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An agricultural watershed, Cole Farm, was established as the newest of the three subcatchments in 
the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in 2017. The catchment contains 
mostly pasture and crops, with a small portion of deciduous forest. The observations in Cole Farm 
afford an opportunity to test the spatially distributed land surface hydrologic model, Flux-PIHM, in 
farmland for the first time. In this study, we calibrated the model to only discharge and groundwater 
level observations at Cole Farm, but it’s able to capture the variations and magnitudes of soil 
moisture, latent heat (LE) and sensible heat (H) fluxes. Modeled soil moisture on the ridge top 
matched the observations well, but modeled soil moisture in the mid-slope differed from 
observations likely due to the existence of fragipan in the soil column. Flux-PIHM reproduced the 
seasonality and diurnal variations of watershed-average evapotranspiration (ET), sensible heat flux 
(H), though modeled ET in summer is about 25% greater than tower ET. 

To study the impact of land cover on hydrology, we imposed two different LAI forcings to the model: 
spatially distributed versus uniform LAI. Spatially distributed LAI produced higher ET and lower soil 
moisture in the forested part of the watershed due to higher LAI of deciduous forest in comparison to
crops and pasture. But the impact of different LAI forcings on discharge was small. We further 
compared the water budget simulated by Flux-PIHM in the agricultural watershed (Cole Farm) to a 
forested watershed (Shale Hills). Flux-PIHM simulated less discharge and higher transpiration and 
bare soil evaporation in the Cole Farm watershed relative to Shale Hills watershed. Our work shows 
that with a few key observations, Flux-PIHM can be calibrated to simulate agricultural watershed 
hydrology, but spatially distributed LAI and soils data are needed to capture the spatial variations in 
soil moisture and ET.  

Introduction

Accurate soil moisture distribution in space and time simulated by hydrological 
models is key to the crop production assessment (Dokoohaki et al., 2016; Iacobellis 
et al., 2013), and thus to the food security and sustainable agricultural practices, 
especially under changing climate and degrading environment. Hydrological models
from watershed scale to global scale have been developed with various purposes 
(Siad et al., 2019), such as streamflow and flood forecasting (Manfreda et al., 2015), 
water resource management, water quality evaluation, erosion, nutrient and 
pesticide circulation, etc. Although extensive model work have been done in  large 



catchments for water resources purposes, their implication in agriculture is still 
limited (Jia et al., 2011).

Flux-PIHM is a spatially distributed, fully coupled land surface hydrologic model, 
which combines the strength of physically-based hydrologic modeling and land 
surface modeling. Flux-PIHM provides high spatial resolution prediction and 
reanalysis of watershed hydrologic and land surface states on time scales from 
minutes to decades (Shi et al., 2013; Duffy et al., 2014). It is able to capture some of 
the land surface heterogeneity caused by topography and soil properties. Flux-PIHM
has been successfully calibrated and applied to two first-order forested catchments 
that are nested within the Susquehanna Shale Hills Critical Zone Observatory 
(SSHCZO) (Shi et al., 2013; Xiao et al., 2019). However, Flux-PIHM has not yet been 
calibrated to the agricultural area.

Agricultural land is different from forest in many aspect. The phenology of a farm 
land is affected by both human decisions and climate conditions, whereas the 
phenology of a forest is mainly determined by climate. Apart from phenology, leaf 
area index (LAI) of a farm (row crops/pasture) is usually lower than that of a forest, 
and the stomatal conductance of crops/pasture is lower than that of a forest. The 
difference in vegetation heights between crops/pasture and trees also results in the 
differences in surface roughness, which plays an important role in the atmospheric 
boundary layer. The cultivation and harvesting practices in agricultural land leave 
almost no O-horizon in the soil, while forests usually have thick O-horizon due to 
leaf litter input. Distributed hydrological models, such as Flux-PIHM, are land-use 
dependent for soil functions and water distribution. Land-use can significantly alter 
the seasonal and annual hydrological response within a catchment (Siad et al., 
2019).

Flux-PIHM accounts for the differences in land cover types. Different land cover 
types are parameterized based on the modified International Geosphere–Biosphere 
Programme (IGBP) Moderate Resolution Imaging Spectroradiometer (MODIS) 20-
category vegetation (land use) data. They are also the same parameters used in the 
Noah LSM (Shi et al., 2013). Soil hydrological properties (e.g. conductivity, van 
Genuchten parameters) are parameterized based on soil texture data obtained from 
national/local soils data and pedotransfer function (PTF) (Wösten et al., 2001; Yu et 
al., 2013). These parameters are further calibrated to local hydrological 
observations for watershed simulations.

Flux-PIHM was successfully calibrated to two SSHCZO forest watersheds, Shale Hills 
and Garner Run. Among all three SSHCZO watersheds, Shale Hills watershed is the 
most intensively observed and studied watershed with many local measurements 
and valuable expert knowledge available. As we move from Shale Hills to Cole Farm, 
model calibration will be different for the two watersheds with different land cover 
and soil properties. We chose the Hornberger-Spear-Young (HSY) 
approach(Hornberger and Spear, 1983) to calibrate the model, which was also used 
to calibrate the Garner Run watershed (Xiao et al., 2019).



In this study, we calibrated Flux-PIHM model in the Cole Farm watershed and 
evaluated the model simulations against the local measurements (e.g. soil moisture, 
ET). With the calibrated model, we studied the impact of land cover on watershed 
hydrology with two levels of comparisons: 1) the impact of two different LAI 
forcings on the modeled hydrology at Cole Farm; 2) the differences in water balance 
between the agricultural (Cole Farm) and forest (Shale Hills) watershed.

Methods

Model and parameters

Flux-PIHM (Shi et al., 2013) is a land surface hydrologic model, which couples the 
land surface schemes in the Noah Land Surface Model (Chen and Dudhia, 2001)(Ek 
et al., 2003) to the Penn State Integrated Hydrologic Model (PIHM), a physically 
based, spatially distributed hydrologic model (Qu and Duffy, 2007). The land surface
and hydrologic components are coupled by exchanging water table depth, soil 
moisture, infiltration rate, recharge rate, net precipitation (precipitation minus 
canopy interception) rate, and evapotranspiration rate between each other (Shi et 
al., 2014). Because PIHM’s capability of simulating the hydrology at high spatial 
resolutions, Flux-PIHM is able to represent heterogeneities caused by topography 
and soils at a fine spatial scale (Shi et al., 2013).

Model inputs include hourly meteorological reanalysis (NLDAS-2), surface elevation 
(USGS NED), land cover type (NLCD), LAI (MODIS and climatological), and soil 
properties (SSURGO). The MODIS LAI data is at a frequency of 8 days and it uses 
uniform value for the study area at Cole Farm (the catchment is mostly within one 
pixel). The climatological LAI is based on phenology and assigns different LAI values
to different land cover types, but it repeats the same LAI values for each year. Soil 
properties include matrix properties and macropore properties. Matrix properties 
include depth, horizontal and vertical hydraulic conductivity, porosity, and van 
Genuchten parameters ( , n, s, and r). Macropore properties include macropporeα θ θ
depth and conductivities (horizontal and vertical). The initial values of soil 
properties are calculated with pedotransfer function from soil texture and bulk 
density available at SSURGO database, and need to be calibrated based on available 
observations at Cole Farm.

Previous studies in Shale Hills and Garner Run CZO identified several parameters 
that were most important to hydrologic properties (Xiao et al., 2019; Shi et al., 2014;
Yu et al., 2013; Yu et al., 2014). We thus focused on these parameters for parameter 
calibration: macropore depth, soil porosity, van Genuchten alpha(α), van Genuchten 
beta (n), Saturated hydraulic conductivity (K sat), including horizontal Ksat, vertical 
Ksat, macropore horizontal Ksat, and macropore vertical Ksat.



Site

The Cole Farm (0.65 km2) catchment is an agriculturally cultivated site underlain by 
Wills Creek Formation, a calcareous shale. The farm is privately held and has 
utilized no-till practices since early 1970s (personal communication with Dr. Cole). 
Cole Farm is included as part of the Susquehanna Shale Hills Critical Zone 
Observatory in 2017. Observational instruments (Fig. 1) include wells, spring flume, 
flux tower, COSMOS, and Ground Hydrologic Observation Gears (GroundHOGs) 
which include automated soil moisture and soil temperature sensors at different 
depths (10 cm, 20 cm, 40 cm and 90 cm).

Study area (contributing area, blue shaded area) in the Cole Farm property (area 
within the dashed line) 

In this study, we did not choose the whole Cole Farm property as our study area, but
only the upslope area that contributes water to the spring flume (Fig. 1 blue shaded 
area). We generated flow direction and flow accumulation based on DEM in the 
Watershed tool in ArcGIS. The location of the spring flume was used as a pour point 
to determine the contributing catchment area . Note that the contributing area 
includes a small upland area that is beyond the Cole Farm property. The 
contributing area is 0.08 km2. The model domain is thus set up according to the 
contributing area. The model domain and grids (triangulated irregular network, 
TIN) were generated in PIHMgis (Bhatt et al., 2014) based on DEM (USGS NED) (Fig. 
2a).

Spatial information such as soil and land cover types were also assigned to each 
triangular mesh element in PIHMgis for Flux-PIHM simualtion. According to 
SSURGO (Fig. 2b), there is one soil type, the Edom-Weikert complex (Eg), with four 
subtypes characterized by slope in the catchment (EgB: 3 - 8% slopes; EgC: 8 - 15% 
slopes; EgD: 15 - 25% slopes; EgF: 25 - 60% slopes). The four soil subtypes have the 
same bulk density and are only slightly different in soil composition. Different land 
cover types (Fig. 2c) are parameterized differently in Flux-PIHM (Gochis et al., 
2018). The contributing area is dominated by pasture/hay and cultivated crops, 
with a small portion of deciduous forest in the riparian zone and northeast part of 
the upland. Bedrock depth is assigned to 5 m uniformly throughout the watershed.



Spatial information of the contributing area within Cole Farm. a) Surface elevation 
map with point measurements at Cole Farm, b) soil map, and c) vegetation map in 
Flux-PIHM model TIN grids. 

Observations

Observations include forcing data, calibration data and evaluation data (Table 1). 
Forcing data include meteorological forcing and LAI forcing. Meteorological data has
hourly timestep and is downloaded from NLDAS-2 Online Archive. It includes 
precipitation, air temperature, relative humidity, wind speed, surface air pressure, 
downward longwave and shortwave radiation.  Local observations at Cole Farm are 
used either as calibration data or evaluation data. They are averaged to hourly time 
steps to match the timestep of the model output. 

Two LAI forcing are used in the model (Fig. 3): MODIS LAI and climatological LAI. 
MODIS LAI is a product from remote sensing (available 
at https://modis.ornl.gov/globalsubset/). The LAI values vary with time (8-day 
temporal resolution), but it is spatially uniform in our study area because most part 
of the catchment is within in one pixel (500 m×500 m), and thus cannot distinguish 
land cover types. Climatological LAI is based on phenology and follows the same 
annual pattern each year, but assigns different LAI values to different land cover 
types. 

Two LAI forcing at Cole Farm for the simulation periods: Climatological LAI (including
two land cover types: pasture/crop in green and forest in blue) and MODIS LAI in 
black. 

Groundwater level data is measured every 15 minutes using a HOBO U20-001-01 
non-vented pressure transducer. Data is further cleaned by removing groundwater 
level drop due to well pumping and sampling. Ground Hydrologic Observation Gear 
(GroundHOG) measures soil water content and soil temperature at four different 
depths on the ridge top (CFRT), east midslope (CFEMS) and west midslope 
(CFWMS) using HydraProbe from Stevens Instruments. The top layer (10 cm) is 
used in this study to compare to the modeled soil moisture in the surface layer. The 
flux tower is 3m tall and the footprint of the tower is ~150 m (along wind direction)
by ~80 m (cross wind direction).

Observations used in Flux-PIHM for forcing, calibration and evaluation 

INSTRUMEN OBSERVATION TIME TEMPORAL NOTE SOURC

https://hydro1.gesdisc.eosdis.nasa.gov/data/NLDAS/NLDAS_FORA0125_H.002/
https://modis.ornl.gov/globalsubset/


T S PERIOD RESOLUTIO
N

E

Well 1 Groundwater 05/26/2017
-

09/10/2019

15 min Calibratio
n

Cole
Farm

Spring flume Discharge 04/01/2019
-

12/31/2019

15 min Calibratio
n

Cole
Farm

GroundHOG Soil moisture -
RT

08/23/2017
-

12/31/2019

10 min Evaluatio
n

Cole
Farm

Soil moisture -
EMS

01/21/2018
-

12/31/2019

10 min Evaluatio
n

COSMOS Soil moisture,
space

08/16/2018
-

12/31/2019

1 hr Evaluatio
n

Cole
Farm

Flux tower Latent heat
flux

05/09/2017
-

12/01/2019

30 min Evaluatio
n

Cole
Farm

Sensible heat
flux

05/09/2017
-

12/01/2019

30 min Evaluatio
n

Upward
longwave
radiation 

03/21/2018
-

12/31/2019

10 min Evaluatio
n

Upward
shortwave
radiation

03/21/2018
-

12/31/2019

10 min Evaluatio
n

NLDAS-2 Meteorological
forcing

01/01/2017
-

12/31/2019

1 hr Forcing

MODIS LAI LAI forcing 01/01/2017
-

12/27/2019

8 days Forcing

Model experiment design

The Cole Farm watershed model domain consists of 269 triangular grids, including 
four soil sub-types and three vegetation types. Spatially uniform meteorological 
forcing is applied to the catchment. The simulation time period is from 01/01/2017 
to 12/31/2019.



Because Flux-PIHM is intensively parameterized, to avoid overparameterization, we
followed the same practice as other CZO watershed simulations did with Flux-
PIHM (Shi et al., 2013; Xiao et al., 2019), and adopted the single global calibration 
multiplier method (Wallner et al., 2012). By applying one global calibration 
coefficient to each model parameter regardless of soil type or land cover type (e.g. 
all model grids share the same calibration coefficient for soil porosity), the 
dimension of parameter space for calibration is reduced and the ratios between 
uncalibrated a priori parameters of different soil/vegetation types are preserved. 

To calibrate the model, we used Hornberger-Spear-Young (HSY) 
algorithm (Hornberger and Spear, 1983; Whitehead and Young, 1979). HSY 
algorithm is a global sensitivity analysis method which looks at the differences 
between multiple classes of model outputs. Calibration coefficients were sampled 
using the Latin hypercube sampling method (McKay et al., 1979) for 500 
simulations. The Nash-Sutcliffe Efficiency (NSE) was used as the criteria for 
acceptable model runs.Previous studies (Shi et al., 2014; Xiao et al., 2019) have 
shown that discharge and soil moisture data are essential for model calibration; 
however, because soil moisture observations are not always reliable, only discharge 
and groundwater data are used for model calibration, and soil mositure data is 
reserved for model evaluation. 

To study the impact of land cover types on the hydrological cycle, we drove Flux-
PIHM with two different LAI forcing: MODIS LAI and climatological LAI. The 
calibrated model was used to simulate the watershed hydrology with two different 
LAI forcing. Watershed total discharge and spatial patterns of soil moisture, 
evapotraspiration (or latent heat flux) from two model simulations were compared 
against each other.

Finally, we calculated the water balance at Cole Farm based on the calibrated model,
and compared the hydrological components to those simulated at Shale Hills 
watersheds from previous studies (Shi et al., 2015; Brantley et al., 2018). Both Cole 
Farm and Shale Hills watersheds are first order catchments underlain by shale 
bedrock, and are similar in size (both are about 0.08 km2). Shale Hills is a forested 
watershed and Cole Farm is an agricultural site.

Results

Model-data comparison after calibration

Figure 4 shows the modeled discharge and groundwater level before (grey dots) 
and after calibration (green dots) compared to observations (black dots). The 
calibrated model captured the peaks and base flow of stream discharge. The NSE 
value of discharge increased from 0.436 to 0.623 after calibration. The model 
underestimated a few peak events, but only underestimated the average discharge 
by 9.8% during 04/2019 - 11/2019.



The calibrated model also significantly improved the seasonality and variations in 
groundwater level fluctuations. The model with default parameters missed most of 
the drying and wetting events and were off by about 2 m in magnitudes. The 
calibrated model reproduced both the variations and magnitudes in groundwater 
depth, even though it missed some drying events and tended to be more sensitive to 
small precipitation events than observations. Note that because the bedrock depth 
is set to 5 m thoughout the watershed in the model, the simulated groundwater level
(depth to the surface) minimized at 5 m below surface.

Model simulations of discharge (upper figure) and groundwater level (lower figure) 
before and after calibration compared to observations.

Flux-PIHM reproduced the seasonality and diurnal variations of the watershed-
average latent (LE) and sensible (H) heat flux (Figure 5). Modeled LE (~500 W m-2) 
was about 25% greater than flux tower data (~400 W m-2) in summer. However, due
to the limited footprint and the typical failures in closing the energy balance in eddy 
covariance measurements (Foken, 2008; Fritschen et al., 1992), the observations 
might underestimate the surface heat fluxes as well.

Model simulations of latent (LE) and sensible (H) heat fluxes compared to 
observations. 

Figure 6 shows that modeled soil moisture on the ridge top (CFRT) and west 
midslope(CFWMS) matched the wetting and drying events of the observations well. 
However, modeled soil moisture in the east mid-slope (CFEMS) differed from 
observations significantly likely due to the existence of fragipan horizon in the 
subsurface. The observed soil moisture in the beginning of 2019 is around 0.5, but 
the model only predicted half of the observed soil water content. Observations also 
indicated a large drop in soil moisture (from ~0.5 to ~0.2) when summer began, 
whereas the modeled soil water content only dropped from ~0.25 to ~0.18.

It’s worth nothing that soil moisture observations in all three sites showed lower 
soil moisture at the end of 2019 than the beginning of the year. On the ridge top, the 
average soil water content at the end of the year (~0.2) was about 25% lower than 
in the beginning of the year (~0.25); in the west midslope, soil moisture dropped by 
about 30% at the end of the year (from ~0.3 to ~0.2); and in east midslope, the 



saturated soil water content dropped about 40% at the end of the year (from ~0.5 
to ~0.3).

Model simulations of soil water content on the Cole Farm ridge top (CFRT), west 
midslope (CFWMS), and east midslope (CFEMS) compared to observations. 

Impact of different LAI forcings on hydrological cycles

Impact on discharge 

Two different LAI forcings produced similar discharge at the watershed outlet, with 
only about 3% difference during the peak events. Total discharge with 
climatological LAI forcing is 2.8% lower than with MODIS LAI forcing.

Modeled discharge with climatological LAI and MODIS LAI forcing 

Impact on spatial patterns of latent heat flux and soil moisture

Spatially distributed LAI (climatological LAI) produced higher LE and lower soil 
moisture in the forested part of the watershed due to higher LAI of deciduous forest 
(~6 m2/m2) in comparison to crops and pasture (~ 3 m2/m2) (see Fig. 3). The 
watershed-average LE from both LAI forcings were about the same (MODIS LAI: 121
W/m2; climatological LAI: 129 W/m2), but in the forested area, the LE simulated 
with MODIS LAI (117 W/m2) in July 2019 is significantly lower (about 20%) than 
that of climatological LAI (144 W/m2). The watershed-average soil moisture from 
both LAI forcings were also similar (MODIS LAI: 0.188; climatelogical LAI: 0.182). 
The soil moisture of MODIS LAI (0.207) in July 2019 is about 6.8% higher than that 
of climatological LAI (0.193) in the forested area.



Modeled average spatial patterns of soil moisture (a and b) and latent heat flux (c and 
d) in July 2019 with MODIS LAI forcing (a and c) and climatological LAI forcing (b and 
d) 

Water balances in two watersheds with different land covers

The water balance simulated by Flux-PIHM in the agricultural watershed (Cole 
Farm) is compared to a forested watershed (Shale Hills). Flux-PIHM simulated less 
discharge and higher transpiration from vegetation and soil evaporation in the Cole 
Farm watershed relative to Shale Hills forest watershed.

Water balance in Shale Hills and Cole Farm watersheds simulated by Flux-PIHM 

Discussion and Conclusion

As we move from intensively measured watersheds such as Shale Hills (Brantley et 
al., 2018) to other watersheds where only essential measurements are collected (to 
reduce the cost in labor, time and money), modeling systems are crucial to help us 
understand the whole picture of the water and energy cycle in the watersheds. Flux-
PIHM model is calibrated only to stream discharge and groundwater level data, but 
it captured the variations and magnitudes of other hydrologic components. This 
study suggests that it is possible to simulate watershed hydrology with only a few 
key observations to guide the choice of parameters in calibration of Flux-PIHM. 

Flux-PIHM successfully reproduced most of the hydrological components at Cole 
Farm, even though it failed to simulate the observed soil moisture at the east 
midslope (CFEMS). Local point measurements (GroundHOG) at the east midslope of 
the watershed showed high soil water content and drastic change in soil moisture 
between wet and dry seasons (Fig. 5). Soil survey at Cole Farm at a finer resolution 
than SSURGO (Li et al., 2018) revealed the presence of a fragipan (Btx) horizon from 
45 to 80 cm at CFEMS. Fragipans are cemented horizons that restrict the percolation
of water in addition to the penetration of roots. The physical characteristics of 



fragipans often result in a perched water table (Daniels and Fritton, 1994). Since the
roots can only access the soil water above that horizon, the soil dries quickly as the 
growing season progresses. The unique properties of fragipans explain the 
difference between modeled and observed soil moisture at CFEMS.

Because fragipan in soils restricted the pathways of water flow and affected the soil 
water available to roots, the model failed to reproduce the soil moisture at CFEMS 
and possibly other places with fragipan below surface. This finding suggests that 
fragipan and other root-restricting soil properties would need to be added to the 
hydrologic model to properly simulate the hydrology within these subsections of the
watershed. However, this is challenging given the spatial variability of fragipan 
expression at the SSURGO resolution.

Another interesting phenomenon was observed in soil moisture measurements in 
2019, as all three sites showed lower soil moisture at the end of 2019 compared to 
the beginning of the year. This is likely due to a relative dry year (precip. in 2019: 
1083mm) following a extremely wet year (precip. in 2018: 1596mm). Soil moisture 
was evelated following the wet year 2018 and did not recover to the high soil water 
content after a dry summer in 2019. Similarly, groundwater level in January 2019 
(~2m below surface) is much higher than 2018 and 2020 (~ 4.5m below surface).

The experiment with different LAI forcings on hydrology showed that both LAI 
forcings produced similar stream discharge at the watershed outlet; however, to 
obtain a higher accuracy of the spatial patterns of hydrologic components, such as 
ET and soil moisture, especially in a watershed with multiple land cover types, a 
spatially distributed LAI is necessary. 

The comparison of modeled water budget between agricultural (Cole Farm) and 
forest (Shale Hills) watershed showed higher transpiration from pasture/crops than
forest due to lower water vapor resistance in pasture/crops, even though LAI of 
cropland is lower than forest. Cole Farm also showed higher soil evaporation 
because of lower LAI, thus more soil exposure compared to forest. Both watersheds 
have similar snow sublimation and canopy evaporation. However, due to the lack of 
a full year discharge data at Cole Farm, we were not able to compare a whole year’s 
total discharge between the model and observations. This could potentially lead to a
biased modeled water budget in Cole Farm. In particular, the model underestimated 
a few discharge events in Cole Farm (Fig. 3). Note that the water budgets in the two 
watersheds are simulated based on two different periods of time, and used different 
calibration methods.

This study showed that with only a few key observations (stream discharge, soil 
moisture, groundwater level), Flux-PIHM is able to simulate the hydrology in a 
rainfed agricultural watershed, even though it was first developed and tested in a 
forested watershed. To simulate the spatial pattern of hydrological components 
such as soil moisture and ET, spatially distributed LAI and soils data are needed. 
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