Nascent advanced therapies, including regenerative medicine and cell and gene therapies, rely on the production of cells in bioreactors that are highly heterogeneous in both space and time. Unfortunately, these promising therapies have failed to reach a wide patient population due to unreliable manufacturing processes that result in batch variability and cost prohibitive production. This can be attributed largely to a void in existing process analytical technologies (PATs) capable of characterizing the secreted critical quality attributes (CQAs) biomolecules that correlate with the final product quality. The Dynamic Sampling Platform (DSP) is a PAT for cell bioreactor monitoring that can be coupled to a suite of sensor techniques to provide real-time feedback on spatial and temporal CQA content in situ. In this study, DSP is coupled with electrospray ionization mass spectrometry (ESI-MS) and direct-from-culture sampling to obtain measures of CQA content in bulk media and the cell microenvironment throughout the entire cell culture process (~3 weeks). Post hoc analysis of this real-time data reveals that DSP output is heavily dependent on spatial context. Importantly, these results demonstrate that an effective PAT must incorporate both spatial and temporal resolution to serve as an effective input f or feedback control in advanced therapy production.