(t), 0 < t < T. (5.12)
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Following the results of Section 3 and thanks to the change of variable u(t, x) = w(T −
t, x), we see that the backward problem (5.6)–(5.12) admits a unique mild solution w ∈
C1
(
[0, T ];L2(Ω)]

)
∩C

(
[0, T ];H1

a,0(Ω)
)

for each T > 0. Moreover, arguing as in Lemma 4.1,
it can be shown that there exists a constant C > 0 such that∫ T

0

w2
x(t, c) dt+

∫ T

0

w2
x(t, d) dt ≤ C Ew(T ), (5.13)

where

Ew(t) =
1

2

∫
Ω0

[
w2
t (t, x) + a(x)w2

x(t, x)
]
dx = Ew(T ), ∀ t ∈ [0, T ],

is the energy of a mild solution w and it is conserved through time. Since

Ew(T ) =
1

2

[
‖w1

T ‖2L2(Ω) + ‖w0
T ‖2H1

a,o(Ω)

]
, (5.14)

it follows that a mild solution w of (5.6)–(5.12) depends continuously on the data (w0
T , w

1
T ) ∈

H1
a,0(Ω)×L2(Ω), and, therefore, the right hand side of (5.5) defines a continuous linear form

with respect to (w0
T , w

1
T ) ∈ H1

a,0(Ω) × L2(Ω) T > 0. Thus, a solution y by transposition

of (5.1)–(5.4) is unique in C1
(
[0,∞);H−1

a (Ω)]
)
∩ C

(
[0,∞);L2(Ω)

)
. The following theo-

rem is a consequence of the classical results of existence and uniquencess of solutions of
nonhomogeneous evolution equations. Full details can be found in [14] and [21].

Theorem 5.4. For any f ∈ L2(0, T ) and (y0, y1) ∈ L2(Ω) × H−1
a (Ω) transmission

problem (5.1)–(5.4) has a unique solution defined by transposition

(y, ẏ) ∈ C
(
[0, T ];L2(Ω)×H−1

a (Ω)
)
.

Moreover, the map (y0, y1, f) 7→ {y, ẏ} is linear and there exists a constant C(T ) > 0 such
that

‖y‖L∞(0,T ;L2(Ω)) + ‖ẏ‖L∞(0,T ;H−1
a (Ω)) ≤ C(T )

[
‖y0‖L2(Ω) + ‖y1‖H−1

a (Ω) + ‖f‖L2(0,T )

]
.

We are now in a position to prove the main result of this section.
Theorem 5.5. Let a : Ω → R be a weight function satisfying properties (i)–(iii), and

let Ta be a value defined as in (4.11). Then, for every T > Ta and for any (y0, y1) ∈
L2(Ω)×H−1

a (Ω), there exists a control f ∈ L2(0, T ) such that the solution of (5.1)–(5.4) (in
the sense of transposition) satisfies condition (y(T ), ẏ(T )) ≡ (0, 0), i.e. the system (5.1)–
(5.4) is boundary null controllable in time T > Ta.

Proof. Let [
y0

y1

]
∈ L2(Ω)×H−1

a (Ω),

[
w0
T

w1
T

]
,

[
ŵ0
T

ŵ1
T

]
∈ H1

a,0(Ω)× L2(Ω)

be arbitrary pairs. Let w and ŵ be mild solutions of the backward problem (5.6)–(5.12)

with final conditions
[
w0

T

w1
T

]
and

[
ŵ0

T

ŵ1
T

]
, respectively. Let us define the bilinear form Λ on

H1
a,0(Ω)× L2(Ω) as follows

Λ

([
w0
T

w1
T

]
,

[
ŵ0
T

ŵ1
T

])
:= a(d)

∫ T

0

wx(t, d)ŵx(t, d) dt, ∀
[
w0
T

w1
T

]
,

[
ŵ0
T

ŵ1
T

]
∈ H1

a,0(Ω)× L2(Ω).
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Then, in view of estimate (5.13) and representation (5.14), we deduce that the bilinear form

Λ :
[
H1
a,0(Ω)× L2(Ω)

]2 → R is continuous. Moreover, due to Theorem 4.3 and observability
inequality (4.10), this form is coercive on H1

a,0(Ω) × L2(Ω) provided T > Ta. Thus, by the
Lax-Milgram Lemma, variational problem

Λ

([
w0
T

w1
T

]
,

[
ŵ0
T

ŵ1
T

])
= 〈y1, ŵ(0)〉H−1

a (Ω);H1
a,0(Ω) −

∫
Ω

y0
˙̂w(0) dx, ∀

[
ŵ0
T

ŵ1
T

]
∈ H1

a,0(Ω)× L2(Ω)

has a unique solution
[
w0

T

w1
T

]
∈ H1

a,0(Ω) × L2(Ω). Then setting f = wx(t, d) and T > Ta,

where w ∈ C1
(
[0, T ];L2(Ω)]

)
∩C

(
[0, T ];H1

a,0(Ω)
)

is a mild solution of the backward problem

(5.6)–(5.12) with
[
w0

T

w1
T

]
as the final data, we see that

a(d)

∫ T

0

f(t)ŵx(t, d) dt = a(d)

∫ T

0

wx(t, d)ŵx(t, d) dt = Λ

([
w0
T

w1
T

]
,

[
ŵ0
T

ŵ1
T

])
= 〈y1, ŵ(0)〉H−1

a (Ω);H1
a,0(Ω) −

∫
Ω

y0
˙̂w(0) dx, ∀

[
ŵ0
T

ŵ1
T

]
∈ H1

a,0(Ω)× L2(Ω). (5.15)

On the other hand, if y is the solution by transposition of the problem (5.1)–(5.4), then

equality (5.5) implies that, for all
[
ŵ0

T

ŵ1
T

]
∈ H1

a,0(Ω)× L2(Ω), we have

a(d)

∫ T

0

f(t)ŵx(t, d) dt = 〈y1, ŵ(0)〉H−1
a (Ω);H1

a,0(Ω) −
∫

Ω

y0
˙̂w(0) dx

−
〈
ẏ(T ), ŵ0

T

〉
H−1

a (Ω);H1
a,0(Ω)

+

∫
Ω

y(T )ŵ1
T dx. (5.16)

Comparing the last relations (5.15)–(5.16), we obtain

−
〈
ẏ(T ), ŵ0

T

〉
H−1

a (Ω);H1
a,0(Ω)

+

∫
Ω

y(T )ŵ1
T dx = 0, ∀

[
ŵ0
T

ŵ1
T

]
∈ H1

a,0(Ω)× L2(Ω).

From this we finally deduce that (y(T ), ẏ(T )) ≡ (0, 0), i.e. the system (5.1)–(5.4) is boundary
null controllable in time T > Ta.
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